


# WHEELCHAIR SEATING & POSITIONING GUIDE

FOR LONG TERM CARE



**permobil**

# HELLO! I'M ANA ENDSJO



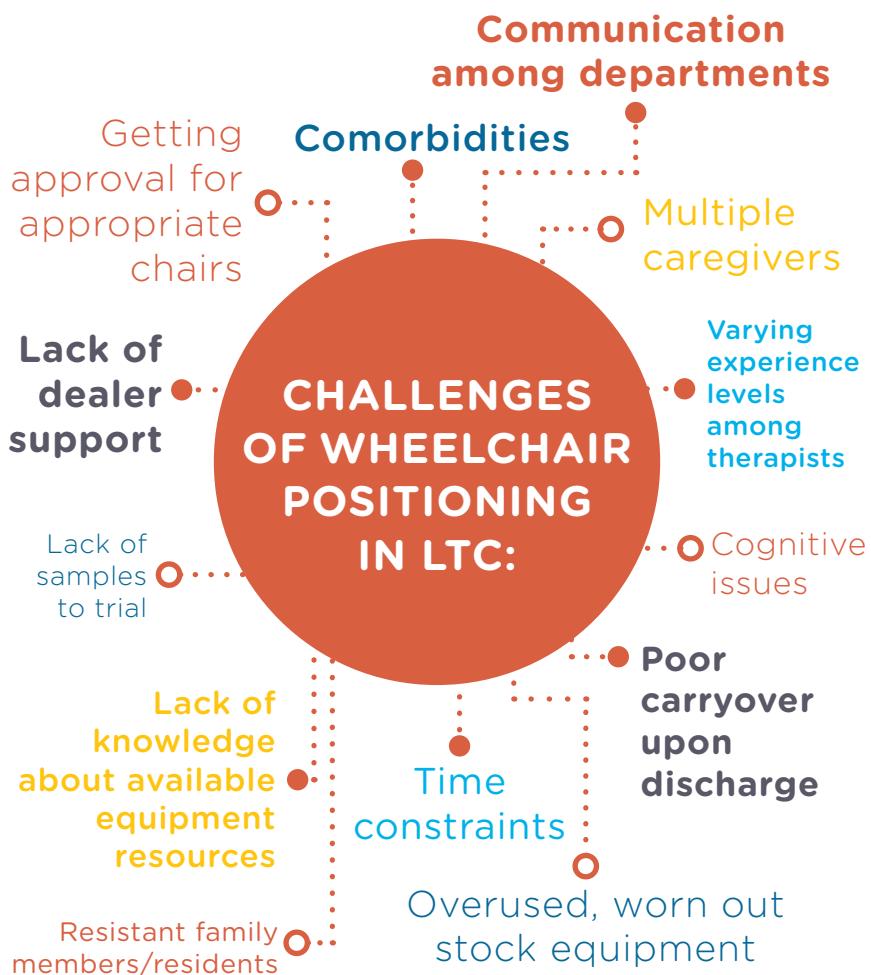
## ABOUT ANA

Ana Endsjo has worked as an occupational therapist since 2001 in a variety of treatment settings. She has mainly worked with the geriatric population, dedicated to the betterment of the treatment of the elderly in LTC centers. Her focus has been on seating and positioning and contracture management of the nursing home resident. With this experience, her hope is to guide other therapists, rehab directors, nurses, and administrators through educational guides, blogs, webinars, and live courses in her role as Comfort Company's Clinical Education Manager for the long term care division.



**Master of Occupational Therapy**  
Nova Southeastern University

**Bachelor of Nutrition and Dietetics**  
University of Delaware




## PURPOSE OF THIS GUIDE

This guide is intended to shed some light on the mystery of seating and positioning in the LTC setting. The aim is to assist the LTC therapist obtain customized, optimal posture for each resident by:

- Understanding universal wheelchair terminology
- Identifying the abnormal postures created by poor wheelchair positioning
- Understanding how ill-fitting components lead to abnormal postures
- Identifying keys to a successful wheelchair evaluation in the LTC setting

\* Look for these blue boxes in the rest of the guide. They're Ana's quick tips or takeaways for that specific section.



\* Despite knowing what is **BEST** for the resident, the above factors may prevent us from doing it!

# TABLE OF CONTENTS

## GENERAL INFORMATION

|                                                     |   |
|-----------------------------------------------------|---|
| Wheelchair Parts: Knowing the Universal Terminology | 3 |
|-----------------------------------------------------|---|

|                                            |   |
|--------------------------------------------|---|
| Wheelchair Options: Features & Limitations | 4 |
|--------------------------------------------|---|

## PROBLEMS

|                   |   |
|-------------------|---|
| Abnormal Postures | 9 |
|-------------------|---|

|                                          |    |
|------------------------------------------|----|
| Fixed vs Flexible Postural Abnormalities | 18 |
|------------------------------------------|----|

|                                                                      |    |
|----------------------------------------------------------------------|----|
| Issues with the Current Wheelchair System can Cause Abnormal Posture | 19 |
|----------------------------------------------------------------------|----|

## GOALS

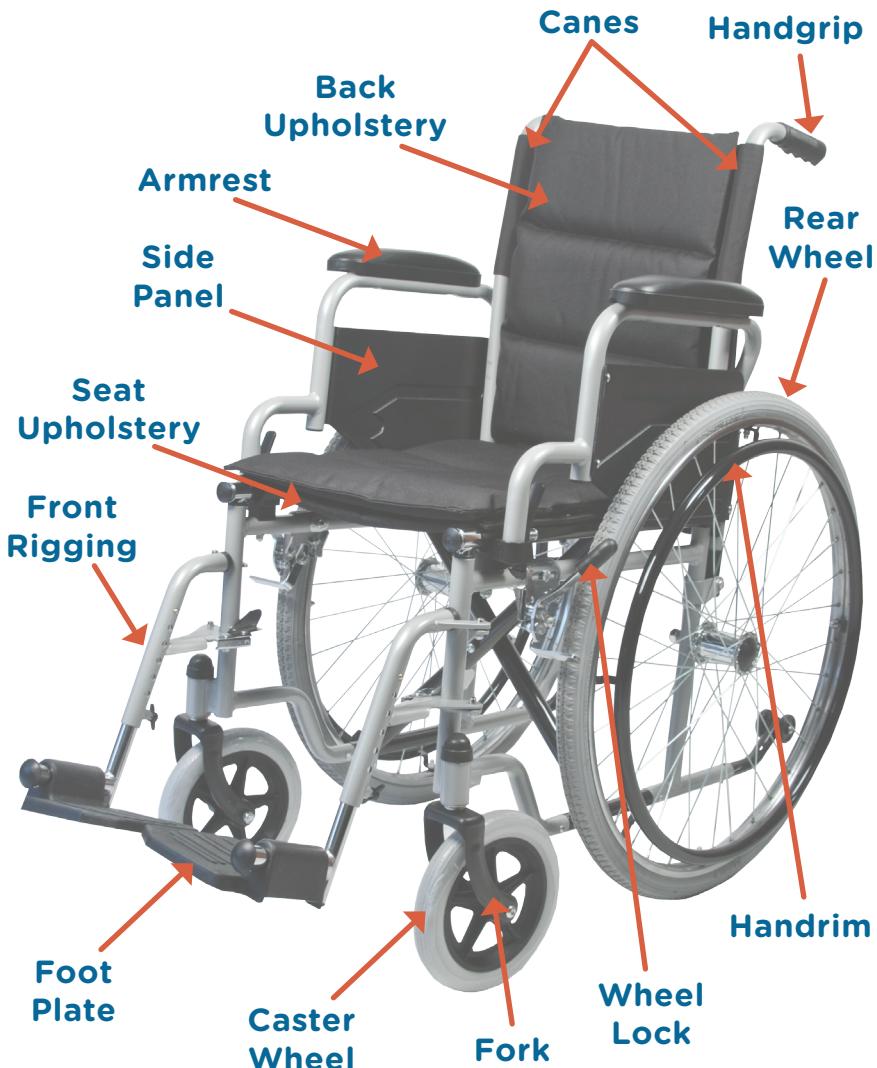
|                          |    |
|--------------------------|----|
| Seating Evaluation Goals | 31 |
|--------------------------|----|

## SOLUTIONS

|                                                           |    |
|-----------------------------------------------------------|----|
| How to Measure for Properly Fitting Wheelchair Components | 33 |
|-----------------------------------------------------------|----|

|                                       |    |
|---------------------------------------|----|
| What Type of Cushion Should I Choose? | 44 |
|---------------------------------------|----|

|                                              |    |
|----------------------------------------------|----|
| When Do I Choose a Specialized Back Support? | 47 |
|----------------------------------------------|----|


|                                   |    |
|-----------------------------------|----|
| The Great Elevating Legrest Myth! | 52 |
|-----------------------------------|----|

|             |    |
|-------------|----|
| Accessories | 55 |
|-------------|----|

|            |    |
|------------|----|
| Conclusion | 59 |
|------------|----|

|          |    |
|----------|----|
| Glossary | 60 |
|----------|----|

# WHEELCHAIR PARTS: KNOWING THE UNIVERSAL TERMINOLOGY



# WHEELCHAIR OPTIONS: FEATURES & LIMITATIONS



## WHAT CHAIR SHOULD I BUY FOR AN LTC RESIDENT?



The cheapest option is often NOT the best option.

Look for that **ONE** chair with **MAXIMUM ADJUSTABILITY** to fit multiple body types.

