
D Y L A N B A R R E L L

AGILE
ACCESS BILITY
HANDBOOK
A Practical Guide
to Accessible Software Development at Scale

IT IS ESTIMATED THAT ONE IN FIVE
PEOPLE HAS A DISABILITY; if you
do the math, that’s a huge, addressable
population that is often overlooked.
Digital Accessibility practitioners
tap into this market by making dig­
ital documents—as well as web and
mobile apps—accessible to everyone.
However, many enterprises struggle
to create, maintain, and scale their
digital accessibility efforts.

AGILE ACCESSIBILITY HANDBOOK out­
lines the steps organizations can
take to capture this market, avoid
risk, maintain agility, and close the
accessibility gap. Using the informa­
tion provided within this handbook,
accessibility subject matter experts,
development team members, and
executives in charge of setting prior­
ities can together learn how to build
successful accessibility experiences
for everyone.

US $16.95
CAN $23.95

AGILE ACCESSIBILITY H
ANDBO

O
K

DYLAN BARRELL

AGILE ACCESSIBILITY HANDBOOK

www.amplifypublishing.com

Agile Accessibility Handbook

©2020 Dylan Barrell. All Rights Reserved. No part of this publication may
be reproduced, stored in a retrieval system or transmitted in any form by
any means electronic, mechanical, or photocopying, recording or otherwise
without the permission of the author.

Although the author and publisher have made every effort to ensure that the
information in this book was correct at press time, the author and publisher do
not assume and hereby disclaim any liability to any party for any loss, damage,
or disruption caused by errors or omissions, whether such errors or omissions
result from negligence, accident, or any other cause.

For more information, please contact:
Amplify Publishing, an imprint of Mascot Books
620 Herndon Parkway, Suite 320
Herndon, VA 20170
info@amplifypublishing.com

Library of Congress Control Number: 2020908348

CPSIA Code: PRV0620A
ISBN-13: 978-1-64543-477-1

Printed in the United States

To all the pioneers of accessibility technology
who came before us and the current-day prac-
titioners who will make their vision a reality.

http://www.amplifypublishing.com
mailto:info@amplifypublishing.com

D Y L A N B A R R E L L

AGILE
ACCESS BILITY
HANDBOOK
A Practical Guide
to Accessible Software Development at Scale

CONTENTS
Foreword xiii

1. What Do I Mean by “Agile”? 1

2. Why Is Accessibility Hard? 5

2.1 The Bubble 9

2.2 The Empathy Gap 15

2.3 The Skills Gap 19

3. Transformation Practices 23

3.1 Practice: Create a Central Accessibility Team 27

3.2 Practice: Obtain Executive Buy-In 31

3.3 Practice: Create and Enforce an Accessibility Policy 35

3.4 Practice: Report on Your Accessibility Transformation 39

3.5 Practice: Give the Teams Accessibility Coaches 45

3.6 Practice: Execute on an Ongoing Empathy Campaign 49

3.7 Practice: Publish Learning Resources and Bulletins 53

4. Team Practices 59

4.1 Practice: Attend and Host Empathy Events 61

4.2 Practice: Include Disabilities in UX Design 65

4.3 Practice: Communicate Intent with Accessibility Design Annotation 71

4.4 Practice: Create a User Interface Pattern Library 89

4.5 Practice: Leverage an Accessibility Automation Library 93

4.6 Practice: Automate Device and Assistive Technology Testing 99

4.7 Practice: Manage Accessibility Defects Systematically 105

4.8 Practice: Measure Accessibility 115

4.9 Practice: Include Accessibility in Retrospectives and Sprint Planning 119

5. Putting It Together 123

Glossary of Terms 127

Issue Prevention Opportunity 133

Acknowledgments 139

 xi

Foreword

At Deque, we have worked with dozens of orga-
nizations, from the largest companies that belong
to the Fortune 500, to some small organizations
who outsource most of their development. In the
process, we have worked with hundreds of devel-
opment teams and thousands of developers. Our
work has encompassed everything from arms-
length assess-and-report engagements (where
the developers receive a “report” of all the acces-
sibility issues and some generic instructions on
how to fix them) to long-term engagements
(where we were embedded in the development

teams and sat in the same cube rows or collabo-
rative working spaces with access to their source
code repository, their ticket tracking systems,
testing and build environments, etc.).

In the process, we have learned—sometimes
the hard way—what works and what does not for
remediation jobs on large existing code bases and
for teaching these teams to become independent.

We also develop our own software and have
been using agile development processes in one
form or another for almost a decade. When
we develop software with a user interface, we
develop it to be “accessible by default,” and we
will not ship any software with known serious
accessibility issues that we can control. This has
taught us valuable principles for developing
accessible software in an agile environment, and
we teach these principles to our customers.

Deque also facilitates an “accessibility user
group” meeting, where the executives in charge
of accessibility at large organizations can share
their experiences with each other. We have

learned from these discussions; they have driven
the development of some new practices and
helped us to refine existing ones.

One of the most valuable advantages of the
agile development process is that the process
itself is not seen as something fixed, but as an
artifact that is to be improved as part of the
process. I have presented in this book the best
practices as we know them today, but we con-
tinue to improve and refine them and identify
new or better ones. I hope you will learn some-
thing from this book, but I hope even more that
it will inspire you to teach us something, too.

The book is inspired by the one that first intro-
duced me to agile development back in the late
nineties—Extreme Programming Explained (first
edition). In particular, section two, which intro-
duces the practices required for extreme pro-
gramming.

This book is intended to be read by three audi-
ences: people involved in running or setting up
a central accessibility function within an orga-

Foreword xiiixii Agile Accessibility Handbook

Foreword xvxiv Agile Accessibility Handbook

nization, the executives that set software devel-
opment and business priorities, and the people
involved in the agile teams that are delivering
the software to meet those business objectives.

Executives should read the entire book so they
understand the challenges that stand in the way
of sustainable accessibility, the organizational
structures required to make the necessary tran-
sition, and the impact this will have on the work
performed by the different groups.

The central accessibility function should read
the book so that they understand what their role
is in making the changes happen, the resources
that they must create and maintain, and the
support they must provide to the teams doing
the work.

The developers need to understand the changes
they must make to their development processes
and what they can expect from the rest of the
organization to help them make this happen.

Sections 1 and 2 provide an overview of the
problems that need to be solved. Section 3 details

the role of the central accessibility function and
the practices that can help to make their work
successful and Section 4 lays out the team prac-
tices that help teams to make accessible software
development efficient and effective.

At the end of the book, I have provided a glos-
sary of terms that will help readers to understand
some of the technical terms that may not be
familiar to them. Development team members
can find accessibility jargon (e.g. WCAG)
defined in the glossary, and accessibility experts
can find technical terms (e.g. Sprint) explained.

 1

1
What Does
“Agile” Mean?

Agile is a term that is overused almost to the
point of being useless, but I have my own
interpretation. For the purposes of this book,
I mean specifically the software development
and deployment process where:

1. Software is being constantly released,
weekly, monthly, or in some cases, multiple
times daily. This is important, because “tra-
ditional” accessibility testing is impossible
to do in this sort of environment; and

What Does “Agile” Mean? 32 Agile Accessibility Handbook

2. The teams are committed to continuous
improvement of their practices, and these
practices are designed to make the team
more efficient, allow them to gather data
from users, and respond to this data with
the aim of producing software that satisfies
customer and market needs and provides an
excellent user experience.

These two principles have a lot of follow-on
requirements that teams must learn to meet,
including,

1. The need for a team to be self-sufficient and
able to make decisions in real-time; and

2. The need to automate as much as
humanly possible to avoid costly and slow
release cycles.

If your agile methodology does not embrace
these principles or your organization still prac-
tices waterfall software development, then the
benefits to your development process will be

diminished, but they will still provide some
value. The more technical team practices will
still be applicable as-is, as will most of the the
transformation practices.

 5

22
Why is
Accessibility Hard?

Accessibility, at its core, is quite simple. It basi-
cally comes down to three principles1:

1. Can all your users, with the abilities and
senses that they possess, perceive the infor-

1 Those of you familiar with the Web Content Accessibility Guidelines
might ask yourselves where the fourth principle, “robustness,” is. I have
not forgotten it; I believe that it is an explicitly technical principle that
does not add much to the understanding of accessibility, and have
therefore excluded it for simplicity.

Why is Accessibility Hard? 76 Agile Accessibility Handbook

mation your application presents to them?
For example, can they “see” the meaning of
the little icon button with an image of a pen
inside it?

2. Can your users, with their specific input
device or assistive technology, operate all
the controls within your application’s user
interface? For example, if your application
supports the operation of a button through
touching the screen, does it also allow that
button to be operated through a keyboard
and a voice command?

3. Can your users understand the information
and the user interface controls? For example,
if the application requires the creation of a
password with constraints, are those con-
straints clearly communicated in a way that
allows the user to complete the task without
undue difficulty or an unreasonable degree
of intellectual skill?

Given that the principles are this simple, why
do development teams made up of the best and
the brightest graduates of the best schools in the
world routinely develop and ship software that is
horribly inaccessible, shutting out large swathes
of potential users and customers?

 9

2.1 The Bubble

Current best practice in software user interface
development calls for personas, wireframes,
prototypes, user testing, user observation and
discovery, and whatever the latest fashion is in
UI design (as of this writing, flat material design
is a big thing). These practices are supposed to
discover hidden needs and common use cases
and result in simple, minimally viable designs
and easy-to-use interfaces.

The Bubble 1110 Agile Accessibility Handbook

The personas that are created can be seen as
very diverse. They include working mothers,
people of different ethnicities, stay-at-home
dads, remote workers, people who are gay, queer,
genderfluid, etc.

The agile team members (most in their mid-
to-late twenties) attend usability testing sessions
to observe for themselves how the participants
use their solution. They have sessions to analyze
the difficulties certain participants found, empa-
thizing with the user to try to understand the
root causes and come up with potential solu-
tions. They create wireframes and prototypes
to attempt to solve these usability problems and
iterate until they have nailed the problem. “The
Uber of . . .2” is written on the wall of the team
workspace in big, bold letters to remind every-
one of the big picture goal.