### STANDARD WHEELCHAIR OPTIONS

| Very Minimal Adjustability | Minimal Adjustability | Most Adjustability |
|----------------------------|-----------------------|--------------------|
| K0001/K0002                | K0003                 | K0004              |

### NON-STANDARD WHEELCHAIR OPTIONS

| Minimal Adjustability | Minimal Adjustability   | Most Adjustability |
|-----------------------|-------------------------|--------------------|
| Gerichair             | Recline/High Back Chair | Tilt-in-Space      |

### WHEELCHAIR KEY

**K0001:** Standard Wheelchair

**K0002:** Standard Hemi Wheelchair

**K0003:** Lightweight Wheelchair

**K0004:** High Strength, Lightweight Wheelchair

# STANDARD WHEELCHAIR COMPARISON CHART

| K0001:<br>Standard                                     |               |
|--------------------------------------------------------|---------------|
| Chair Weight without Legrests                          | >35 lbs       |
| Seat Width: Standard                                   | 16", 18", 20" |
| Seat Depth: Standard                                   | 16"           |
| Weight Capacity                                        | 300 lbs       |
| Back Height                                            | 18"           |
| Lowest Achievable Seat-to-Floor Height                 | 21"           |
| Adjustability to accommodate for postural abnormality: |               |
| Armrest Height                                         | No            |
| Back Height                                            | No            |
| Seat-to-Back Angle                                     | No            |
| Ability to create a Fixed Tilt                         | No            |
| Seat-to-Floor Height (STFH)                            | No            |
| Armrest Options                                        |               |
| Desk Length                                            | Yes           |
| Full Length                                            | Yes           |
| Legrest Options                                        |               |
| Standard                                               | Yes           |
| Elevated (ELR)                                         | Yes           |
| Swing-Away                                             | Yes           |
| Meant for Long Term Sitting                            | No            |

\*Features vary according to model.

## Seating & Positioning Guide

| K0002:<br>Standard Hemi<br>Height | K0003:<br>Lightweight | K0004:<br>High Strength,<br>Lightweight |
|-----------------------------------|-----------------------|-----------------------------------------|
| >35 lbs                           | 33 - 35 lbs           | 30 - 34 lbs                             |
| 16", 18", 20"                     | 16", 18", 20"         | 16", 18", 20", 22"                      |
| 16"                               | 16", 18"              | 16", 18", 20"                           |
| 300 lbs                           | 300 lbs               | 300 lbs                                 |
| 18"                               | 18"                   | 16" to 20"                              |
| 19"                               | 17"                   | 14.5"                                   |
|                                   |                       |                                         |
| No                                | No                    | Yes                                     |
| Hemi Height Only                  | Yes                   | Yes                                     |
|                                   |                       |                                         |
| Yes                               | Yes                   | Yes                                     |
| Yes                               | Yes                   | Yes                                     |
|                                   |                       |                                         |
| Yes                               | Yes                   | Yes                                     |
| Yes                               | Yes                   | Yes                                     |
| Yes                               | Yes                   | Yes                                     |
| No                                | No                    | Yes                                     |

# SPECIALIZED WHEELCHAIR COMPARISON CHART

\*Features vary according to model.

## Chair Weight without Legrests

Seat Width: Standard

Seat Depth: Standard

Weight Capacity

Back Height

Lowest Achievable Seat-to-Floor Height (STFH)

Adjustability to accommodate for postural abnormality:

Armrest Height

Back Height

Seat Depth

Seat-to-Back Angle

Ability to create a Fixed Tilt

Angle Adjustable Foot Plates

Seat-to-Floor Height (STFH)

Armrest Options

Desk Length

Full Length

Legrest Options

Standard

Elevated (ELR)

Swing-Away

Meant for Long Term Sitting

Able to replace sling back with a specialty back support

Frame has built-in growth capability

Able to add a head support

Tilt Angle

Recline Range

## A NOTE ON GERICHAIRS

Gerichairs have evolved over the years. Older models, found in a number of facilities, have little to no adjustability while newer models have more built-in adjustability. Keep in mind that seat width and the back support still cannot be changed to fit the resident's individual shape, limiting the therapist's ability to contour the seating system to the resident's curvature.

| Recline/High Back Chair | Tilt-in-Space                                  |
|-------------------------|------------------------------------------------|
| 35 - 50 lbs             | >45 lbs                                        |
| 16", 18", 20"           | 16", 18", 20"                                  |
| 16", 18", 20"           | 16", 18", 20"                                  |
| 300 lbs                 | 300 lbs                                        |
| 22" - 53"               | 24"                                            |
| 21"                     | 17"                                            |
| No                      | Yes                                            |
| No                      | Yes                                            |
| No                      | Yes                                            |
| Yes                     | Yes                                            |
| No                      | Yes                                            |
| No                      | Yes                                            |
| Standard or Hemi Height | 17" - 21"                                      |
| Yes                     | Yes                                            |
| No                      | Yes                                            |
| No                      | Yes                                            |
| No                      | Yes                                            |
| Unable to Tilt          | 45°                                            |
| 90° - 180°              | Fixed recline using chair canes:<br>80° - 120° |

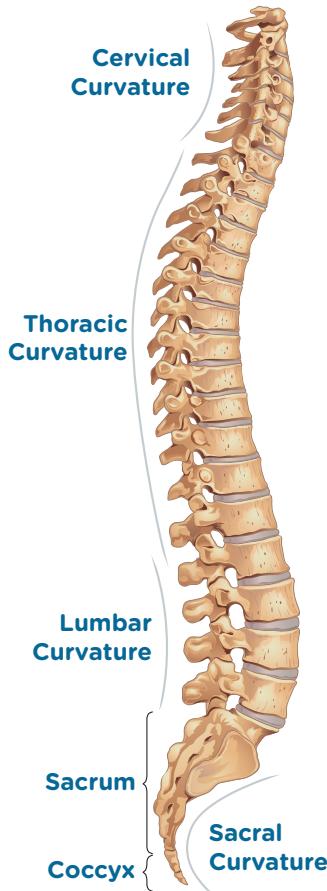
# ABNORMAL POSTURE



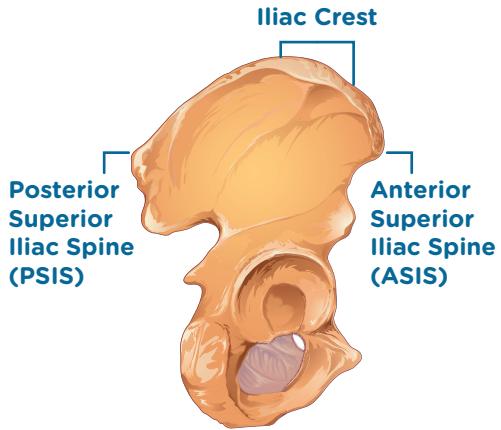
## WHAT AM I LOOKING AT? WHAT IS THE BODY DOING THAT IT SHOULDN'T BE DOING?



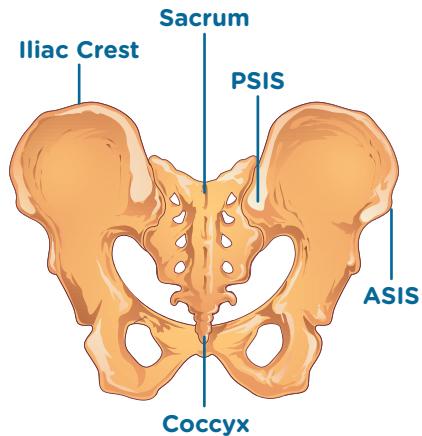
With prolonged sitting, residents begin to shift their bodies into what is known as abnormal postures to seek stability and/or alleviate pain and pressure.


Abnormal Postures are grouped into 5 categories and are as follows:

- **Anterior Pelvic Tilt (page 12)** with lumbar lordosis; with or without neck hyperextension.
- **Posterior Pelvic Tilt (page 13)** with thoracic kyphosis; with or without forward neck flexion. Referred to as SACRAL SITTING.
- **Pelvic Obliquity (page 15)** with scoliosis; with or without lateral neck flexion.
- **Pelvic Rotation (page 16)** with rotation of the spine; with or without lateral neck flexion.
- **Windswept Posture (page 17)**


\* Understand what you are looking at and decide whether your goal is to *correct* or *accommodate* for the abnormal posture. (pg 18)

# ANATOMY REFRESHER


## RIGHT LATERAL VIEW OF SPINE



## RIGHT LATERAL VIEW OF PELVIC BONE



## POSTERIOR VIEW OF PELVIS



# OPTIMAL POSTURE



## OPTIMAL POSTURE

**What is  
the pelvis  
doing?**

Pelvis in midline.  
ASIS & PSIS at equal height: no pelvic tilt  
L ASIS & R ASIS at equal height: no obliquity  
L ASIS & R ASIS at equal depth: no rotation

**What is  
the spine  
doing?**

Balanced and upright, no rotation, no lateral curvature. Normal lordosis in cervical and lumbar spine and normal kyphosis in thoracic spine creating the desired “S” shape.

**What is  
the head  
doing?**

Head is functionally upright with only mild forward/lateral flexion or rotation.

**Goals**

Maintain proper alignment with a **STANDARD** cushion (pg 45) and back support.

# ANTERIOR PELVIC TILT



## ANTERIOR PELVIC TILT

### What is the pelvis doing?

Pelvis sits with PSIS higher than the ASIS resulting in the anterior pelvic tilt.

### What is the spine doing?

Excessive lordosis of the lumbar and cervical spine: the resident hyperextends his or her back over the sling back of the chair, placing him or her at risk to tip the chair backwards.

### What is the head doing?

Excessive lordosis of cervical spine causes hyperextension of the neck and upward eye gaze.

### Goals

Utilize a cushion and back support that maximizes contact with the seat surface for optimal pelvic and spinal stability and pressure redistribution.

Stability is the goal so provide a back support that is tall enough for the resident. Measure from seat surface to the top of shoulder.

Look for a moldable back support to conform to the curvature of the spine.