All of this is designed to take the team out of
its bubble, away from the natural tendency to

use their own experiences as a filter or a guide
for the product they are creating.

2 Insert the appropriate product category here

The team may have gone to great lengths to
avoid the “white male bias” that is all too prev-
alent in technology, but they are still blind to
another hidden bias: they are all healthy, highly
intelligent, physically fit and capable, mostly
twenty-somethings with almost no impairments
to their abilities. They have (for the most part)
zero experience with people with disabilities and
they have little experience with older people.

Put another way, most of the people on these
teams are living in an “able-bodied bubble” and
they don’t know it.

The following is an abstracted—but very rep-
resentative—conversation I have had many
times with developers, product owners, testers,
UX designers and executives as I have worked
with customers or interacted with visitors to the
Deque booth at conferences and trade shows:

The Bubble 1312 Agile Accessibility Handbook

ME: Hi. My name is Dylan. What is your name?

MARY: Hi. I’m Mary. What does Deque do?

ME: Do you know what accessibility is?

I can see the gears turning in Mary’s head as she tries
to figure out the correct answer (as any self-respecting
developer would expect to be able to do).

MARY: Well, yes, it’s about making sure people can get
to your application . . .?

ME: Well, not really. Accessibility is about making sure
that people with disabilities can use your application.

The gear-churning goes into overdrive as this statement
sinks in, so I continue unabated . . .

ME: Have you ever thought about how a blind person
would use your application?

Mary looks at me quizzically, a wry smile on her face;
she thinks I’m punking her.

I whip out my iPhone and with three presses on the
home button, turn on Voiceover and put the iPhone up
to her ear so she can hear it. I have it turned down to
what most blind users would consider an “irritatingly
slow” speech speed so that “light-dependent” people
can understand it.

MARY: Oh, cool, did you write that software?

ME: No, that software is called a screen reader, and
you have it on your phone, too. What we do is we help
developers figure out how to make their applications
work with that software so that people with disabilities
can use their applications. How do you think a blind
person could (air quotes) see an image?

Gears churning . . .

ME: Well, it’s actually very simple, you just have to add
a textual description of that image and attach it to the
image in the appropriate way. Then the screen reader
will read it out, giving the blind user some understand-
ing of what a sighted user would see in the image . . .

The conversation goes on, and there is always
a genuine interest in trying to understand more
about this “new” topic: How do I make my
application usable by blind people? Where can
I learn about this? Why have I not heard about
this before? Sometimes I hear something along
the lines of, “Oh yeah, we got sued once, and
we had this company come in and help us fix
our Website,” or “Yeah, is that Section 508 or
something? We had an external company create
a VPAT for us once.”

 1514 Agile Accessibility Handbook

2.2 The Empathy Gap

This is what I call the empathy gap; it is a blind
spot that exists in 99% of all development teams.
It leads to unconscious bias in the development
of user interfaces and serves as a barrier to
acquiring the skills and knowledge necessary to
do accessible software development. If you want
your teams to develop software that is “accessible
by default,” then removing this block (thereby
increasing their motivation to learn) is the first
and most important thing you need to do.

The empathy gap starts to be filled when
someone (like Mary) becomes aware of these

The Empathy Gap 1716 Agile Accessibility Handbook

groups of people who they are unintentionally
and unnecessarily excluding. However, there is
more to closing the gap than that. Once someone
realizes blind people can actually use a touch
device using a screen reader, there is still a long
way to go before they understand how blind
people use that screen reader and what the capa-
bilities of the screen reader are.

Closing the empathy gap acts as a motivator
that drives people to want to learn about people
with disabilities, how they use assistive technol-
ogies, and what this means for software devel-
opment teams.

This empathy gap is exacerbated by the fact
that, for many user interface interaction pat-
terns, the group of professionals referred to as
“human computer interaction professionals” or
“user experience designers” has compiled a rich
collection of best practices and principles that
application developers can fall back on. These
have been developed over time and tested using
research techniques like eye tracking, click track-

ing, observation, analytics and the like. There is
very little comparable information for people
with different abilities and users of assistive tech-
nologies.

This lack of well-understood best practices
means that developers have to start answering
questions like:

1. How does a blind user scan the page?
2. How does a blind user identify the import-

ant parts of a user interface?
3. How does a user of voice recognition scroll

to the information that is “below the fold?"

Some of the practices listed later in the book
are designed to systematically fill the empathy
gap in your agile teams and motivate them to
learn the answers to these questions and more.

 19

2.3 The Skills Gap

Once a team has begun to understand the differ-
ent disabilities and the mechanisms that are used
to accommodate for these disabilities with assis-
tive technologies, they then realize that they do
not know how to ensure that their applications
will be usable with these assistive technologies.
They also still need to learn what they need to
do to enable ease of use for users with disabili-
ties for which no special assistive technology is
available—like users with cognitive disabilities,
repetitive stress injuries (keyboard only users),
color-blind users, and deaf users.

The Skills Gap 2120 Agile Accessibility Handbook

Closing the empathy gap helps the team to
understand that a screen reader user scans the
page by asking the screen reader (using keyboard
or gesture commands) to expose various seman-
tic structures—such as headings and regions that
they can easily navigate around the page using
commands to jump to particular structures, like
the next heading or the next table. The team then
needs to determine the answers to questions like,
“What do I need to do to make sure my appli-
cation is exposing all the right structures and
information so that the screen reader user will be
able to successfully navigate the user interface?”

The answer to these sorts of questions is the
skills gap. Any organization that is serious about
accessibility must take systematic steps to give
the agile team members both up-front training
and on-demand resources that allow them to
learn the appropriate markup attributes, technol-
ogies, and APIs, as well as allowing them to find
and understand the best practices for solving
particular user interface and usability challenges.

A person with a visual disability demonstrates using a
braille keyboard attached to their computer. The pins
move up and down as the user interface changes to be
able to represent the currently spoken screen reader text.

 23

33
Transformation
Practices

If your organization has been developing soft-
ware for a significant amount of time, it is highly
likely that you did not start out using an agile
methodology. Your organization probably went
through some form of agile transformation or
(more recently perhaps) a digital transformation.
You probably hired some consultants to manage
this process, and they probably brought in a bevy
of agile coaches, trainers, and scrum masters to
help your organization.

Transformation Practices 2524 Agile Accessibility Handbook

Successfully adopting agile accessibility will
require a large amount of change in behavior
throughout the organization. If you want to be
successful, you will need to manage the agile
accessibility transformation process. You will
need to bring in the missing skills and knowl-
edge and find ways to support teams as they go
through the process of adopting new behaviors.

The practices covered in the next chapter in
the book are designed to help the organization
manage this agile accessibility transformation
and ensure that it is successful, even in the face
of active or passive resistance in the agile teams
or in the managers who are responsible for
setting the priorities of these teams.

The Transformation Practices are designed
to help your organization manage the agile
accessibility transformation. Successfully
implementing these practices is the prerequi-
site for successful agile accessibility. That is not
to say that you cannot have some teams suc-
cessfully adopt agile accessibility, but without

these practices, you will find it very difficult
(if not impossible) to get consistent adoption
and execution across the organization, and you
will see a degradation in the abilities over time
through team member attrition.

At the end of the day, becoming accessible
involves change in large parts of the organiza-
tion; this change will not happen if it is not moti-
vated, measured, and managed.

 27

3.1 Practice: Create a
Central Accessibility Team

Every organization that has successfully scaled
accessibility (agile or otherwise) has always
started with a central accessibility team. The dif-
ference in an agile environment is that this central
team is not responsible for doing accessibility (as
was often the case before agile), but rather for
helping the agile teams learn to do accessibility
within their agile process. In short, it is the job
of the central accessibility team to manage the
transformation to sustainable agile accessibility.

Practice: Create a Central Accessibility Team 2928 Agile Accessibility Handbook

The central team’s primary responsibilities are:

1. Educate executives on the business case for
accessibility and obtain executive buy-in;

2. Create and manage the corporate accessi-
bility policy;

3. Create and maintain the learning resources
for the entire organization, including
(but not limited to) agile teams, customer
support, and procurement;

4. Create, gather, and report the metrics that
are being used to measure the transforma-
tion and to identify the opportunities for
more coaching, training, and tools. This
responsibility includes performing spot
audits of newly-released content and pre-
senting the results back to the teams during
their retrospectives;

5. Keep abreast of developments in accessibil-
ity (including understanding accessibility for
new platforms [like virtual reality, speech
inputs, etc.], improvements in tools and new

or improved best practices) and then plan-
ning the steps to incorporate the acquired
knowledge into the organization’s processes
at the appropriate time;

6. Create and maintain the organization’s
accessibility standards (interpreting the
industry guidelines and standards and
applying them to the organization’s technol-
ogies) and the selection and configuration
of the tools being used by the various teams;

7. Provide the pool of accessibility coaches
and other shared resources that are required
during the transition.

 31

3.2 Practice: Obtain
Executive Buy-In

The motherhood and apple pie of accessibil-
ity transformation is that you need executive
buy-in. If you have managed to put together a
central team, then you have the basis for getting
the right sort of executive buy-in.

Ultimately, the CEO needs to buy in to acces-
sibility, or it will constantly be overridden by
competing priorities; however, starting at the top
is not always practical and is often not enough.

Buy-in is required from all the levels of man-
agement in the compliance, marketing, and IT/

Practice: Obtain Executive Buy-In 3332 Agile Accessibility Handbook

development parts of the organization, because
any one of these could become an impediment
to success.

The ultimate goal here is to ensure that none of
the executives will seriously challenge the imple-
mentation of the policy that is instrumental to
making accessibility stick.

The ways that you achieve this buy-in will
depend to a large degree on your organizational
priorities, but there are three business cases that
you can use to help your efforts:

1. The business opportunity represented by
households with a disability. The numbers
that are of interest here are:

i. 20% of people in the United States have
a disability, and improvements in usabil-
ity (or falling behind the competition)
represent a major portion of the market;

ii. $490 million is the after-tax disposable
income of adults with a disability in the
United States (as of 2019). This is com-

parable in size to the African American
or Hispanic market segments; and

iii. $10.3 billion is the e-commerce market
size for accessibility.