# POSTERIOR PELVIC TILT



## POSTERIOR PELVIC TILT

|                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>What is the pelvis doing?</b> | Pelvis sits with ASIS higher than the PSIS resulting in the posterior pelvic tilt which produces the sacral sitting posture.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <b>What is the spine doing?</b>  | Excessive thoracic kyphosis, producing “C” shape spine<br>“Flattening out” of the lordosis of the cervical spine<br>“Flattening out” of the lordosis of the lumbar spine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <b>What is the head doing?</b>   | Decreased lordosis in cervical spine, causing forward neck flexion & downward eye gaze to floor/lap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <b>Goals</b>                     | Use a cushion with medial and lateral contour to promote LE alignment and pelvic stability.<br>Ensure appropriate cushion depth to prevent resident from sliding forward seeking reduced pressure behind the knees.<br>Add a rigid insert to prevent hammocking of the seat and cushion and keep the pelvis from collapsing into a posterior pelvic tilt.<br>If FLEXIBLE: Try a cushion with tapered adductors to load the trochanters, stabilizing the pelvis in the resident's most neutral alignment.<br>If FLEXIBLE: Use a cushion with an anti-thrust component to reduce forward sliding of the pelvis into posterior pelvic tilt.<br>If FIXED: Use an immersion style cushion that contours to the shape of the resident to promote maximum pressure redistribution, minimizing peak pressures.<br>If FIXED: Consider opening seat-to-back angle in conjunction with a fixed tilt in the wheelchair, to match the resident's ROM limitations and minimize forward sliding. |

Refer to Page 18 for more information on Fixed and Flexible postures

# PELVIC OBLIQUITY



## PELVIC OBLIQUITY

### What is the pelvis doing?

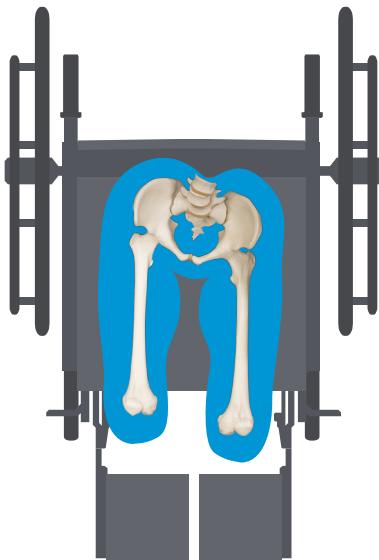
Pelvis sits with the L or R ASIS higher than the other, causing the raising up of one hip.

### What is the spine doing?

When one side of the pelvis is raised higher than the other, the thoracic spine curves away from the higher side creating a scoliosis over time.

### What is the head doing?

The neck will go into lateral flexion as if the person is dropping the ear to his or her shoulder. The lateral flexion will usually be towards the side where the hip is higher.


### Goals

Pressure redistribution is the goal whether the deformity is **FIXED** or **FLEXIBLE**.

If **FLEXIBLE**: level the pelvis by building up the lower side.

If **FIXED**: accommodate for the deformity. Protect the bony prominences from pressure by "filling in" the higher side and immersing the lower side IT.

# PELVIC ROTATION



## PELVIC ROTATION

**What is the pelvis doing?**

Pelvis sits with L or R ASIS more forward than the other producing the rotation in the hips.

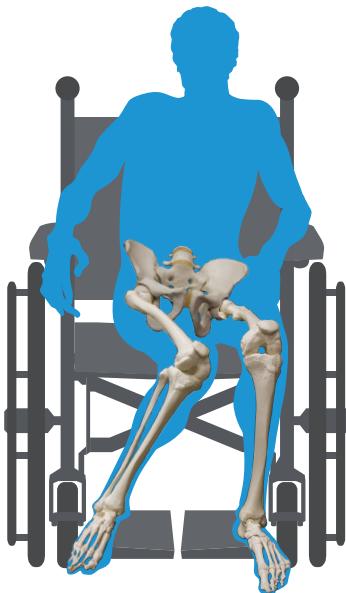
**What is the spine doing?**

The thoracic spine follows and rotates in the same direction as the pelvis. Therefore, if the right side of the pelvis is rotated more forward, the right side of the spine is rotated more forward as well.

**What is the head doing?**

The neck will go into lateral flexion as if the person is dropping the ear to his or her shoulder.

Stabilize the pelvis in the resident's most neutral position—adjusting for flexible or fixed postures—to prevent further pelvic rotation.


Consider an anti-thrust to reduce forward migration of the pelvis.

**Goals**

If FLEXIBLE: use tapered adductors and a medial abductor to create leg troughs for midline LE alignment and to maintain a pelvic neutral position.

If FIXED: look for a cushion with less aggressive contouring. Protect the bony prominences with an immersion-style cushion.

# WINDSWEPT POSTURE



## WINDSWEPT POSTURE

**What are the pelvis and LEs doing?**

Usually goes hand in hand with a rotation or an obliquity and causes one leg to adduct and the other leg to abduct, presenting as if the legs were “swept” away together to one side of the chair.

**What is the spine doing?**

Will present usually with a rotation or scoliosis depending on the position of the pelvis.

**What is the head doing?**

The neck will go into lateral flexion and may be accompanied by forward flexion.

**Goals**

Avoid use of ELRs that decrease femoral contact with seat surface and promote windswept posture.

Windswept posture often accompanies either a rotation or an obliquity, so follow the goals for those underlying causes of this posture.

# FIXED VS FLEXIBLE POSTURAL ABNORMALITIES



HOW DO I KNOW WHEN TO CORRECT THE POSTURAL ABNORMALITY AND WHEN TO ACCOMMODATE FOR IT?

 Each abnormality is either **FIXED** or **FLEXIBLE**. Understanding whether the postural abnormality is fixed or flexible helps decide if we need to **ACCOMMODATE** for or to **CORRECT** the postural abnormality.

## FIXED = ACCOMMODATE

When a posture is **FIXED**, the skeleton does not move out of that posture. The resident needs equipment that will **ACCOMMODATE** for the fixed posture, providing optimal support and pressure redistribution.

**GOAL** = Prevention of further progression

## FLEXIBLE = CORRECT

When a posture is **FLEXIBLE**, the skeleton still moves and equipment should be chosen with the goal to **CORRECT** the abnormal posture.

**GOAL** = Prevention from becoming a fixed posture

# ISSUES WITH THE CURRENT WHEELCHAIR SYSTEM CAN CAUSE ABNORMAL POSTURE



## HOW DOES AN IMPROPERLY FITTING WHEELCHAIR IMPACT MY RESIDENT'S POSTURE?

 The wheelchair can definitely be at fault when the resident is sitting in one of the five abnormal postures. Here is a closer look into seating dimensions and how an ill-fitting wheelchair component can be the culprit behind the body moving into unwanted, harmful postures.

- **Seat Dimension Issues:** Pages 20 - 22
- **Seat-to-Floor Height Issues:** Pages 23 - 24
- **Back Support Issues :** Pages 25 - 26
- **Legrest Issues:** Pages 27 - 28
- **Armrest Issues:** Page 29
- **Head Support Issues:** Page 30

| What is going on?                                   | What can you do?                                                                                                                                                                                                                |
|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Use this column as your problem list in your evals. | This column gives you ways to address the issues present. Letters referenced correspond to measuring guide pages 35 - 43. Use those measurements to find the appropriate wheelchair dimension to fit your resident's body size. |

# SEAT DIMENSION

Wheelchair seat width and depth are crucial to proper pelvic and LE alignment

## HAMMOCKING SEAT SLING

| What is going on?                                       | Negative Result                          | What can you do? |
|---------------------------------------------------------|------------------------------------------|------------------|
| Pelvis collapses                                        | Posterior pelvic tilt aka sacral sitting | Add Rigid Insert |
| Resident seeks out one side of wheelchair for stability | Pelvic obliquity                         | Add Rigid Insert |
| Resident compensates by rotating pelvis for stability   | Pelvic rotation                          | Add Rigid Insert |
| LEs "sweep" to one side                                 | Windswept posture of LEs                 | Add Rigid Insert |

## WIDTH: TOO NARROW

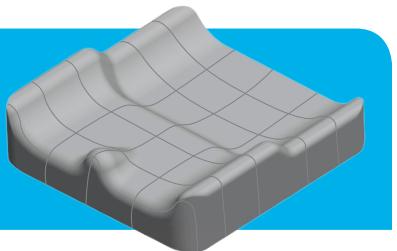
| What is going on?                                                                          | Negative Result              | What can you do?                                                                                                      |
|--------------------------------------------------------------------------------------------|------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Excess pressure at trochanter from contact with the chair                                  | Wound risk at the trochanter | Measure hip width (C)<br>Look for a skin protection cushion that immerses the trochanters                             |
| Resident rotates hips to "fit" into the chair                                              | Pelvic rotation              | Measure hip width (C)                                                                                                 |
| Resident "sweeps" LEs to one side trying to avoid a buildup of pressure on the trochanters | Windswept posture of LEs     | Measure hip width (C)<br>Find a cushion with medial abduction and lateral adduction contours to maintain LE alignment |

# SEAT DIMENSION

## WIDTH: TOO WIDE

| What is going on?                                                                   | Negative Result                                                                                | What can you do?                                                                                                      |
|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Resident leans to one side to increase stability. Pelvis will be lower on that side | Pelvic obliquity                                                                               | Measure hip width (C)                                                                                                 |
| Pelvis collapses                                                                    | Posterior pelvic tilt aka sacral sitting                                                       | Measure hip width (C)                                                                                                 |
| Pelvic collapse causes hips to internally rotate and LEs to excessively adduct      | Strain & contracture risk at hip joints<br>Wound risk at medial knees where knees rub together | Find a cushion with medial abduction and lateral adduction contours to maintain LE alignment                          |
| LEs "sweep" to one side when LE weakness is present                                 | Windswept positioning of LEs                                                                   | Measure hip width (C)<br>Find a cushion with medial abduction and lateral adduction contours to maintain LE alignment |