2. The number of disability-related lawsuits
increased by 181% in 2019 alone, and the
cost of responding to a lawsuit (independent
of the settlement costs) is $350,000. This
does not take into account the cost of brand
damage or future lawsuits; and

3. Accessibility is a human right, it is the right
thing to do, and it probably aligns with
the organization’s values and its desire to
improve digital user experiences.

Find the right opportunities to get in front of
the executives and pitch these cases to them.

 35

3.3 Practice: Create and
Enforce an Accessibility Policy

Once you have enough executive support, you
need to ensure that this support gets into the
organization’s official policy and the risks are
exposed and managed appropriately.

Understand how your organization manages
risk. If you are in a regulated industry, this will be
relatively easy and the attention to risks that show
up in the system will be at the appropriate level.

Your policy should be written in such a way
that it minimizes the loopholes that will inevi-
tably be exploited by savvy managers.

Practice: Create and Enforce an Accessibility Policy 3736 Agile Accessibility Handbook

Some attributes of successful policies are to:

1. Require all digital properties to be registered
in a central repository;

2. Require all digital properties to report their
accessibility (the format of a VPAT is a good
starting point) and treat non-reporting as
tantamount to critical defects in critical
business flows;

3. Create a place in your risk management
system for registering the specific accessi-
bility defects with their impact and a time-
line for remediation. Tie accessibility risks
to existing mechanisms for escalation; and

4. Produce regular reports for delivery to the
chief compliance officer and the CEO, sum-
marizing the trends and highlighting the
business areas that are not addressing their
risk in the appropriate way.

The rest of this book is dedicated to the carrots,
but having the policy stick can be very useful, espe-
cially when dealing with intransigent managers.

The way that this policy is enforced—and the
perception of the central accessibility team in the
enforcement of this policy can be instrumental
in the success of the program. The central acces-
sibility team needs to be viewed as a helping
hand with useful resources and advice to help
the teams achieve accessibility. This can be
undermined if the central team is also the face
of policy enforcement. Try to locate the enforce-
ment function in the compliance department
and the rest of the central accessibility team
within a different function such as IT, software
development or the office of the CIO.

The central accessibility team may help teams
provide data to compliance but it must never be
seen as the cop or a scuttlebutt.

 39

3.4 Practice: Report on Your
Accessibility Transformation

In order to manage the adoption of accessibil-
ity at your organization, you will need to have
senior management buy-in; you will need to
provide management with periodic reporting
that is easy for them to understand and allows
them to recognize what is working well and what
needs attention. This means you should create a
dashboard report that surfaces this information
across all areas of the business.

Organizations adopt accessibility for a variety
of reasons. Some organizations are proactive

Practice: Report on Your Accessibility Transformation 4140 Agile Accessibility Handbook

and attempt to create delightful experiences and
win market share. Some organizations are reac-
tive and respond to a complaint or a consent
decree. The way your organization reports on
the accessibility program will need to reflect the
underlying motivation.

Regardless of the motivation, your dash-
board should be designed to help you measure
how your process is changing over time and to
measure the direction of that change. Adopt-
ing accessibility is about adopting new behav-
iors which, in turn, leads to a change in the
desired outcomes. This means that early on in
your process, you should focus on a dashboard
that allows you to measure the adoption of new
behaviors.

A mid-sized regional bank we work with has
a team responsible for creating and maintaining
tools for their development teams to use in their
testing and continuous integration pipeline. As
a part of their agile transformation, the team
also assists development teams in learning how

to adopt and use automation. They have built
an analytics dashboard that shows how the use
and adoption of the automation tools is chang-
ing over time. When they added automated
accessibility testing to this tool set, they saw an
opportunity to also measure the adoption of the
automated accessibility testing as an early indi-
cator of successful accessibility implementation.

In a large accessibility remediation project that
needs to meet a specific deadline, the dashboard
should include some sort of overall effort metrics
as well as the effect of those efforts over time.
The goal of this report is to predict whether
the deadline is likely to be met. A variation of a
“burndown” report is a good candidate to con-
sider for this purpose. Seeing the overall effort
at the enterprise-level is useful, but you will also
need to drill down to see how individual teams,
products, applications, or sites are doing. A good
dashboard should allow for viewing the progress
in ways that align with how the organization is
managing the development and/or remediation

Practice: Report on Your Accessibility Transformation 4342 Agile Accessibility Handbook

effort. This provides updates to the executives in
charge of these teams and identifies teams that
could benefit from additional support from the
central team.

Simple indicators of health status, like red,
green, and yellow (with appropriate accessible
equivalents), can help to communicate complex
information efficiently and are great tools for
high-level dashboards. Once you start to get
down to the individual team, application, or
website, you will need to answer questions like,
“What is the cause of the change?” This will
require you to be able to answer questions like,
“What changed?” A high-level aggregate score
that did not change between two releases (but
was expected to) could be masking the fact that
a large number of issues were remediated and
a large number of new issues were introduced.
There could be some new pages, new function-
ality, or a change in the scope of what was being
included in the report.

Your reporting system should be able to answer

questions like “Which pages/views are new?”
“Which pages/views were removed?” and “What,
if anything, has changed on the pages/views that
are common between the two reporting dates?”
These questions will need to be answered at
aggregate levels (an entire application or site)
as well as at the level of individual pages/views
and components.

One of our customers has a report that shows
the engagement level of the teams. They differ-
entiate between teams that are still remediating
and teams that are trying to ensure that their
new content and functionality is accessible. This
is reported as “team maturity.”

 45

3.5 Practice: Give the Teams
Accessibility Coaches

Agile teams need training in the skills required
to successfully implement accessible software
development. This training can take many forms,
from intense in-person multi-day workshops to
on-demand online learning.

Intense training workshops give team members
a jump-start in the basic technical knowledge.
When the team starts to exercise this knowl-
edge, they will make mistakes, misinterpret
some of the information, forget some aspects
of the implementation, or encounter problems

Practice: Give the Teams Accessibility Coaches 4746 Agile Accessibility Handbook

that go beyond the basics. Practical experience
is required to cement the theoretical knowledge
and to fill in the gaps in recall that all of us expe-
rience when learning new skills.

Accessibility coaches can help teams identify
the areas where they need to reinforce their
training, help answer difficult implementation
questions, and provide coaching on some of the
finer points or tradeoffs between different imple-
mentation decisions.

In the initial phases, accessibility coaches attend
many of the agile activities where decisions on
implementation are made. This includes backlog
grooming meetings, design reviews, sprint plan-
ning, daily standup, and retrospectives.

During these meetings, they encourage the
agile team to consider accessibility concerns,
remember to use existing automation librar-
ies and tools in the development process, and
include accessibility testing and implementa-
tion in their planning estimates and tests. They
help team members think through the various

approaches to inclusive design and present the
results of the spot audits and the accessibility
testing during retrospectives.

The use of the term “coach” is explicit. It makes
it clear to everyone where the responsibility for
doing the work lies. Coaches do not make the
free throws, throw the strikes, or score the goals.
Coaches help the players practice the skills they
need and interact with other team members in
ways that make the team successful.

 49

3.6 Practice: Execute on an
Ongoing Empathy Campaign

To become an organization where inclusive
design and accessible software development is
the norm, your organization will need to system-
atically eliminate the empathy gap. This can only
happen if the central accessibility team main-
tains an ongoing campaign to achieve it.

The central accessibility team should create a
schedule of activities, to be held on an ongoing
basis, the aim of which is to systematically build
empathy for people with disabilities.

Practice: Execute on an Ongoing Empathy Campaign 5150 Agile Accessibility Handbook

These activities should target new and exist-
ing employees to build and reinforce empathy
continually. While most of the targets for these
activities should be agile software development
team members, it is essential to secure partici-
pation by senior managers and executives, too.

The following lists some activities that have
shown success at Deque and our customers:

1. Events where persons with disabilities
demonstrate using the company’s applica-
tions with assistive technologies;

2. Events where participants play games that
simulate disabilities;

3. Posters, flyers, success stories, and other
motivational marketing; and

4. Hackathons or hack weeks with an accessi-
bility focus.

In addition to scheduling and holding these
events, the central accessibility team should
make themselves and their resources available
to support team empathy events. They should

create stickers that teams can place on their
laptops. It is very encouraging to show up at a
meeting with a team and see accessibility stick-
ers on the backs of laptops. It allows teams and
team members to show their support and helps
drive awareness.

The Global Accessibility Awareness Day
(GAAD), founded by Jennison Asuncion and
Joe Devon, is a once-a-year opportunity to high-
light accessibility in a very intensive way. Held
in the middle of May, it is celebrated all over
the world. Your employees can attend events in
person or online; it is a great opportunity to host
and/or participate in events in your area. Visit
https://globalaccessibilityawarenessday.org to find
events and to register your own. Hosting events
that are open to the public is also a great way to
recruit employees who are motivated and can
help to drive change within your organization.

https://globalaccessibilityawarenessday.org

 53

3.7 Practice: Publish Learning
Resources and Bulletins

Intensive training can help to jumpstart the
knowledge of agile team members. We recom-
mend making bootcamp style in-person train-
ing available to the teams. We also recommend
including some form of accessibility training
in the on-boarding training of all employees
involved in software development or client-
facing roles.

Most people will absorb some fraction of the
training and will benefit from resources that
they can access at the time they are required to

Practice: Publish Learning Resources and Bulletins 5554 Agile Accessibility Handbook

exercise the new skills. Developers in particular
like to learn as they implement functionality.
Stack Overflow is an example of a system that
supports this “on-demand” learning.

The quality of accessibility information avail-
able on Stack Overflow and on the Internet in
general is varied, both in terms of validity and
how up-to-date it is. This can lead to a lot of
wasted time as team member's research solutions
and implement partial or out-of-date solutions.

Providing access to a quality knowledge base of
up-to-date accessibility information, examples,
and courses can mitigate this problem. In addi-
tion, reinforcing the awareness of this knowledge
base will support the behavior of using it as the
resource of first resort.

To eliminate the frustration and false starts
that result from following bad or out-of-date
accessibility advice, license or create a set of
resources that document known and proven
solutions to various accessibility issues such as:

1. Procedures for testing different types of
content or applications;

2. Technical solutions to specific UI compo-
nent implementations and user interface
patterns; and

3. Documentation on best practices.

There are commercial solutions with knowledge
bases and online courses that include tests, exam-
ples, and tools, but very successful accessibility
programs have also taken a low-cost approach
to this. One of our customers keeps a single Web
page with links to information that has been gath-
ered and curated over time. This page serves as a
starting point for teams when they’re looking for
a solution or some learning resources.

Sending out regular information bulletins
that highlight new topical accessibility insights,
specific techniques, and notices of upcoming
industry events can help to keep accessibility
top-of-mind for the development teams. If you
do this, embed links to the knowledge base in

56 Agile Accessibility Handbook

these updates to maintain and increase aware-
ness of the resource.

Empathy lab participants write their names using a
Braille template and then try to read them with their
eyes closed.

 59

44
Team Practices

In my opinion, one of the most valuable aspects
of the agile approach to software development
is the commitment to continuous improve-
ment. Sprint retrospectives are one of the most
valuable practices that support this continu-
ous improvement. Teams that do this well have
metrics that they inspect and track over time,
identify the things that are going well and iden-
tify and address deficiencies or problems.

Changes that get identified in these meetings
can be modifications to practices to ensure
that they are actually achieving the outcomes

 6160 Agile Accessibility Handbook

for which they were adopted in the first place.
In order to do this, all team members need to
have a thorough understanding of the intended
outcome and/or goal of every practice, and the
team has to regularly evaluate each practice for
its effectiveness within their team.

I have structured the following nine team prac-
tices to make the goal of each explicit so that
teams that adopt them can evaluate their effec-
tiveness continually.

As with any new practice, your team should
try to adopt it “as-is” so you can get experience
with it before attempting to modify it using your
own insights. However, after some experience has
been gained, I highly encourage teams to exper-
iment with new variants or new practices in the
attempt to efficiently achieve the target outcomes.

As is the case with many agile practices, some
advantage can be gained by implementing indi-
vidual practices; however, the full benefit can
only be seen when all practices are adopted and
implemented well together.

4.1 Practice: Attend
and Host Empathy Events

GOALS:
1. To help team members better understand what it is

like to live with different disabilities; and
2. To help team members understand how users with

disabilities use assistive technologies.

PRACTICE DESCRIPTION: Hold events that simulate for
the team members what it is like to have a specific dis-
ability and how this might affect the use of technology.
Hold events where people with disabilities demonstrate

Practice: Attend and Host Empathy Events 6362 Agile Accessibility Handbook

the use of assistive technologies and/or attempt to use
the team’s application with an assistive technology.

EXAMPLE: When first learning that blind people use
a screen reader that reads out the content of the user
interface and a keyboard to navigate the page, Web
developers often mistakenly believe that every textual
element on a Web page must be tab-focusable; they
will start to place tabindex=0 on every element.
This reaction is based on a misunderstanding of how
screen readers work as well as a failure to understand
how a browser can be controlled with a keyboard.
Making every element tab focusable results in a Web
page that is less usable by keyboard-only users; it also
does nothing to improve the experience of a screen
reader user.

By bringing a screen reader user in to demon-
strate the many ways that they can navigate a Web
page, the team will learn that the tabindex
is not required. They will also begin to under-
stand the importance of semantic markup, good

heading structure, and landmarks. They will start
to be able to use heuristics to predict what good
experiences might be for screen reader and key-
board-only users.

Examples of empathy events:

1. Dining in the dark, where the group eats an
entire dinner in complete darkness. This can
be enhanced by including a blind person,
who will, for once, be at an advantage;

2. Empathy lab, a dedicated location with a
collection of activities made up of devices,
exercises, and games that team members
can participate in to simulate the difficulties
that various disabilities impose. The activ-
ities can simulate physical conditions such
as hearing impairment, vision loss, aging,
or motor impairment. The exercises can
force the participants to use accommoda-
tions similar to those used by people with
disabilities to achieve the goal or win the
game. The aim of using an empathy lab is

 6564 Agile Accessibility Handbook

to motivate the need for learning new skills
and to jumpstart the understanding of how
people with disabilities experience the world
and technology;

3. Assistive technology show-and-tell booths,
where people with disabilities show how
they use the technologies to overcome their
disabilities and also how bad implementa-
tions can block these technologies or make
them more difficult to use; and

4. Device impairment, where a computer or
touch device is modified to remove one form
of output and/or input, forcing the user to
use a modality commonly used by a person
with a disability. This can be as simple as
unplugging the mouse, replacing the key-
board with a single-switch device, or remov-
ing all color to simulate color blindness.

4.2 Practice: Include
Disabilities in UX Design

When the ADA was enacted, the industries most
affected by the law at the time (builders, land-
lords, and cities) complained about the burden
that it would place on them and the economy.
One of the requirements that flowed out of the
ADA was the implementation of the ramps at
the corners of streets known as “curb cuts.” Curb
cuts (and other related ramps) have allowed
parents with strollers complete and easy access
to all aspects of our cities, where previously they
had to struggle to navigate the sidewalks and the

Practice: Include Disabilities in UX Design 6766 Agile Accessibility Handbook

entrances to buildings. Curb cuts allow skate-
boarders, bicyclers, and rollerbladers to easily
navigate the sidewalks, keeping them out of
the streets and safer from bad interactions with
traffic. None of these benefits were anticipated
when the ADA was enacted, but the result is
cities that are more usable by everyone.

In the accessibility industry, this is known as
“The Curb Cut Principle,” and it applies equally to
online and digital experiences. Inclusive design is
the practice that achieves this in the digital world.

The question for the teams becomes, “How do
we learn to do inclusive design?” While there are
books that focus just on the practices of inclu-
sive design, including users with disabilities in
design and UX research goes a long way towards
achieving many of the same outcomes.

GOAL: To make thinking about users with disabilities an
integral part of the user interface and user experience
design process so that the final product works better
for all users.

PRACTICE DESCRIPTION: Create a collection of attri-
butes that represent a particular type of disability. We
call these “particularities,” because they represent a
particular way in which a person with that disability
differs from someone without the disability. In all other
ways, they are exactly the same. Your team can then use
these particularities to evaluate the UX/UI to determine
how that would affect use.

If your team employs user personas, each par-
ticularity can be added to an existing persona or
the personas can be modified using the partic-
ularities. This practice is also known as creating
“inclusive personas.”

EXAMPLE: The image following shows an inclusive
persona used by a fitness tracking device company.

Practice: Include Disabilities in UX Design 6968 Agile Accessibility Handbook

Meet Lucy (as an inclusive person)

“I want to still be
able to access my
tracker data when
I don’t have my
phone on me.”

Age
33
Occupation
Event Organizer
Family
Long-term relationship
(no kids)
Location
Chicago, IL

Particularity
Lucy was born blind and relies on screen
readers and haptic audio feedback

Goals
• Figue out what her ideal

steps-per-day goal should be
• Find more ways to be motivated to

be healthy, using the tracker
• Find a tracker thas has really good

audio and haptic feedback

Frustrations
• Sometimes too busy to remember

to charge it and loses steps
• The wristbands come loose over

time and don’t feel as nice
• When she wants to see her tracker

data, she HAS to use the app

This inclusive persona describes Lucy, a thir-
ty-three-year-old event organizer who has very
normal goals related to the fitness tracking
device—she wants to use it to motivate her to
be more active and healthy by She also wants a
tracker that has good haptic and audio feedback,
because she just happens to be blind, and most
fitness tracking devices have output modalities
that require sight.

Incorporating particularities into the personas
allows you to identify specific frustrations; in
this case, Lucy is forced to always use the app
when looking at her data, which means that she
often cannot easily access it while working out.

Another approach to achieve similar outcomes,
is to consider versions of your personas with
“temporary disabilities” that may be caused by
situational changes or temporary health events.
Using a cell phone in bright sunlight is similar
to having low vision; using a cell phone in a
noisy restaurant is similar to having a hearing
disability; having a broken arm is a temporary

 7170 Agile Accessibility Handbook

situation that has the same effect as a similar
permanent motor impairment. Microsoft has
published some excellent material in this area
that can be found on their inclusive design Web
site, https://www.microsoft.com/design/inclusive/.

4.3 Practice: Communicate Intent
with Accessibility Design Annotation

User interface and user experience designers
create very robust models of their designs in
their heads that include a lot of information that
is essential to implementing an accessible expe-
rience. Many designers do not know that much
of this information needs to be communicated
to the rest of the team in order to implement
the design in an accessible way. They also do
not know which information needs to be com-
municated to the rest of the team in order to
ensure that the user interface is accessible. This

https://www.microsoft.com/design/inclusive/

Practice: Communicate Intent with Accessibility Design Annotation 7372 Agile Accessibility Handbook

leads to developers either making up the missing
information (e.g., adding their own image text
alternative) or simply omitting that semantic
or information completely because they are not
sure what to apply. Our analyses have shown that
up to 70%3 of accessibility issues can be avoided
by systematically communicating the necessary
information to the entire development team.

GOAL: Communicate all of the necessary accessibility
design intent to the team so that designs can be turned
into accessible applications, and this accessibility can
be tested and validated efficiently.

3 This number is calculated in different ways, all arriving at around the same

number. Some of these calculations have been done with the data from

accessibility audits done by Deque over many years, and then classifying each

issue as to whether better direction from the designs could have avoided it.

A more direct approach is to categorize all WCAG 2 A and AA as to whether

design should have a major influence on the success of the criterion. When

you do this, 67% of the success criteria fall into the “major influence” category.