## DEPTH: TOO DEEP


| What is going on?                                                                                                                  | Negative Result                          | What can you do?                      |
|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|---------------------------------------|
| Seat sling digs into the back of legs causing pain<br>Resident will slide forward to alleviate the pain                            | Posterior pelvic tilt aka sacral sitting | Measure upper leg length (K) minus 2" |
| Seat sling digs into the back of legs decreasing circulation, increasing LE edema<br>Resident slides forward to alleviate numbness | Posterior pelvic tilt aka sacral sitting | Measure upper leg length (K) minus 2" |
| Foot propulsion more difficult, resident slides forward for better heel strike                                                     | Posterior pelvic tilt aka sacral sitting | Measure upper leg length (K) minus 2" |
| Resident will slide forward immediately after repositioning                                                                        | Posterior pelvic tilt aka sacral sitting | Measure upper leg length (K) minus 2" |

\* Use a MWC that has seat depth adjustability:  
K0004

## DEPTH: TOO SHALLOW

| What is going on?                                                                                                                     | Negative Result                                                                                    | What can you do?                                                                                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| Decreased femoral contact and LE support                                                                                              | Windswept posture, abduction, or adduction of LEs                                                  | Measure upper leg length (K) minus 2"<br>Find a cushion with medial abduction and lateral adduction contours to maintain LE alignment |
| Reduced area for pressure redistribution results in increased pressure at the ITs, sacrum and coccyx                                  | Wound risk at ITs, sacrum, and coccyx                                                              | Measure upper leg length (K) minus 2"<br>Look for a skin protection cushion that immerses and/or offloads the bony prominences        |
| Pelvis collapses inward due to lack of LE support to ensure pelvic alignment<br><br>Hips internally rotate and LEs excessively adduct | Strain & contracture risk at hip joints<br><br>Wound risk at medial knees where knees rub together | Measure upper leg length (K) minus 2"<br>Find a cushion with medial abduction and lateral adduction contours to maintain LE alignment |

\* When LE alignment is an issue: think **CONTOURS** when choosing a cushion!



\* When any given seat dimension is incorrect, the ideal solution is to change out the wheelchair for one that's dimensions meet your resident's specific measurements. It may seem too easy but it really is true!

# SEAT-TO-FLOOR HEIGHT (STFH)

STFH is crucial for proper pelvic alignment, LE alignment, and heel strike for self-propulsion

**The below is a quick reference to match lower leg length to wheelchair model for proper STFH**

| Wheelchair Model | Achievable STFH | Lower Leg Length <u>Required</u> to Fit MWC |
|------------------|-----------------|---------------------------------------------|
| K0001            | 21"             | <b>23" or longer</b>                        |
| K0002            | 19"             | <b>21" or longer</b>                        |
| K0003            | 17" - 19"       | <b>19" or longer</b>                        |
| K0004            | As low as 14.5" | <b>16.5" or longer</b>                      |

\* Use a MWC with STFH adjustability: K0004

## STFH: TOO LOW

| What is going on?                                                                                                       | Negative Result                                                | What can you do?                                                                                                                                             |
|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Legrests are shortened to compensate for lack of threshold clearance                                                    | Windswept positioning of LEs                                   | Measure lower leg length (L)<br>Use a higher profile cushion<br>Find a cushion with medial abduction and lateral adduction contours to maintain LE alignment |
| Knees are then higher than the hips causing decreased femoral contact with the seat surface and LEs "sweep" to one side | Wound risk at ITs, sacrum, and coccyx                          | Measure lower leg length (L)<br>Use a higher profile cushion<br>Look for a skin protection cushion that immerses and/or offloads the bony prominences        |
| Knees higher than hips increase peak pressure at ITs, sacrum, and coccyx                                                |                                                                |                                                                                                                                                              |
| On a chair without legrests, feet can drag and get caught under chair during propulsion or transport                    | Resident can be thrown out of chair or injury to LEs can occur | Measure lower leg length (L)<br>Use a higher profile cushion                                                                                                 |

## STFH: TOO HIGH

| What is going on?                                                                                                    | Negative Result                                  | What can you do?                                                                                                                                            |
|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Foot propulsion is more difficult so resident slides forward for better heel strike                                  | Posterior pelvic tilt aka sacral sitting         | Measure lower leg length (L)<br>Use a lower profile cushion                                                                                                 |
| Increased pressure at distal thigh, increasing risk of LE edema, resident slides forward to reduce numbness and pain | Posterior pelvic tilt aka sacral sitting         | Measure lower leg length (L)<br>Use a lower profile cushion                                                                                                 |
| Resident rotates forward on one side for better heel strike of one foot                                              | Pelvic rotation                                  | Measure lower leg length (L)<br>Use a lower profile cushion                                                                                                 |
| Feet "dangle"                                                                                                        | Increased internal rotation and adduction of hip | Measure lower leg length (L)<br>Use a lower profile cushion<br>Find a cushion with medial abduction and lateral adduction contours to maintain LE alignment |
| Resident slides forward to alleviate strain on pelvis and knees                                                      | Posterior pelvic tilt aka sacral sitting         | Measure lower leg length (L)<br>Use a lower profile cushion                                                                                                 |

\* Choose a higher or lower profile cushion to compensate for incorrect STFH when switching out the MWC just isn't an option!

TOO HIGH



TOO LOW



GOOD STFH



Refer to Page 39 for more information on measuring for proper STFH

## BACK SUPPORT

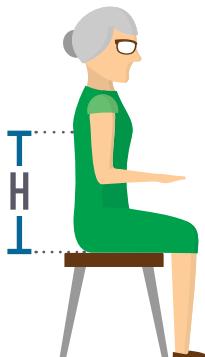
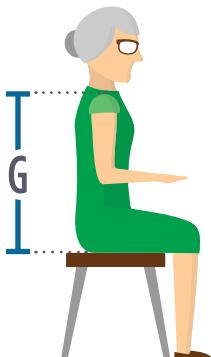
An appropriate back support can: align the spine, provide pelvic stability, decrease risk of wound development and pain, and improve function

When choosing appropriate back support height, define your GOAL for the resident:

- IF *positioning* is the objective, then measure seat to top of shoulder height (G) to choose a back support that can provide optimal trunk stabilization.
- IF *self-propulsion* for a resident with good trunk strength is the goal, measure seat to inferior angle of scapula (H) for increased freedom of movement and access to the wheels.

Refer to the back support measuring guide on page 40 to address the following issues.

### HEIGHT: TOO LOW



This causes insufficient stability for a resident with poor trunk strength and balance

| What is going on?                                                                    | Negative Result                                           | What can you do?                                                                                                                                                                                                            |
|--------------------------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Resident slides down in the chair seeking more surface area for increased stability  | Posterior pelvic tilt with kyphosis of the thoracic spine | Measure seat to top of shoulder (G) or Seat to inferior angle of scapula (H)<br>Provide an appropriately sized contoured back support for added stability that allows for immersion and envelopment of resident's curvature |
| Resident seeks out one armrest to gain more stability                                | Pelvic obliquity with scoliosis of the spine              | Measure seat to top of shoulder (G) or Seat to inferior angle of scapula (H)<br>Provide an appropriately sized contoured back support for added stability that allows for immersion and envelopment of resident's curvature |
| Resident rotates spine and pelvis to seek out more stability on one side of the body | Pelvic rotation with rotation of the spine                | Measure seat to top of shoulder (G) or Seat to inferior angle of scapula (H)<br>Provide an appropriately sized contoured back support for added stability that allows for immersion and envelopment of resident's curvature |

## HEIGHT: TOO HIGH/TOO UPRIGHT

| What is going on?                                                     | Negative Result                                           | What can you do?                                                                                                                                                                                                                                                                                                                                             |
|-----------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Resident with poor core strength will slide down to alleviate fatigue | Posterior pelvic tilt with kyphosis of the thoracic spine | Measure seat to top of shoulder (G) or Seat to inferior angle of scapula (H)<br><br>Open seat-to-back angle either through back support hardware or by adjusting the back canes in a MWC with that option<br><br>Provide an appropriately sized contoured back support for added stability that allows for immersion and envelopment of resident's curvature |
| Sitting too upright pushes the trunk forward resulting in instability | Anterior pelvic tilt with lumbar lordosis                 | Measure seat to top of shoulder (G) or Seat to inferior angle of scapula (H)<br><br>Open seat-to-back angle either through back support hardware or by adjusting the back canes in a MWC with that option<br><br>Provide an appropriately sized contoured back support for added stability that allows for immersion and envelopment of resident's curvature |

\* **Another reason to choose a K0004 MWC is the ability to adjust seat-to-back angle. This helps to alleviate fatigue of the trunk muscles and reduce the sensation of being pushed out of the chair.**



Refer to Page 40 for more on measuring for proper back support height

# LEGREST

Properly fitting legrests not only provide a place to rest the feet, they:

- Stabilize the LEs for optimal pelvic and spine alignment
- Promote femoral contact for pressure redistribution away from the bony prominences to reduce risk of wounds

## USE OF ONLY ONE LEGREST

| What is going on?                             | Negative Result              | What can you do?                               |
|-----------------------------------------------|------------------------------|------------------------------------------------|
| Pelvis on the side with the legrest is higher | Pelvic obliquity             | Add second legrest if positioning is your goal |
| One-legged heel strike for propulsion         | Pelvic rotation              | Add second legrest if positioning is your goal |
| LEs "sweep" toward the side with the legrest  | Windswept positioning of LEs | Add second legrest if positioning is your goal |

\* **Sometimes only one legrest is necessary but having only one can cause the above issues. We can't have our cake and eat it too. When considering the addition of a second legrest, decide what is more important: one-legged propulsion OR the prevention of a postural abnormality.**