PRACTICE DESCRIPTION: Train all team members to
expect user experience and user interface designers
to provide them with all the following information for
a new or modified user interface design:

1. The role of every element in the user
interface, whether interactive or not. This
includes communicating the role of regions
of information and groups of controls.
For example, if your design has a group
of navigational controls at the top and
some information in the footer, indicate
where the main content begins and ends,
then mark this up in a wireframe or design
comp so that everyone knows what those
regions are;

2. The states that every user interface element
can take on and the text description of
those states. For example, if your applica-
tion has an order workflow with many steps,
ensure that the states for the future steps,

Practice: Communicate Intent with Accessibility Design Annotation 7574 Agile Accessibility Handbook

the current step, and the completed steps
are identified and described;

3. All of the discrete values that the elements
can take on and the text description of those
values. For example, if a section of the user
interface can be expanded and collapsed,
describe these different states in text;

4. The name of every element, region, or
group of controls in the user interface. For
example, if your interface has a main section
of content and then some supplemental
content, identify the content regions and
describe them in text;

5. A complete description of the interaction
for each interactive element and its sur-
rounding elements, including all inputs for
all supported devices and how this affects
the focus, the states, and the values of the
interactive element and related elements;

6. The intended order in which elements
should be encountered and read on the page
(reading order/focus order); and

7. The minimum sizes of all interactive ele-
ments at all device or browser sizes.

Different teams may use different ways to
communicate their user experience designs
in such a way that developers and testers can
implement and validate the functionality. We
do not dictate how this communication takes
place, but rather that it takes place. We have
seen teams use white boards and cell phone
photos appended to JIRA tickets; we have also
seen teams use high-resolution Photoshop
comps with annotations built in. Choose the
mechanism that works best for your team.

There are also many different ways to make
the annotations; the important thing is that your
team agrees on an annotation convention and
uses it consistently.

EXAMPLE: The image following shows a very simple
player toolbar component with three buttons—a previ-
ous track button, a play/pause button, and a next track

Practice: Communicate Intent with Accessibility Design Annotation 7776 Agile Accessibility Handbook

button. One could imagine this widget being used in
different scenarios: Sometimes on its own, and others
with a real-time frequency histogram or a control that
shows the progress of the track being played. Role: Button

Name: Next track
State: Focusable

Role: Toolbar
Name: Player Controls

Role: Button
Name: Previous track

State: Disabled

Role: Button
Name: Pause

State: Focusable

56x56

Focused state for a button
Background color: rgb(201,201,201)

State: rgb(54,64,77)

Interaction for the role=button
Keyboard SPACE or ENTER equals click
Disabled buttons cannot receive focus
Disabled buttons do not respond to a click/touch

Interaction for the entire component
When on first track: disable “previous track” button
When on last track: disable “next track” button and hide the “play” button
When not playing: display the “play” button and hide the “pause” button
After clicking “play,” place focus on the “pause” button
After clicking “pause,” place focus on the “play” button

Practice: Communicate Intent with Accessibility Design Annotation 7978 Agile Accessibility Handbook

This image has been annotated with a lot of the
necessary accessibility information.

The first thing to note is that the role of every
element has been specified. This includes the role
of the toolbar itself, which is, of course, “toolbar.”
This may seem at first to be superfluous, but
we have seen situations where a designer has
intended for something to be a button, and they
believe that their design comp clearly shows a
button, only to be implemented by a <div>
element with a click handler or an anchor
element styled to look like a button.

Secondly, the name of each element has been
specified. Once again, this may seem obvious
given that the toolbar buttons are all image
buttons, but one of the most common accessi-
bility violations we find during testing is a button
that has no text name at all, or is simply the name
of the image file. Having the designer specify the
name allows for more consistent usage of termi-
nology throughout the user experience and also
allows the testers to validate something that is

not visible through automation, thereby making
it more difficult to miss a regression where this
hidden text is changed or removed.

Thirdly, each of the different states of the
buttons has been specified. There is a disabled
state (slightly darker gray background), the
focusable state, and the focused state (light gray
background at the bottom of the image). There
are no values in this design comp, but you could
easily imagine that the number of previous or
next tracks might be a value and how this might
be annotated.

Fourth, you will notice that the interaction
of each element and of the elements within the
toolbar is described. Of great importance are
things like what happens to focus when the
pause/play button is pressed. Focus management
is one of the most frequent accessibility issues
in Web applications, and can lead to applica-
tions that are very difficult for blind users to
use; content changes, appears, or disappears
without informing the user at all, leading to the

Practice: Communicate Intent with Accessibility Design Annotation 8180 Agile Accessibility Handbook

belief that the application is not responding to
the user’s input.

In this specific component, it is important
because it would be easy for developers to
implement this not as one button, but as two
buttons whose visibility is toggled based on
the component’s internal state. Specifying what
happens with the focus allows the testers (or,
more likely, the automated tests) to validate that
focus does, in fact, get maintained correctly
during this state transition.

Finally, the size of the objects is specified,
which, in this case (because everything is
square), is a very simple annotation.

EXAMPLE: The images following show a design comp
without and then with additional accessibility annota-
tions that are important for keyboard and screen reader
users. The user interface shown is the axe browser
extension, which allows for testing Web applications
for accessibility issues.

The second image shows annotations that provide the
information about where the focus should go and in what
order the interactive elements should receive focus when
a keyboard or screen reader user tabs into the application
and then continues to tab through the user interface.
Tabbing should skip over the non-focusable elements.

The third annotation shows the reading order of the
content. Note that the reading order and the focus
order are aligned. This is important to avoid breaking
the meaning of the content in the application (which
can inadvertently occur if there is a mismatch between
these two orders).

Practice: Communicate Intent with Accessibility Design Annotation 8382 Agile Accessibility Handbook

Practice: Communicate Intent with Accessibility Design Annotation 8584 Agile Accessibility Handbook

You will also notice that there is more content
that is readable than the content that is focus-
able; this is important because keyboards and
screen readers have different mechanisms for
reading static content versus navigating-to and
interacting-with interactive elements, so these
two should be separated out very explicitly.

UPSIDE: The first advantage of this approach is that
the design comps provide input to both the test writers
(whether developers write the tests or whether the test
are written by a QA function) and the developers them-
selves. Developers use the information to choose the
correct semantic elements and semantic markup, and
the testers use them to validate these choices.

The second advantage of the process of think-
ing through all the roles, names, and interac-
tions is that it can lead to the identification of
what my colleague, Matt Isner, likes to call a
“user-interface chimera.”

Practice: Communicate Intent with Accessibility Design Annotation 8786 Agile Accessibility Handbook

A user-interface chimera is a UI design that is
trying to be too many things at the same time.
An example of this might be a menu item that is
trying to serve as a control to open a sub-menu,
and at the same time as a link that leads to a
different page. While it is possible to use such
a control with a mouse with mouseover logic,
it is impossible to communicate the duplicate
roles to a screen reader user, and the interaction
mechanism for a keyboard is not intuitive. This
means the functionality appears absent for some
types of users. By going through the process of
having to specify the role of the element, you
have exposed the fact that it is acting as both a
link and a menu item—leading to the realization
that it is an accessibility and usability problem.

Thinking through the communication of the
design intent can also identify designs that are
very difficult to make accessible. This is often a
“bail out,” where the UI designer did not have
enough time and/or information to make a
better design decision, or it might simply be an

example of the adoption of a common technol-
ogy without much thought.

These chimeras and difficult designs offer the
team an opportunity to design a better solution
by asking, “What does the user want to do?” or
“Why are we using this standard approach?”
The end result of this process is often a solution
that is more usable for everyone and completely
accessible for people with disabilities.

WARNING: This practice often changes the previous
separation of duties between designers and develop-
ers. Designers may have been told in the past that it
is not their role to tell developers how to implement
features. In our opinion, it is not changing anything
except clarifying requirements that were previously
unstated. Developers do not have to use a <button>
element to implement a UI component with a role of
button, but if not, then they have to implement some
of the functionality that a <button> element pro-
vides for free, including keyboard interaction, correct
handling of enabled/disabled states, etc.

 89

4.4 Practice: Create a User
Interface Pattern Library

GOAL: Leverage accessible interaction designs, markup,
and implementations across a large number of devel-
opment teams while maintaining flexibility of imple-
mentation and look.

PRACTICE DESCRIPTION: Making applications acces-
sible consists of paying attention to four high-level
aspects of user interface design and implementation.

Practice: Create a User Interface Pattern Library 9190 Agile Accessibility Handbook

1. The color, font, iconography, and layout
design choices that represent the roles, states,
and values of the user interface elements
across viewport sizes—the look;

2. The markup used to represent the names,
roles, values, and states of the user interface
elements—the markup;

3. The multi-input device interaction designs
of the user interface components—the inter-
action; and

4. The implementation of the interactions
and generation of the UI content—the
implementation.

A pattern library is the definition of these four
aspects where only the fourth aspect is depen-
dent on the technology-specific framework or
technology (within reason). This allows the
implementing team to choose which aspects of
the pattern they want to adopt and which aspects
they need to adapt to their specific situation.

For example, if a team has adopted a new UI

development framework—say Vue.js—and the
existing pattern library has implementations
in React, then this team can take the look, the
markup, and the specification for the interac-
tion from the pattern library and implement
these in Vue.

At a minimum, this eliminates accessibility
issues because it clearly specifies the markup
(and how that changes throughout all the dif-
ferent UI states and values) and the different
modes of interaction with that component that
support different devices and abilities. These
are two very high-volume sources of custom
component accessibility defects; by adopting the
pattern library solutions, teams can avoid falling
into these traps.

EXAMPLE: The Deque product user interfaces are all
currently based on a pattern library called Cauldron
(https://pattern-library.dequelabs.com/). At its base
level, Cauldron specifies the look, the use, and the
markup of the UI components. Building on top of this

https://pattern-library.dequelabs.com/

 9392 Agile Accessibility Handbook

are the implementations in different technologies,
including https://github.com/dequelabs/pattern-library
and https://github.com/dequelabs/cauldron-react.

EXAMPLE: One of Deque’s customers created a user
interface widget library and had used it very extensively
for a couple of years before they became aware of their
accessibility requirements under the Accessibility for
Ontarians with Disabilities Act. The widespread use of
this component library was one of the major reasons the
customer was able to become compliant within a rea-
sonable time frame, because fixing a small number of
components addressed 60% of the accessibility issues
within their large portfolio of applications.