## UNEQUAL FOOT PLATE HEIGHTS

| What is going on?                                                    | Negative Result  | What can you do?                     |
|----------------------------------------------------------------------|------------------|--------------------------------------|
| Unequal foot plate heights cause one side of the pelvis to be higher | Pelvic obliquity | Adjust foot plate heights to be even |

## **LEGREST TOO SHORT/FOOT PLATE TOO HIGH**

| <b>What is going on?</b>                                                                | <b>Negative Result</b>                                           | <b>What can you do?</b>                                                                                                                                           |
|-----------------------------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Decreased femoral contact, which increases peak pressure at the ITs, sacrum, and coccyx | Wound risk at ITs, sacrum, and coccyx                            | Measure lower leg length (L)<br>Lengthen legrest/lower foot plate<br>Look for a skin protection cushion that immerses and/or offloads the bony prominences        |
| Decreased femoral contact cause LEs to "sweep" to one side                              | Windswept positioning of LEs                                     | Measure lower leg length (L)<br>Lengthen legrest/lower foot plate<br>Find a cushion with medial abduction and lateral adduction contours to maintain LE alignment |
| Decreased femoral contact increases hip flexion pulling downward on the pelvis          | Posterior pelvic tilt aka sacral sitting<br>Shortened hamstrings | Measure lower leg length<br>Lengthen legrest/lower foot plate                                                                                                     |

## **LEGREST TOO LONG/FOOT PLATE TOO LOW**

| <b>What is going on?</b>                                                                                                  | <b>Negative Result</b>                       | <b>What can you do?</b>                                                                                                                                   |
|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Resident slides forward and stretches legs to reach foot plates                                                           | Posterior pelvic tilt aka sacral sitting     | Measure lower leg length (L)<br>Shorten legrest/raise foot plate                                                                                          |
| Promotes sacral sitting that adds pressure directly onto the ITs, sacrum, and coccyx                                      | Wound risk at ITs, sacrum, and coccyx        | Measure lower leg length (L)<br>Shorten legrest/raise foot plate<br>Look for a skin protection cushion that immerses and/or offloads the bony prominences |
| Resident stretches foot & ankle downward to reach a foot plate that is too low promotes ankle plantar flexion & inversion | Contracture risk of ankle joint              | Measure lower leg length (L)<br>Shorten legrest/raise foot plate<br>Use of a single or double foot support                                                |
| Resident stretches to reach the foot plate, only the ball of the foot makes contact with the foot plate                   | Risk of eliciting abnormal reflexes and tone | Measure lower leg length (L)<br>Shorten legrest/raise foot plate<br>Use of a single or double foot support                                                |

# ARMREST

Properly adjusted armrests serve many functions:

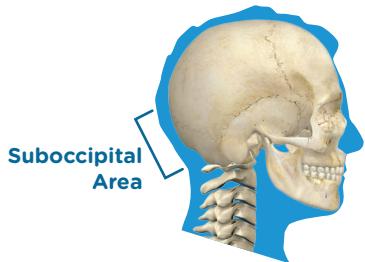
- A place to rest UEs
- Contribute to overall trunk stability and upright posture when muscle weakness is present
- Facilitates ease of transfers

## HEIGHT: TOO LOW

| What is going on?                                                                                   | Negative Result                                                                   | What can you do?                                                |
|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------|
| Resident slides down in chair to make contact with armrests                                         | Posterior pelvic tilt with kyphosis of the thoracic spine                         | Measure seat to elbow (I) and adjust armrest height accordingly |
| Resident leans to one side seeking more support<br>Pelvis on that side will be lower                | Pelvic obliquity with scoliosis of the spine                                      | Measure seat to elbow (I) and adjust armrest height accordingly |
| Excessive shoulder depression to make contact with armrest allows gravity to pull at shoulder joint | Shoulder subluxation and dislocation in a resident with weak shoulder musculature | Measure seat to elbow (I) and adjust armrest height accordingly |

## HEIGHT: TOO HIGH

| What is going on?                                                              | Negative Result                                                                          | What can you do?                                                |
|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| Excessive elevation of shoulder to place arms on armrests                      | Constant contraction of musculature causes fatigue, pain, numbness, and contracture risk | Measure seat to elbow (I) and adjust armrest height accordingly |
| Resident leans against armrest versus placing arm on armrest seeking stability | Lateral leaning of trunk                                                                 | Measure seat to elbow (I) and adjust armrest height accordingly |
| Resident leans to one side causing the pelvis on that side to be lower         | Pelvic obliquity with scoliosis of the spine                                             | Measure seat to elbow (I) and adjust armrest height accordingly |


\* Use a MWC with armrest adjustability:  
K0004

# HEAD SUPPORT

Proper head support is important for:

- Socialization and Communication
- Safe Swallowing
- Respiration
- Attention to Task
- Mobility

A standard posterior head support pad should be positioned in the suboccipital area with the goal to prevent excessive extension, rotation, or lateral flexion.



## TOO HIGH

| What is going on?                                                            | Negative Result                                                  | What can you do?               |
|------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------|
| The pad will rest on the occipital area or above, causing strain on the neck | Resident will try to adjust by moving the head away from the pad | Place pad in suboccipital area |

## TOO LOW

| What is going on?                                                            | Negative Result | What can you do?               |
|------------------------------------------------------------------------------|-----------------|--------------------------------|
| The pad will rest on the cervical spine, resulting in poor posterior support | Head extension  | Place pad in suboccipital area |

\* Look for a head support that has maximum adjustability to support the head posteriorly and laterally simultaneously and is angle adjustable.

# SEATING EVALUATION GOALS

## WHAT SHOULD MY GOALS BE IN A SEATING EVALUATION?

### Goals of a therapist when fitting a resident for a wheelchair

- Provide pelvic and trunk stability
- Maximum function for ADLs
- Protect skin and prevent wounds or heal existing wounds
- Maximum comfort for resident
- Minimize unwanted movement
- Correct or accommodate for postural abnormalities
- Prevent progression of postural abnormalities





## BE A 5 STAR Facility through achieving your seating and positioning goals

- Pass state inspections
- Reduce the incidence and cost of wound care
- Reduce the incident of injury due to falls from wheelchair level
- Maintain skin, skeletal, and muscular integrity and function
- Reduce the number of residents with a “decline in function” on quarterly screens
- Eliminate the temptation of using restraints
- Maximize the ability to participate in ADLs from wheelchair level
- Reduce the percentage of residents that report pain while sitting at wheelchair level
- Maximize quality of life

# HOW TO MEASURE FOR PROPERLY FITTING WHEELCHAIR COMPONENTS:



## HOW IS A SEATING EVALUATION DIFFERENT THAN A TYPICAL OT/PT EVAL?



### Don't let the term "Seating Evaluation" scare you!!

- Conduct your evaluation as you would any other OT/PT eval in the nursing home to determine functional needs of the resident.
- Assess limitations in ROM, strength, balance and endurance and how they negatively affect posture in the wheelchair.
- Is there a postural abnormality? Decide if that postural abnormality is flexible or fixed: should your goal be to correct or accommodate for it?
- Choose an appropriate wheelchair model that allows for adjustability, seat cushion, back support, head support, and accessories to address the resident's physical limitations.
- Use the measurement form provided to take key measurements.
- Match the wheelchair to the resident's dimensions to ensure a proper fit.

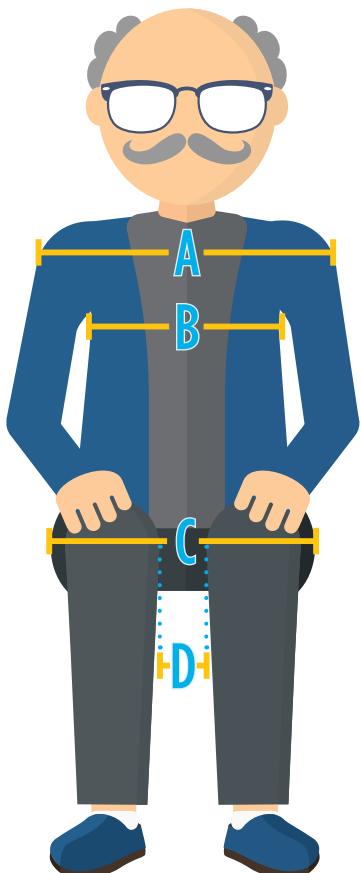
\* **Don't forget to look for hip contractures and tight hamstrings during the evaluation. They are often the culprits of poor pelvic positioning!**



## Measuring Tips

- All measurements should be taken while sitting on a firm, flat surface in the posture the therapist is trying to accomplish for the resident.
- Measure using a hard measuring tape not one that can bend and wrap around the patient's body. That will lead to measurement errors, adding circumference or length.
- All measurements should be taken straight across the body.
- Use a measurement form to remind you of the measurements needed to be taken and to record them properly.




# WHAT ARE THE MEASUREMENTS THAT I NEED TO TAKE?

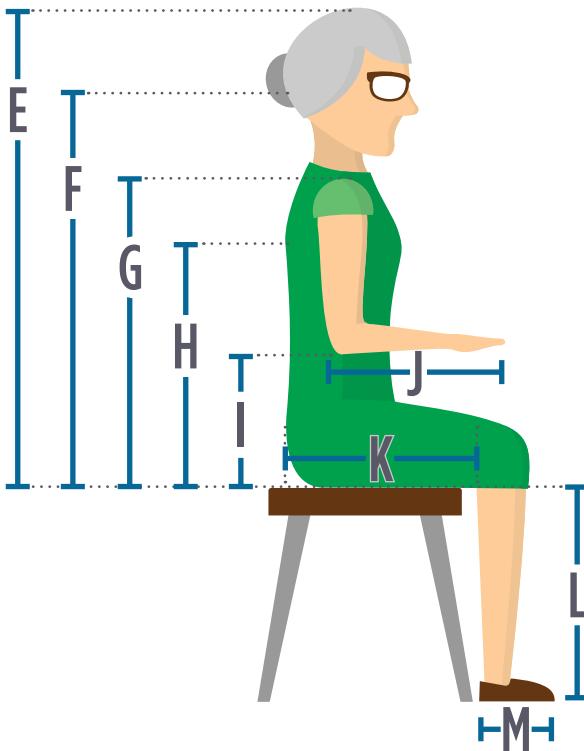


Here is an easy to use measurement form with the measurements included in an LTC seating and positioning evaluation.