Your agile methodology might not allow you to
develop a library like this ahead of time, but you
can build one up over time, thereby reducing
the effort necessary to develop and fix accessible
components over time.

4.5 Practice: Leverage an
Accessibility Automation Library

When developed by a team with little accessibility
knowledge, our data shows that the average Web
page averages twenty accessibility issues. Some
surveys of a large numbers of sites claim that the
number is as high as seventy defects per page.
While mobile applications tend to have simpler
views, a similar number of issues is to be expected
over the course of an entire user workflow.

Automated testing of functionality saves time in
development by allowing releases to happen more
often. The same holds true for accessibility testing.

https://github.com/dequelabs/pattern-library
https://github.com/dequelabs/cauldron-react.

Practice: Leverage an Accessibility Automation Library 9594 Agile Accessibility Handbook

Writing automated tests takes time and effort,
and there are a lot of additional assertions that
need to be made when testing accessibility. Using
an off-the-shelf automated accessibility testing
library can save a large amount of time in the
creation of an automated test suite.

Choose a library that generates zero false pos-
itives; this allows your tests to make assertions
on the results, secure in the knowledge that if a
test fails, the failure needs to be taken seriously.
This, in turn, allows these tests to be embedded
into continuous integration pipelines as checks
that must be passed before code changes can be
approved and merged.

Think about the ways that your developers
work when fixing issues that are found in the
automated tests and choose a tool that makes
that easy. A tool should integrate into the
browser or IDE’s debugging environment and
provide both an interactive testing mode (e.g.,
a browser extension) and an API that can be
embedded into automated tests. A spider- or

robot-like utility can also be very useful for
teams that do not have full test coverage of all
their UI states and/or functionality.

Studies that we have done on behalf of our
large customers have shown that the use of these
tools can eliminate 50% of the accessibility errors
(by number of occurrences), eliminating a lot of
cost from the development process by avoiding
issues making it to later stages of the develop-
ment cycle.

GOAL: Save time during development by eliminating all
of the common accessibility defects that can be found
through generic automation before the code makes it
into the code base.

A side effect of this goal is an increase in the
accessibility skills of the developers and testers
who use the automated tool.

PRACTICE DESCRIPTION: Require developers to test
all changed or new user interface states prior to sub-

Practice: Leverage an Accessibility Automation Library 9796 Agile Accessibility Handbook

mitting code to the repository. Integrate the execution
of these tests into the build process on the continuous
integration server, and include checks in your source
code repository that do not allow changes to be merged
if the tests fail.

This testing is best done by integrating the
automation API calls into integration functional
tests that test the new UI functionality, then
asserting that the automation library returned
zero accessibility errors.

When starting out, it is best to embed these
API calls into all functional tests; however, with
experience, teams will realize that there are subtle
differences between functional testing and acces-
sibility testing that might require the writing of
specific tests to expose specific states of the user
interface purely for accessibility. Also, many func-
tional tests expose the same UI over and over, and
it is only necessary to perform the accessibility
testing on one iteration of each UI state.

EXAMPLE: The following code shows a React login form
component accessibility unit test using Jest and Enzyme
with JSDOM for emulating the browser DOM. This unit
test is a small fraction of the unit tests covering all of
the functionality of the component.

…
import axe from ‘axe-core'
…
test('Form has no accessibility violations', (done) => {
 const fields = ['Dogs', 'Cats']
 const FormComponent = utils.mountToDoc(
 <LoginForm headline="Woof and hiss" fields={fields} />
)
 const formNode = FormComponent.getDOMNode()
 axe.run(formNode, config)
 .then(({ violations }) => {
 if (violations.length) {
 const err = utils.printViolations(violations)
 done.fail(err)
 } else {
 done()
 }
 })
})
…

Note that the unit test mounts the component and
obtains a DOM node in order to do the testing. This is
because accessibility tests need to know the real display

 9998 Agile Accessibility Handbook

state of the DOM nodes in order to be able to determine
what will be exposed to the assistive technologies and
their users. Unit tests like this can cover about 80% of
what generic libraries can test. The rest of the testing
should occur on the complete assembled user interface.
For this reason, we recommend integrating a library like
this into integration (end-to-end) tests.

The following code shows how to use the axe-core
testing library in an end-to-end test using Mocha and
JavaScript Selenium.

const Selenium = require('selenium-webdriver'),
 AxeBuilder = require('axe-webdriverjs');
…
 driver = new Selenium.Builder()
 .forBrowser('chrome')
 .build();
…
 it('should find no violations', function(done) {
 driver
 .findElement(Selenium.By.css('.App'))
 .then(function() {
 new AxeBuilder(driver)
 .analyze(function(results) {
 console.log(TestUtils.printViolations(results.violations));
 assert.equal(results.violations.length, 0);
 done();
 });
 });
 });

4.6 Practice: Automate Device
and Assistive Technology Testing

Testing with assistive technologies and differ-
ent input devices (like the keyboard) is expen-
sive and time consuming. This means that in
an agile environment, it will either slow down
the process while also increasing expense, or
it will not be done, leading to accessibility
regressions.

While it is not currently possible to directly
automate assistive technologies and write auto-
mated tests in a cross-platform way, it is possible
to write tests that confirm the required markup

Practice: Automate Device and Assistive Technology Testing 101100 Agile Accessibility Handbook

and code that makes the assistive technologies
work meet the requirements.

GOAL: To ensure that implementations work with the
set of assistive technologies required to meet the
“accessibility supported” WCAG 2 requirement, while
also leveraging automation for regression testing.
This eliminates costly manual regression testing and
allows faster, less expensive iterations that result in
high quality, accessible code.

PRACTICE DESCRIPTION: During development, have
developers write specific tests to validate the conditions
required to communicate name, role, value, and state
to the assistive technologies, and ensure that these are
correctly interpreted by the assistive technologies by
performing tests using a representative set of assistive
technologies, including at least one screen reader and
a keyboard without a screen reader.

Of particular importance are tests for the alter-
native device interactions. A good example of

this is the JavaScript handlers that are required
to implement custom-component keyboard
interactions. The tests should be written to
include assertions on what happens as the user
“interacts” with the UI. For example, if clicking
a button should open a dialog and set focus into
that dialog, then add assertions to test that.

Write tests that make assertions on the ARIA
attribute and other state changes that should
occur as a user “interacts” with the UI. These
state changes should have corresponding
changes to attributes and/or off-screen text
that allow assistive technologies to expose the
changed state, value, or name to users of assistive
technologies.

Write tests that assert the expectations with
respect to the order in which interactive com-
ponents will be focused using TAB key naviga-
tion (Web) and write tests to assert the order in
which content will be read by the user (Web and
native mobile).

Practice: Automate Device and Assistive Technology Testing 103102 Agile Accessibility Handbook

EXAMPLE: One of the components of accessibility testing
which requires humans is the validation that the meaning
conveyed by the visual user interface corresponds with
the meaning conveyed through other senses, like voice.
A simple example of this is validating that the alternative
text of an image matches the image visuals. Websites
often contain standard symbols and logos that appear
in different locations. Simple assertions can be written
to validate that the alternative texts for these graphics
match the resource location. Doing this will ensure that
if either the resource locator or the text changes, the test
will alert the developer to check whether the text is still
relevant and update the test.

EXAMPLE: The ARIA authoring guidelines provide a
description of how widgets should behave when being
used with different input devices. This includes keyboards.
Much of this keyboard interaction can be tested in a fully
automated fashion using keyboard event simulation.

When writing the code for a widget, developers
are adding the appropriate markup and event

handlers and writing assertions for these. At
various points during this process, when testing
with the mouse and/or touch, the developers
should test the functionality using a screen
reader and a keyboard to ensure that the state
changes and other information are announced
correctly and that the event handlers work cor-
rectly with a screen reader and without one.
Changes are encoded into the tests. This func-
tionality then only needs to be tested manually
if the code changes, or the supported set of assis-
tive technologies changes.

The following code snippet shows ARIA
markup validation for the implementation of
an ARIA menu widget. This example has been
lifted from the a11yfy library and shortened
for brevity. The full source code is available on
Github at https://github.com/dylanb/a11yfy.
…
test(“That the markup of the menu is applied correctly", function () {
 var $menu = jQuery("#menu-test-1"),
 $topMenuItems;
 expect(16);
 $menu.a11yfy("menu");
 $topMenuItems = $menu.find(">li[role='menuitem']");

https://github.com/dylanb/a11yfy

 105104 Agile Accessibility Handbook

 equal($menu.attr("role"), "menubar", "top ul should have role menubar");
 ok($menu.hasClass("a11yfy-top-level-menu"), "should have to level
menu class");
 $topMenuItems.each(function(index, value) {
 if (index === 0) {
 equal(jQuery(value).attr("tabindex"), “0",
 "the first top level menu item should be
focusable");
 } else {
 equal(jQuery(value).attr("tabindex"), “-1",
 "All other top level menu items should not
be focusable");
 }
 });
 equal($menu.find(">li.a11yfy-has-submenu").length, 2,
 "There should be two top level menu items with sub
menus");
 equal(jQuery($topMenuItems[1]).attr("aria-haspopup"), “true",
 "The second top level menu item should have an aia-
haspopup attribute of true");
 equal(jQuery($topMenuItems[1]).find(“li.a11yfy-has-submenu")
 .attr("aria-haspopup"), “true",
 "The sub-submenu item must also have aria-haspopup
true");
});

…

4.7 Practice: Manage
Accessibility Defects Systematically

Many accessibility experts have expectations about
the quality of software that are out of sync with
the reality of software development. While we
all strive for defect-free software and implement
practices like test driven development (TDD) to
try to achieve this, defects are a fact that we have
to manage. Accessibility defects are no different,
and they should be managed in a very similar way.

In one aspect, accessibility defects are quite
different from functional defects: organizations
that sell software to the US Federal Government

Practice: Manage Accessibility Defects Systematically 107106 Agile Accessibility Handbook

and related institutions are required to produce
a document that lists all the known accessibility
defects in the form of a Voluntary Product Acces-
sibility Template (VPAT). In the world of water-
fall software development, the VPAT production
process involved a comprehensive accessibility
audit, which is incompatible with agile practices.

GOAL: Implement an accessibility defect management
policy that allows for the consistent prioritization of acces-
sibility issues in ways that mirror the prioritization of other
classes of defects, and produce and maintain an accurate
and complete VPAT with each release in an agile manner.

PRACTICE DESCRIPTION: There are two components
to this practice:

1. Creating and implementing a way to eval-
uate the impact of an accessibility issue
and assigning it a priority that matches the
equivalent defect priority for other func-
tional and non-functional defects; and

2. Maintaining a defect management system
where every accessibility defect is identi-
fiable along with the other relevant VPAT
information, allowing the defect manage-
ment system to be used to generate the
VPAT as a release artifact.

Not all accessibility defects are created equal:
a missing alternative text for an image can be a
blocker for a blind user if that image is part of
an image button required to complete the main
business flow of a Web application, or it could
be a minor inconvenience if it is a social icon
in the footer of the page. This should underpin
the priority system assigned to any accessibility
defect. If the organization has defect priorities
that are used to determine ship/no-ship, then
the accessibility impact should be mapped to
these. The table following is an example acces-
sibility-prioritization-table with mappings to
the standard actions the organization takes for
comparable functional defects.

Practice: Manage Accessibility Defects Systematically 109108 Agile Accessibility Handbook

Your team should map these actions onto
your processes in such a way that the intent is
maintained.

Accessibility
Priority Criteria for Assignment Action

Critical

The issue affects at least one disability
such that a critical business function
cannot be used by a user with an
affected disability.
Think about the impact from this
perspective: If all users could not use
this functionality, would we consider
that critical?

Stop deployment/release of affected software until the
defect is remediated. If the defect is discovered in produc-
tion, implement a hot fix immediately. If the hot fix cannot
be implemented immediately, create an alternative channel
for achieving the functionality and train support and call
center staff on how to direct users to the alternative channel.

Serious

The issue affects at least one disability
such that critical business functionality
can only be used with an acceptable
workaround, or
The issue affects functionality that is
not essential, but prevents at least one
disability from being able to use this
functionality.

Fix the defect in the very next deployment/release. Publish
documentation on the workaround and train support and
call center staff on how to deal with the issue. If the defect
is discovered in production, update the VPAT to reflect the
newly discovered defect.

Practice: Manage Accessibility Defects Systematically 111110 Agile Accessibility Handbook

Accessibility
Priority Criteria for Assignment Action

Moderate
The issue affects functionality that is
not essential and has an acceptable
workaround.

Publish documentation on the workaround. Train support
and call center staff on how to deal with the issue. If the
defect is discovered in production, update the VPAT.
Assign defect fix priority in a similar way to defects that
affect general site usability.

Minor

The issue affects functionality in a distract-
ing way (e.g., duplicate accessible names,
presentational elements that are not
marked as presentational, or inconsistent
use of markup).

If the defect is discovered in production, update the VPAT
Assign defect fix priority in a similar way to defects that
affect brand, consistency of use, and look-and-feel.

This triage and assignment obviously require
judgement; so, how do automatically-generated
issues get assigned priorities? In the axe-core
library, we take the following approach: If the
defect could affect a particular disability in such a
way that could be a blocker of essential function-
ality, then we assign it an impact of “critical.” We

expect a human to review this default decision
and downgrade it if applicable. You could take a
similar approach in your automated tests, but you
also likely know whether the affected functional-
ity is essential and make more nuanced decisions.

In agile development, the backlog should rep-
resent the complete state of all known defects

Practice: Manage Accessibility Defects Systematically 113112 Agile Accessibility Handbook

as well as the current best understanding of
planned future improvements. If your team is
implementing this well and layering the defect
prioritization process described above on top
of it, then you should be able to generate at any
point in time a complete list of all known defects.
By meeting a few criteria (some of which may
be new), your existing practice will allow you to
generate a complete list of all known accessibility
defects for any given release with enough infor-
mation to generate a VPAT from it. (Note: I have
included the requirements for generating the
WCAG 2.1 VPAT; similar but slightly different
requirements need to be met if generating one of
the other variants of this document. See https://
www.itic.org/policy/accessibility/vpat for details on
all the variants and for the document templates
for all variants.)

1. Ensure that part of your definition of “done”
for any ticket includes accessibility testing
(see the relevant practices above);

2. Ensure that bugs can be tagged with:

i. A tag that identifies them as affecting
accessibility;

ii. A set of tags that identify which WCAG
success criteria are affected;

iii. A short description of the way the defect
affects people with disabilities;

iv. The version(s) affected;
v. The version(s) where the defect was first

fixed; and
vi. The open/closed (or equivalent) status.

3. Implement a process that ensures that all of
the above tags and statuses are created, main-
tained, and reviewed for accuracy and quality.

Whenever a release is “cut,” a query can be
applied to the defect management system to
generate all known “open” accessibility issues
that affect that release. This includes all the infor-
mation required to generate or edit the VPAT
template for that release.

https:// www.itic.org/policy/accessibility/vpat
https:// www.itic.org/policy/accessibility/vpat

 115

4.8 Practice: Measure Accessibility

Adopting accessible development practices is no
different than any other organizational change
initiative. It requires the adoption of a lot of new
practices, new skills, and changes to existing prac-
tices. Teams should be encouraged to improve
incrementally over time with realistic and achiev-
able goals that can be measured and celebrated.

GOAL: Reinforce the change in practices and skills and
motivate the teams to continue to improve.

PRACTICE DESCRIPTION: Break accessibility into
milestones with achievable, measurable goals. Have

Practice: Measure Accessibility 117116 Agile Accessibility Handbook

each successive milestone build on the previous ones
towards the final goal of a sustainable development
process that produces accessible applications.

Have accessibility coaches perform spotcheck
audits on content and produce reports for ret-
rospectives with the intent of celebrating wins
and identifying opportunities for improvement.

An example of a set of progressive milestones is:

1. Achieve a state where all code is clean of
all issues that can be found with a generic
automated accessibility testing tool;

2. Achieve a state where the meaning of all
states, names, values, and roles of all the
content are being correctly exposed to assis-
tive technologies and tested automatically;

3. Achieve a state where all interactive ele-
ments are comprehensively tested with the
keyboard and assistive technologies, and the
regression testing is automated; and

4. Achieve 100% accessible content and func-
tionality.

Breaking the milestones up further into ones
that cover new functionality first and existing
code and functionality later is another technique
for making them smaller and easier to achieve.

With a set of milestones, it is possible to create
metrics that measure the progress towards them
in a way that makes sense for the team. Examples
of metrics that match the milestones above are:

1. Percentage of designs that have used inclusive
personas and included accessibility markup;

2. Percentage of UI code with a generic acces-
sibility library integrated into the automated
tests; and

3. Percentage of new features that meet the
current standard for accessibility at release.

Another good practice is to measure the team’s
maturation process:

1. Coach has gained the trust of the team;

 119118 Agile Accessibility Handbook

2. Developer, designer, and BSA training com-
pletion; and

3. Frequency of use of tools.

Put in place technologies that allow these
metrics to be gathered and tracked, and publish
the results in a location that is prominent and
visible to the whole team (physical and/or virtual). 4.9 Practice: Include Accessibility

in Retrospectives and Sprint Planning

Early in the transformation to agile accessi-
bility, team members will not be proficient in
the skills and the practices required; they will
have to take action to support the learning and
improvement process.

GOAL: To reinforce the adoption of agile accessibility
and allow the team to improve their accessibility prac-
tices and skills.

Practice: Include Accessibility in Retrospectives and Sprint Planning 121120 Agile Accessibility Handbook

PRACTICE DESCRIPTION: Include accessibility coaches
in the sprint retrospective meetings. Have the accessi-
bility coaches bring the most up-to-date accessibility
metrics and their spot check results to the meeting and
foster discussion amongst the team about areas that
are either not improving or which may have regressed.

Reserve time on the agenda for discussing
accessibility practices and the accessibility
skills of team members. Seek open discussion
on instances where the skills or practices were
well-implemented and where they were either
forgotten or did not work well. Identify oppor-
tunities for additional coaching, skills training,
or tools to help improve outcomes.

During sprint planning, have the team
members brainstorm the accessibility impacts
of the stories that are being proposed and also
identify complex interactions, new widgets, or
other novel functionality that might require
either input from an accessibility coach or addi-

tional research. Encourage team members to
think about the impact of accessibility on the
story points and the team’s overall velocity.

5
 123

5
Putting It Together

It might seem obvious to you at this point, but it
is worth stating: these practices, when applied,
will result in accessibility becoming an integral
part of your software development process. The
key point is that accessibility is only scalable,
affordable, and sustainable when it is fully inte-
grated into all aspects of the software ideation
and development process.

Getting from where you currently are to
where you need to be requires change. This
change will not happen if it is not acknowl-
edged and explicitly managed. Some of the

Putting It Together 125124 Agile Accessibility Handbook

practices help with implementing and manag-
ing that change explicitly.

Getting from where you are to where you need
to be requires learning new skills. Some of the
practices are, in themselves, new skills that need
to be learned and developed. Some of the prac-
tices help support the learning process.

Some practices are very technical and practical,
in that they help with the specifics of implemen-
tation. Some practices help with user experience:
Empathy, design, and measuring the outcomes
as experienced by users.

Some practices help to ensure the quality of
new features, user interfaces, and code; some
practices help to ensure that this quality is main-
tained over the lifetimes of these artifacts.

Finally, some practices help with one of the
foundations of agile software development—
communication.

All of the practices help to inject accessibility
into the process at the earliest point possible. By
implementing them, you will have shifted your

accessibility activities as far “left” in your process
as possible. This will drive down the costs and
drive up the results.