## Measuring Guide




**A - Shoulder Width**

**B - Chest Width**

**C - Hip Width**

**D - Between Knees**

\* Don't forget to include excess tissue in all measurements and measure the resident in their ideal posture



**E - Top of Head**

**F - Occiput**

**G - Seat to Top of Shoulder**

**H - Inferior Angle of Scapula**

**I - Seat to Elbow**

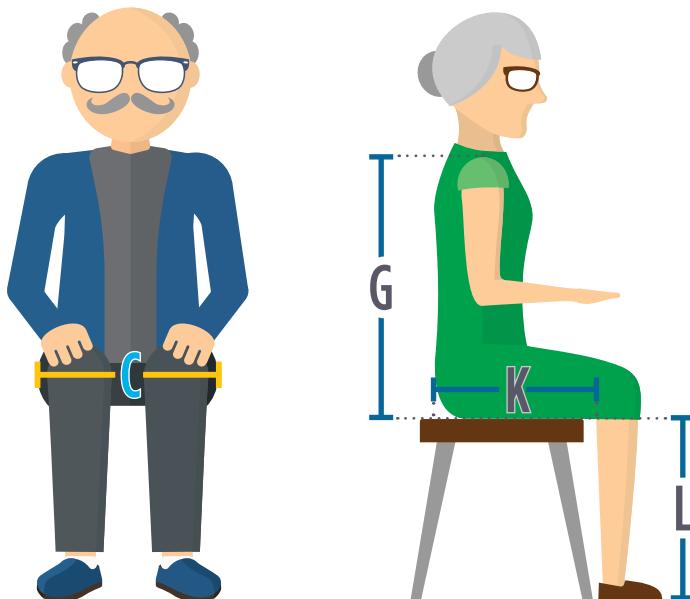
**J - Lower Arm Length**

**K - Upper Leg Length**

**L - Lower Leg Length**

**M - Foot Length**

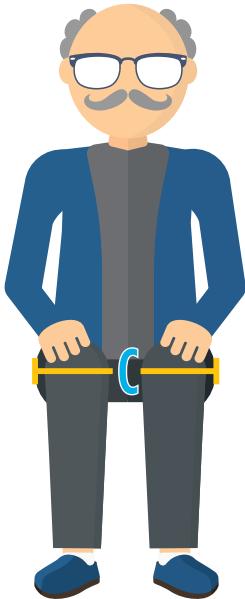



## WHAT IF I DON'T HAVE ENOUGH TIME TO TAKE ALL THE MEASUREMENTS?

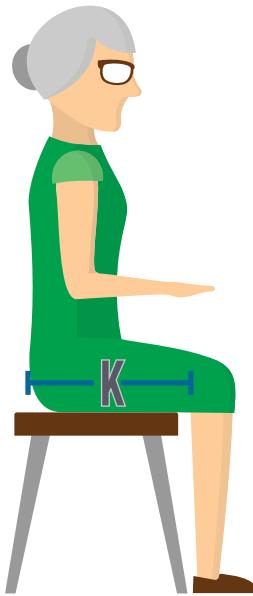


Since time is a constraint, the top 4 measurements you **MUST** do are:

- **Hip Width (C)**
- **Seat to Top of Shoulder (G)**
- **Upper Leg Length (K)**
- **Lower Leg Length (L)**


These will allow you to match a wheelchair, including a cushion and back support, to your resident.




**REMEMBER TO HAVE RESIDENT SITTING ON A FLAT, FIRM SURFACE FOR ACCURATE MEASUREMENTS**



## SEAT DIMENSION

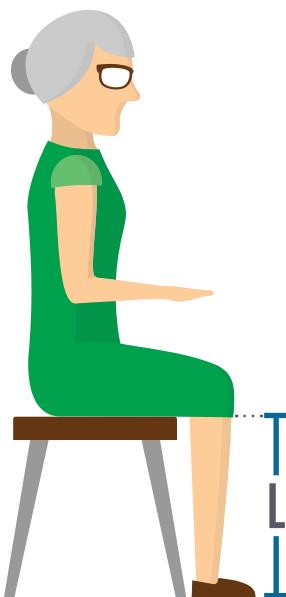


WIDTH



DEPTH: K - 2"

### HOW TO MEASURE WIDTH:


- Measure from widest point to widest point of hips including all residual tissue

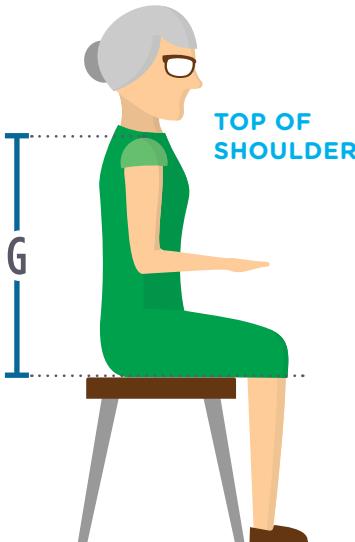
### HOW TO MEASURE DEPTH:

- Measure from the buttocks, including any excess tissue, across the femur to the popliteal fossa
- Then subtract 2"

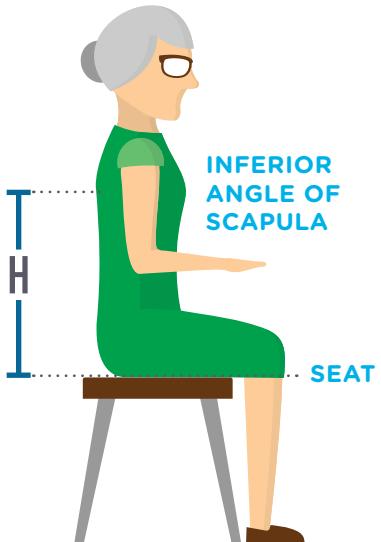


# SEAT-TO-FLOOR HEIGHT (STFH, AKA LOWER LEG LENGTH)




## HOW TO MEASURE:

- Measure from the top of the resident's seat to the floor (top of cushion if applicable)
- Measure with feet on floor with shoes that they normally wear or barefoot if they do not normally wear shoes, and measure bottom of foot/shoe to popliteal fossa


\* If providing the resident with a new cushion, remember to consider the thickness of the desired cushion and adjust STFH accordingly



# BACK SUPPORT

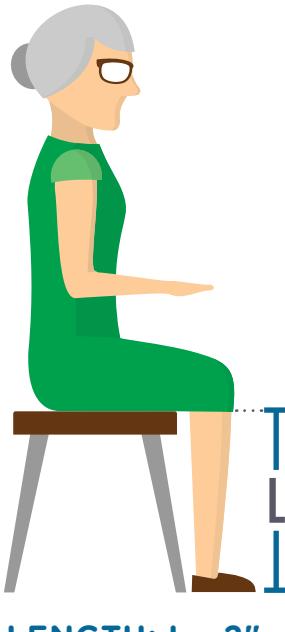


RESIDENT NEEDS A POSITIONING BACK DUE TO POOR TRUNK STRENGTH



RESIDENT IS A SELF PROPELLER WITH GOOD TRUNK STRENGTH

## HOW TO MEASURE HEIGHT:


- Measure the person in the position you are striving to achieve

\* Measure both sides L & R in case of scoliosis and/or a pelvic obliquity

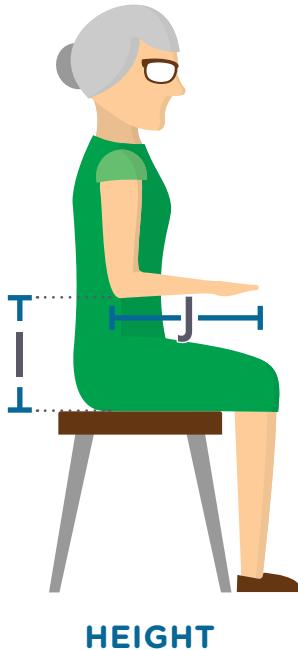
\* An average back height for a self propeller is 16" tall while 18"-20" is the average for a person who is dependent in propulsion



# LEGREST



**LENGTH:  $L - 2"$**


## HOW TO MEASURE LENGTH:

- Measure from bottom of foot/shoe to popliteal fossa, including shoes that resident normally wears
- Then subtract 2"

\* There must be a 2" clearance from foot plate and floor to clear thresholds



# ARMREST

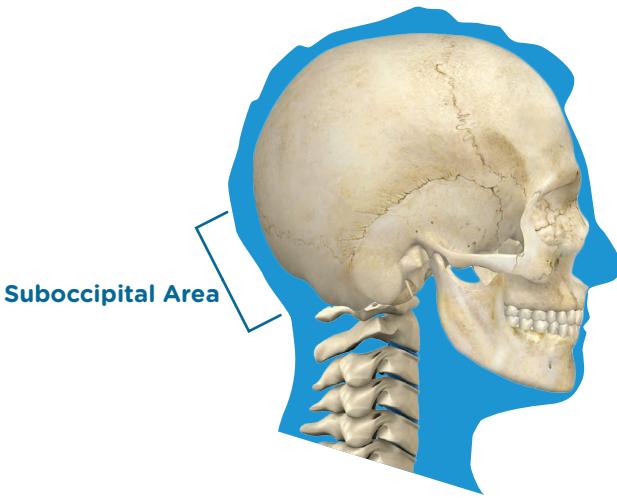


## HOW TO MEASURE HEIGHT (I):

- Seat your resident with shoulder in neutral and elbow bent at his or her side to 90°
- Measure from top of seat to under forearm/ elbow

\* K0001, K0002, K0003 chairs DO NOT come with height adjustable armrests. This is just one more reason they are not the most cost-effective option when thinking long term.