I look forward to learning from you as you travel
on this journey. Please send me your feedback on
Twitter @dylanbarrell or via email dylan@barrell.com.

mailto:dylan@barrell.com

 127

Glossary of Terms

This book is written to be used by agile team
members as well as people working in or man-
aging the central accessibility team. This glossary
translates common terms used by one of these
groups for the benefit of the other.

ADA (Americans with Disabilities Act): US Federal leg-
islation that aims to protect the rights of people
with disabilities.

API (Application Programming Interface): a mecha-
nism for one piece of software to interact, pro-
grammatically, with another piece of software.

Glossary of Terms 129128 Agile Accessibility Handbook

ARIA (Accessible Rich Internet Applications): a W3C
standard specification for additional markup
that can be applied to languages like HTML to
add accessibility information that is not possible
with standard HTML.

BSA (Business Systems Analyst): a common role
within development teams; while the exact defi-
nition of the role will differ from organization
to organization, the BSA is generally responsible
for specifying the business and end-user require-
ments of stories and setting priorities.

Comp (Comprehensive Layout): a visual layout that
is a draft of what the application’s user interface
will look like. Comps are used in many forms of
creative design, including software user inter-
face design.

DOM (Document Object Model): the manifestation of
an HTML Web page with the browser that allows
for programmatic access to inspect and manip-
ulate the Web page. Dynamic Web applications

manipulate the DOM to implement the changes
in content and appearance that users see.

IDE (Integrated Development Environment): an editor
with other tools integrated that makes develop-
ing, testing, and fixing software more efficient.

JIRA: a system that is used to track and manage
bugs, enhancement requests, tasks, tickets, and
many other types of work related to software
development.

JSDOM: an implementation of the DOM APIs in
JavaScript that does not include the full func-
tionality of a browser. It is used in automated
testing environments because it is more light-
weight than a full browser.

Minimally Viable Designs, or Minimally Viable Product:
these are product designs and definitions that
minimize the amount of software that has to be
written while at the same time providing enough
value that the product can be commercially viable.

Glossary of Terms 131130 Agile Accessibility Handbook

Persona: a fictitious character created by user
experience designers to inspire the design of
exceptional user experiences for the intended
target user base. They are intended to allow the
designers to really understand who they are
designing products for.

Sprint: a period of time between one and three
weeks, during which an agile team will develop
a series of features, improvements, and bug fixes
for release at the end of the sprint. Tends to
be used by agile teams following the SCRUM
methodology.

Sprint Retrospective: a meeting that occurs at the
end of every sprint where the team members
discuss what went well, what did not, and brain-
storm ideas for how they can improve the pro-
cesses to eliminate the recurrence of the things
that did not go well. It is designed to foster the
culture of continuous improvement.

TDD (Test Driven Development): a practice whereby
software is developed by first writing the auto-
mated tests for the functionality and then imple-
menting that functionality and validating that it
passes the tests.

WCAG (Web Content Accessibility Guidelines): a series
of W3C standards that specify the requirements
for applications to meet in order for these to
meet certain accessibility levels. WCAG 2 is the
most commonly used version of this standard.

UI (User Interface): the user interface is any com-
ponent of the system that takes user input and
provides output to the user. For the most part,
user interfaces are implemented on some sort
of flat-screen device but virtual reality goggles,
voice input and gestures are becoming more
common forms of input and output.

UX (User Experience): generally refers to the prac-
tice of creating great experiences for users as
they encounter the company and its offerings.

 133132 Agile Accessibility Handbook

While the practice is often broader than just
software, many teams’ abilities to influence the
overall experience are restricted to their specific
software component or application.

VPAT (Voluntary Product Accessibility Template): a stan-
dard format for reporting on the accessibility of
a specific software product and how it was tested
for accessibility. It is required by all US Federal
agencies when they purchase software, but is
gaining traction outside of this domain.

Issue Prevention Opportunity

WCAG 2.0 Success
Criteria (A & AA) UX/UI Design Coding Automated

Testing

1.1.1 Non-text
Content

Strong Moderate Moderate

1.3.1 Info and
Relationships

Strong Strong Moderate

1.3.2 Meaningful
Sequence

Strong Strong None

1.3.3 Sensory
Characteristics

Strong None None

Issue Prevention Opportunity 135134 Agile Accessibility Handbook

WCAG 2.0 Success
Criteria (A & AA) UX/UI Design Coding Automated

Testing

1.4.1 Use of Color Strong None None

1.4.2 Audio Control Strong None None

1.4.3 Contrast
(Minimum)

Strong None Strong

1.4.4 Resize text None Strong None

1.4.5 Images of Text Strong Moderate None

2.1.1 Keyboard Strong Strong Weak

2.1.2 No Keyboard
Trap

None Strong None

2.2.1 Timing
Adjustable

Strong None Weak

2.2.2 Pause, Stop,
Hide

Strong None Weak

WCAG 2.0 Success
Criteria (A & AA) UX/UI Design Coding Automated

Testing

2.3.1 Three Flashes
or Below Threshold

Strong None None

2.4.1 Bypass Blocks Strong Strong Moderate

2.4.2 Page Titled Strong Moderate Strong

2.4.3 Focus Order Strong Strong None

2.4.4 Link Purpose
(In Context)

Moderate None None

2.4.5 Multiple Ways Moderate None None

2.4.6 Headings and
Labels

Moderate Moderate None

2.4.7 Focus Visible Strong Moderate None

3.1.1 Language of
Page

None Strong Strong

Issue Prevention Opportunity 137136 Agile Accessibility Handbook

WCAG 2.0 Success
Criteria (A & AA)

3.1.2 Language of
Parts

UX/UI Design

None

Coding

Strong

Automated
Testing

Weak

3.2.1 On Focus Strong Moderate None

3.2.2 On Input Strong Moderate None

3.2.3 Consistent
Navigation

Strong None None

3.2.4 Consistent
Identification

Strong None None

3.3.1 Error
Identification

Strong Moderate None

3.3.2 Labels or
Instructions

Strong Moderate None

3.3.3 Error
Suggestion

Strong None None

WCAG 2.0 Success
Criteria (A & AA) UX/UI Design Coding Automated

Testing

3.3.4 Error
Prevention (Legal,

Financial, Data)
Strong None None

4.1.1 Parsing None Strong Strong

4.1.2 Name, Role,
Value

Strong Strong Moderate

 139

Acknowledgements

I would like to thank everyone who made it pos-
sible for me to write this book.

Thank you to those who reviewed and gave me
feedback on the early drafts. Special thanks to
Camron Shimy from Google, who was particu-
larly insightful and gave me ideas that led to the
chapter on defect management.

Denis Boudreau provided inspiration on the
personas and also provided the image of Lucy.

Ben Allen gave thoughtful feedback that helped
to clarify many sections.

Thanks to my colleagues, Chris McMeeking,

140 Agile Accessibility Handbook

Noah Mashni, and Keith Rhodes, for feedback
that helped me improve the book in many ways.

Thank you to Anik Ganguly, who introduced
me to Deque Systems and therefore to accessi-
bility. Thank you for your feedback on this book
and your mentoring, inspiration, and encourage-
ment for the many years I have had the privilege
to work with you.

Thank you to Preety Kumar for the oppor-
tunity she has afforded all of us at Deque, for
her vision that created the company, and for her
leadership in the accessibility field.

Thank you to all my colleagues at Deque who
inspire me every day and without whom this
work would not be possible.

Last but not least, I would like to thank my wife
Karin for giving me the time and the space to
work on this book at night and on the weekends,
and for checking my proofs and arguing with me
about the correct grammar for colons, lists, and
many other finer points—all of which ultimately
improved the quality of this book.

DYLAN BARRELL has been dedicated
to the digital accessibility feld for
over ten years. He has made efcient
and efective accessible sofware de­
velopment a focus of his eforts.

As chief techonology ofcer at De­
que, Dylan has had the privilege of
advising and learning from Fortune
500 clients on large-scale accessibil­
ity remediation projects, as well as
interacting with development teams
of all levels of maturity and working
with them to integrate accessibility
into their development processes. He
founded axe, the world’s most popu­
lar accessibility testing tool, and leads
Deque’s sofware development teams
where the agile practices detailed in
this book are developed and honed.

AGILE ACCESSIBILITY gives excellent hands-on
advice for how to implement accessibility in
all steps of your project. Even organizations
that have come a long way will get good advice
in how to accelerate on the ally-highway.

ERIK GUSTAFSSON, accessibility lead, Digitalist

@DYLANBARRELL

ACCESSIBILITYHANDBOOK.COM

US $16.95
CAN $23.95

https://www.ACCESSIBILITYHANDBOOK.COM
https://www.twitter.com/dylanbarrell

	AGILE ACCESSBILITY HANDBOOK: A Practical Guide to Accessible Software Development at Scale
	Copyright
	Title Page
	Contents
	Foreword
	1 What Does “Agile” Mean?
	2 Why is Accessibility Hard?
	2.1 The Bubble
	2.2 The Empathy Gap
	2.3 The Skills Gap

	3 Transformation Practices
	3.1 Practice: Create a Central Accessibility Team
	3.2 Practice: Obtain Executive Buy-In
	3.3 Practice: Create and Enforce an Accessibility Policy
	3.4 Practice: Report on Your Accessibility Transformation
	3.5 Practice: Give the Teams Accessibility Coaches
	3.6 Practice: Execute on an Ongoing Empathy Campaign
	3.7 Practice: Publish Learning Resources and Bulletins

	4. Team Practices
	4.1 Practice: Attend and Host Empathy Events
	4.2 Practice: Include Disabilities in UX Design
	4.3 Practice: Communicate Intent with Accessibility Design Annotation
	4.4 Practice: Create a User Interface Pattern Library
	4.5 Practice: Leverage an Accessibility Automation Library
	4.6 Practice: Automate Device and Assistive Technology Testing
	4.7 Practice: Manage Accessibility Defects Systematically
	4.8 Practice: Measure Accessibility
	4.9 Practice: Include Accessibility in Retrospectives and Sprint Planning

	5. Putting It Together
	Glossary of Terms
	Issue Prevention Opportunity
	Acknowledgments