- If resident is needing a specialized arm length (J): measure from end of elbow to where the therapist wants the desired replacement arm support to end




# HEAD SUPPORT

## HOW TO MEASURE HEIGHT:

**There is no miracle formula for fitting a resident for a proper head support**

- The rest of the body must be in the best alignment possible before trying to fit for a head support.
- Remember that head position changes constantly with the slightest movement of the body.
- Aim to position the pad in the suboccipital area.
- Choose a head support with lateral, anterior/posterior, and angle adjustability.



\* Never use a tall backrest as a head support.

# WHAT TYPE OF CUSHION SHOULD I CHOOSE?



**HOW DO I KNOW WHAT CUSHION TO CHOOSE OUT OF THE HUNDREDS OUT THERE?**



**There are two key questions to ask yourself:**

- Does the resident sit in an abnormal posture that places them at risk to fall from the chair and/or develop a contracture?
- Is the resident at risk for, have an existing, or have a history of wound development?

The answers to these questions will guide you to the correct cushion category. Cushions are broken up into three categories depending on the resident's particular needs.

- **Standard**
- **Skin Protection**
- **Skin Protection & Positioning**

**\* Typically there is a fourth category for positioning only cushions. We believe that all residents that sit with a postural abnormality are at risk for wound development due to peak pressures on the bony prominences. Therefore, all positioning cushions **SHOULD** have skin protection properties.**

## Here are some things to consider when choosing the type of cushion:

### STANDARD

### SKIN PROTECTION

|                                                                                                |                                                                                                                                         |
|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| Resident has sufficient balance and strength to maintain good posture for long periods of time | Resident has comorbidities that place their skin at risk for breakdown (Diabetes, vascular insufficiency, nutritional deficiency, etc.) |
| Can independently reposition self                                                              | Difficulty repositioning self                                                                                                           |
| Ability to perform independent pressure relief                                                 | Difficulty with performing independent pressure relief                                                                                  |
| No skin breakdown or has a <i>Stage 1</i> diagnosis                                            | At significant risk for a wound or has a wound at any stage                                                                             |
| No significant postural abnormality                                                            | May or may not be mobile                                                                                                                |
| Resident has good sensation                                                                    | Impaired sensation                                                                                                                      |
| May or may not be incontinent                                                                  | Incontinent                                                                                                                             |
| For short-term residents working on ambulation                                                 | Skin at risk due to prolonged sitting in wheelchair >4 Hrs/Day                                                                          |
| Long-term resident that uses their chair minimally                                             |                                                                                                                                         |

\* Understand your resident's abilities and risk areas in order to choose the cushion that best matches your resident's needs.

Want help finding a cushion that meets your resident's needs? Refer to the decision tree and cushion comparison chart in our *LTC Wheelchair Seating and Positioning Product Selection Guide* for our top picks in each category.

## SKIN PROTECTION & POSITIONING

Resident has comorbidities that place their skin at risk for breakdown (Diabetes, vascular insufficiency, nutritional deficiency, etc.)

Poor balance and weak core, pelvic, and LE musculature

Minimal to no ability to reposition self

Minimal to no ability to perform independent pressure relief

Sits in one of the 5 postural abnormalities (Pages 12 - 17)

At significant risk for a wound or has a wound at any stage

Limited mobility or immobile

Impaired sensation

Incontinent

CONTRACTURE RISK from prolonged sitting in a postural abnormality

FALL RISK from chair

Progressive disorders

Dementia

Neurological impairment

# WHEN DO I CHOOSE A SPECIALIZED BACK SUPPORT?



## HOW DO I KNOW IF MY RESIDENT NEEDS IT?

 **There are key questions to ask yourself when deciding if the sling back should be replaced with a specialized back support:**

- Is your resident immobile?
- Does your resident have a postural abnormality that affects pelvic and trunk stability and alignment?
- Does your resident require assistance to sit unsupported?
- Does your resident complain of pain while sitting in the wheelchair?

If you answered yes to any of these questions, then without a doubt, replace the sling back with a specialized back support.

Back supports are broken into the following categories:

- Standard
- Moderate Support
- Maximum Support

Much like cushion categories, there are certain criteria that assist a therapist in choosing the appropriate back support category that will meet the

resident's needs. This criteria includes the amount of assistance needed for repositioning, ability to maintain an optimal midline posture, and the amount of pressure the back support must withstand. Please refer to pages 49-50 for a more detailed algorithm to help you choose what back support category fits your resident's needs.



**No matter what category you choose, the right back support is an essential part of an optimal seating system. Here are some of the important advantages of a specialized back support:**

- Increases seat depth
- Captures curvature whether normal or abnormal and increases contact with both the back support and seat surface for maximum stabilization
- Envelops the spine to maximize pressure redistribution and minimize peak pressure on the spinous process
- Decreases pain
- Works hand in hand with the cushion to lock in the pelvis for maximum stabilization
- Helps reduce the progression of an abnormal spinal posture

**\* The typical sling back that comes on all models of chairs easily hammock and lose their shape, no longer stabilizing the trunk. Be familiar with back supports on the market and how they can help to achieve your resident's goals.**

## Here are some things to consider when choosing a type of back support:

| STANDARD                                                                                                                       | MODERATE                                                                                                                                                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Independently maintains trunk in midline while sitting unsupported                                                             | Min to mod assist to maintain trunk in midline while sitting unsupported                                                                                                                                              |
| Active resident; with or without a fixed or flexible abnormal curvature of the spine                                           | Resident with activity limitations; with or without a fixed or flexible abnormal curvature of the spine                                                                                                               |
| Can independently reposition and perform pressure relief                                                                       | Requires min to mod assist to reposition and perform pressure relief                                                                                                                                                  |
| Intact skin and/or occasional redness along the spinous process                                                                | Persistent redness or an open area along the spinous process                                                                                                                                                          |
| Light leaner that may use a foam lateral trunk support to promote upright, midline posture                                     | Moderate leaner that would benefit from a mounted lateral trunk support to promote upright, midline posture                                                                                                           |
| Complaint of back pain while sitting in the wheelchair                                                                         | Complaint of back pain while sitting in the wheelchair                                                                                                                                                                |
| Awake and alert                                                                                                                | Decreased alertness, sleeps occasionally in chair                                                                                                                                                                     |
| Good head control, head position does not affect trunk posture or vice versa                                                   | May or may not require a head support to maintain optimal head, neck, and trunk alignment                                                                                                                             |
| Captures some abnormal curvatures of the spine with a less aggressive system to increase stability and pressure redistribution | More stable and durable back support that allows for better surface contact through adjustability of seat-to-back angle and contours to most postural abnormalities, leading to stability and pressure redistribution |

Want help finding a product that meets your resident's needs?  
Refer to the back support decision tree and comparison chart in our  
*LTC Wheelchair Seating and Positioning Product Selection Guide*.

## MAXIMUM

Max to dep assist to maintain trunk in midline while sitting unsupported

Inactive resident; with or without a fixed or flexible abnormal curvature of the spine

Requires max to dep assist to reposition and perform pressure relief

Persistent redness or an open area along the spinous process

Heavy leaner that requires a mounted lateral trunk support to promote upright, midline posture

Complaint of back pain while sitting in the wheelchair

Decreased alertness, sleeps often in chair

Requires a head support to maintain optimal head, neck, and trunk alignment

Neurological disorders

Progressive disorders

Most stable and durable back support that allows for the most aggressive envelopment to capture any abnormal curvature, leading to optimal stability and pressure redistribution



Specialized back supports can be molded to an abnormal curvature of the spine seen with all pelvic deformities. Here is a closer look at the abnormal curvatures of the spine that you will be able to envelop for increased stability and alignment, pressure distribution, and comfort:

### Kyphosis



### Scoliosis



### Lumbar Lordosis



### Spinal Rotation



# THE GREAT ELEVATING LEGREST MYTH!

## ① ELEVATING LEGRESTS (ELRs) ARE A GOOD OPTION RIGHT?



**NO!**

Here are some common myths about ELRs that you NEED ABSOLUTE CLARIFICATION on to help you understand why standard legrests are usually the better option:

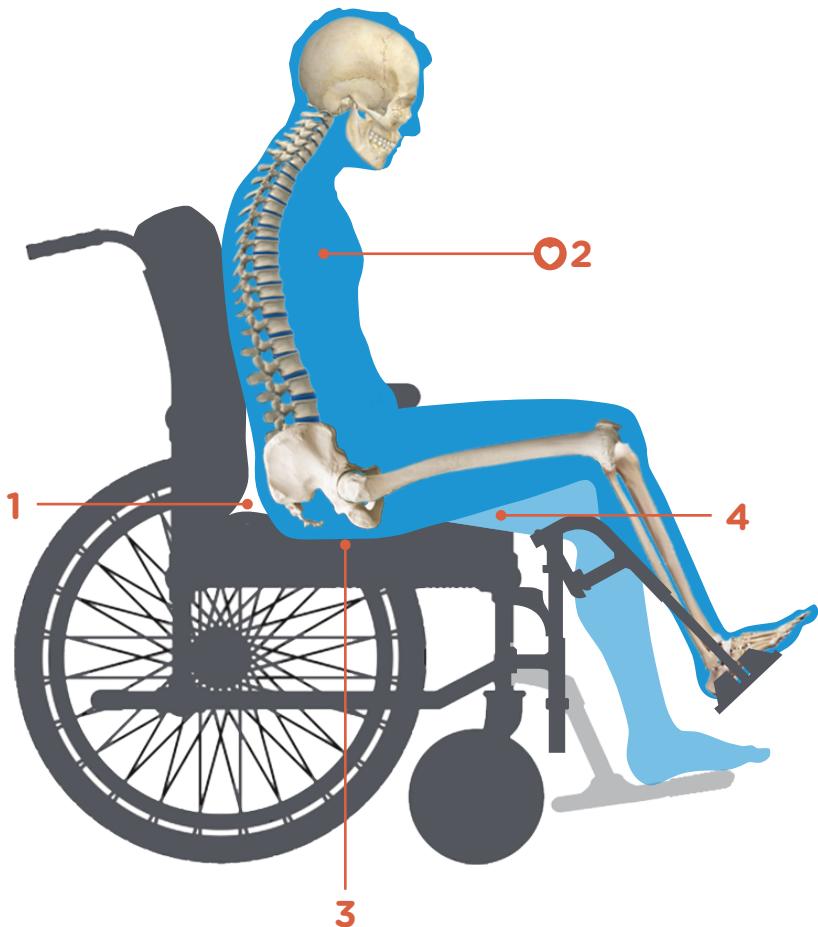
See page 54 for visual

### 1 ELRs keep hips back in chair: Wrong!

- ELRs do just the opposite!
- When we elevate the legs, we pull on the already tightened hamstrings of the resident.
- The shortened hamstrings cause a greater pull on the pelvis, bringing the pelvis into a posterior pelvic tilt.
- The posterior pelvic tilt makes the pelvis slide forward, resulting in sacral sitting.
- The resident begins to slide forward out of the chair, the exact opposite of keeping the hips back in the chair!

## 2 ELRs decrease edema: Wrong!

- Contrary to popular belief ELRs on K0001-K0004 MWCs—the type typically seen in a nursing home—unfortunately CANNOT reduce edema.
- In order to decrease edema, the legs must be 30 cm above heart level. The only way to achieve that degree of elevation with an ELR is when used in combination with tilt and recline, often seen in power chairs.
- ELRs on a manual chair can actually decrease optimal circulation by cutting off blood flow at the groin area and inhibiting flow to the lower extremities.


## 3 ELRs decrease pressure on the pelvis: Wrong!

- ELRs actually position the pelvis in a posterior pelvic tilt.
- The forced posterior pelvic tilt increases pressure on the bony prominences of the ITs, sacrum, and coccyx.
- Wound development risk is increased in those areas.
- Elevating the legrest promotes knee flexion, leading to decreased femoral contact, shifting the pressure back onto the ITs and sacrum/coccyx.

## 4 ELRs help with LE alignment: Wrong!

- ELRs prevent full femoral contact with the seat surface.
- Since less of the leg is making contact with the seat surface, it is easier for the leg to internally/externally rotate or abduct/adduct.
- Legs then fall off legrests more easily.
- Windswept posture is more prevalent.
- ELRs promote flexion of knees, hips, and ankles, increasing risk of contractures at those joints.

## RIGHT LATERAL VIEW - WHAT IS REALLY HAPPENING WHEN USING AN ELR



\* AVOID the use of ELRs as much as possible for optimal positioning in a wheelchair.

# ACCESSORIES



## WHEN WOULD I NEED TO ADD ACCESSORIES?

 As in most things, LESS is MORE and this is certainly true in wheelchair positioning. If you take your time in selecting the right model and size wheelchair and then select an appropriate cushion and back support, accessories may not be needed. Too often accessories are used as “band-aids” to a less than optimal wheelchair and seating system. When used the proper way, they can be the finishing touch to achieve the best posture possible for your resident!

## UPPER EXTREMITY SUPPORTS CAN BE ADDED ONTO THE EXISTING ARMREST TO:

- Add length
- Add additional postural support
- Decrease contracture risk
- Decrease dependent edema in UE
- Increase comfort while sitting in wheelchair

\* **Most of us don't sit with our elbows bent to 90° with the forearm straight out. So why do we position our residents this way, especially when dealing with abnormal tone or decreased range of motion? Choose an upper extremity support that has angle adjustability!!**

## **TYPES OF UPPER EXTREMITY SUPPORTS:**

You can choose a basic non-adjustable support or you can choose a pad style and hardware style to suit the needs of your resident.



### **HARDWARE TYPES**

- Slide On: Pad will be aligned with existing armrest
- Bolt On: Pad will be aligned with existing armrest
- Swing-Away: Pad can move towards or away from body as needed
- Articulating: Pad can be positioned in any plane, most adjustable option

### **PAD TYPES**

- Standard trough that keeps arm from sliding off the pad in any direction
- Minimal contour for low profile support
- Moldable option at the wrist for extension of wrist and finger abduction

## LOWER EXTREMITY SUPPORTS

Added to a chair:

- Support the lower leg, foot, and ankle in optimal position
- Decrease risk of contracture
- Accommodate for contractures and protect from injury
- Manage abnormal tone and reflexes
- Support an amputated limb
- Support a limb post surgery on legrest

### TYPES OF LE SUPPORTS:

- Single Foot Support
- Double Foot Support
- Double Foot Support with Separator
- Calf Pads
- External Fixator Support
- Amputee Support

**\* Don't forget that quality leg supports have a range of sizes or can be customized. Consider where you want the support and measure to ensure you get the right fit.**

**\* An external fixator support provides great stability and support for a LE post hip/knee surgery, or when a LE immobilizer is in use!**

## LATERAL TRUNK SUPPORTS

- Prevent lateral leaning due to decreased trunk strength and balance
- Correct or accommodate for a scoliosis or trunk rotation and prevent further progression of the postural abnormality
- Decrease pressure points on the apex of the curvature that could possibly lead to skin breakdown and cause pain to the resident

### TYPES OF LATERAL SUPPORTS:

- Mounted swing-away or fixed lateral supports
- Traditional foam lateral supports

**\* If your resident has tone and/or is a heavy leaner, choose mounted lateral trunk supports. Traditional foam supports cannot withstand the sustained pressure and the foam will collapse.**

# CONCLUSION

\* Remember there is NO cookbook solution to wheelchair seating and positioning. Use your clinical reasoning skills to figure out what's best within the parameters you are given.



Keep the following goals in mind and do the best you can!

- **Maximize resident comfort**
- **Minimize pain**
- **Correct deformity when possible**
- **Prevent further deformity**
- **Prevent Wounds**

Please refer to *Comfort Company's LTC Product Selection Guide* to see our top picks for seating and positioning products!

## REFERENCES

Rader, J., Jones, D., & Miller, L.L. (1997). Individualized wheelchair seating: Part I A guide for caregivers. Mt. Angel, OR: Benedictine Institute for Long Term Care.

Jones, D., Rader, J., & Miller, L.L. (1997). Individualized wheelchair seating for older adults: Part II A guide for professionals. Mt. Angel, OR: Benedictine Institute for Long Term Care.

Rader, J., Jones, D., & Miller, L. (2000). The importance of individualized wheelchair seating for frail older adults. *Journal of Gerontological Nursing* 26(11), 24-32.

"Adult Wheelchairs Categorized and Explained - Northwest Pompano." Active Mobility Center, 10 May 2015. Web. 19 July 2016. <http://nearsay.com/c/44448/33117/adult-wheelchairs-categorized-and-explained>

Dicianno, Brad E., Juliana Arva, Jenny M. Lieberman, Mark R. Schmeler, Ana Souza, Kevin Phillips, Michelle Lange, Rosemarie Cooper, Kim Davis, and Kendra L. Betz. "RESNA Position on the Application of Tilt, Recline, and Elevating Legrests for Wheelchairs." *Assistive Technology* 21 (2009): 13-22. RESNA.org. RESNA, 25 Feb. 2015. Web. 21 July 2016. [http://www.resna.org/sites/default/files/legacy/resources/position-papers/RESNA%20PP%20on%20Tilt%20Recline\\_2015.pdf](http://www.resna.org/sites/default/files/legacy/resources/position-papers/RESNA%20PP%20on%20Tilt%20Recline_2015.pdf)

# GLOSSARY



**ELR:** Elevating Legrest

**STFH:** Seat-to-Floor Height

**MWC:** Manual Wheelchair

**IT:** Ischial Tuberosity

**PSIS:** Posterior Superior Iliac Spine

**ASIS:** Anterior Superior Iliac Spine

**LE:** Lower Extremity

**UE:** Upper Extremity

**ROM:** Range of Motion

**ADLs:** Activities of Daily Living

**PPT:** Posterior Pelvic Tilt

## REFERENCES CONT.

Cole, Elizabeth. "Causes and Prevention Skin Breakdown." US Rehab Seating and Mobility Master Program. 2016 Lecture.

Cole, Elizabeth. "The Biomechanics of Seating." US Rehab Seating and Mobility Master Program. 2016 Lecture.

Cole, Elizabeth. "Matching the Evaluation Results to Seating Interventions Part 1, 2, 3." US Rehab Seating and Mobility Master Program. 2016 Lecture.

Cole, Elizabeth. "How to Measure for Seating and Positioning Products." US Rehab Seating and Mobility Master Program. 2016 Lecture.

Mounic, Gerard, OTD,OTR/L,C/NDT,COS-C. "Evaluation and Seating Strategies with Regulatory Guidelines, Wheelchair Seating and Positioning Improving Functional Mobility and Patient ADLs." Summit Professional Education Continuing Education Course. North Carolina, Asheville. 2014 Lecture.

VGM Course Anatomy and Physiology. US Rehab Seating and Mobility Master Program. 2016 Lecture. [https://univ.vgmu.com/opcv/pages/course/run\\_course.jsp?id=282740](https://univ.vgmu.com/opcv/pages/course/run_course.jsp?id=282740)



**[www.comfortcompany.com](http://www.comfortcompany.com)**  
**[ltcsales@comfortcompany.com](mailto:ltcsales@comfortcompany.com)**