
T R A N S F O R M I N G
C O B O L I N T O C #

WHITE PAPER

© A s t a d i a

Notice

Astadia makes no warranty that the content of this document is timely or complete; or is free
of omissions, inaccuracies, typographical errors, or other errors. All contents of this document,
including but not limited to the text and images contained therein, are made available on an
"as is" basis without any warranty, express or implied, of any kind, including the implied
warranties of merchantability, title, non-infringement, quality, or fitness for any particular
purpose.

Certain sections of this document may contain forward-looking statements that are based on
product management’s expectations, estimates, projections and assumptions. Words like
“plans,” “intends,” “expects,” “believes,” “future,” “estimates” and variations of these words
and similar expressions are intended to identify forward-looking statements. These statements
are not guarantees of future performance and involve certain risks and uncertainties, which
are difficult to predict. Therefore, actual future results and trends may differ materially from
what is forecast in forward-looking statements due to a variety of factors.

Trademarks

TestMatch, DataMatch, CodeTurn, DataTurn, and CobolBridge are trademarks of Astadia.
These trademarks may not be used without the permission of Astadia. The absence of a
product, company, or service name or logo from this list does not constitute a waiver of the
trademark or other intellectual property rights of Astadia concerning that name or logo.

Other trademarks that appear in this document are used for identification purposes only and
are the property of their respective owners. These marks may not be used without permission
from these owners.

Page 2/11

Transforming COBOL into C#

CONTENTS

Why migrate from COBOL to C#?

Reasons to go to C# .

Approaches: Replacement, Rewrite or Automated Migration

COBOL to C#: Architecting a Migration

Keys to a Successful Migration .

Key Traits of a Professional Software Conversion Tool

Flexible Migration Tools . .

Rationale .

Intelligent Conversion .

Procedural vs. Object-Oriented Paradigm

Page 3/11

1.

1.1.

1.2.

2.

2.1.

2.2.

2.3.

2.3.1.

2.3.2.

2.3.3.

5

5

6

7

7

8

9

9

10

10

How can businesses move safely and cost-
effectively from COBOL to C#? This document
explains the migration through automated code
transformation, a mature approach being
perfected by Astadia as an answer to this
question.

The white paper explores key business drivers
for making the step from COBOL to C# and how
Astadia's tools make this transition possible. It
will explain the added value that the Astadia
migration offers over other approaches and
demystify the migration process with a step-by-
step look at the way COBOL can be transformed
into working, maintainable C# code.

Automated Application Modernization

TRANSFORMING COBOL INTO C#

Page 4/11

Support fees are negligible (or even non-existing
depending on the choices made) when compared
to COBOL.
C# is one of the most widely-used programming
languages today[1] and it is the language of
choice for instruction in the IT programs of many
schools.
Documentation of the language, software
libraries, and development tools are also
available free of charge.
C# and .NET are actively being developed by
Microsoft and the product and its
documentation are publicly available on the
Internet (earlier versions were also official
ISO/IEC and ECMA[2] standards).
Interoperability with all Microsoft platforms and
technologies is a given and portability to other
platforms is being actively developed by
Microsoft in the form of .NET Core[3]; the
Mono[4] project also provides cross-platform
capabilities.

C# offers answers to all of the above concerns:

High (and continuously increasing)
maintenance and runtime fees for the existing
COBOL products
Shrinking availability of COBOL developers and
lack of interest in COBOL from young
developers
End-of-life scenarios for certain COBOL
technologies
Lack of application extensibility and
interoperability with other, non-COBOL
applications

There are many good reasons to make the move
to C# from COBOL, but the following are the
largest concerns for businesses:

WHY TRANSFORM COBOL INTO C#?1.

[1] http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
[2] http://www.ecma-international.org/publications/standards/Ecma-334.htm
[3] https://docs.microsoft.com/en-us/dotnet/articles/core/index
[4] http://www.mono-project.com/

1.1. Reasons to go to C#

Enabling the use of a state-of-the-art IDE in the form of Visual Studio, with extensive debugging,
refactoring, profiling and (unit)testing support
Enabling the use of thousands of third-party libraries, covering almost all imaginable computing
needs: UI‑development, database interaction, mail/ftp/http/… communication, parsing, xml
processing ,…
Enabling the use of modern application architectures (multi-tier, SOA or micro-service based) and
deployment techniques (cloud, docker, …)

Next to that, moving to C#/.NET also means:

#C

Page 5/11

Once the need to move away from COBOL
has been established, the next big question is: how
to turn a large, mature COBOL code base into its
C# equivalent?

Most organizations take one of three
approaches:

Replacement by COTS software is the most cost-
effective solution, but only practical if one can
actually find 3rd party software that offers the
same functionality as the existing COBOL
application.

Rewriting on the other hand too often has led to
huge costs and ultimately to project failures.
According to a research note from Gartner[1]
the cost for rewriting is between $6 and $26 per
Line of Code (LOC), and accomplished at a rate of
160 LOC per day and per developer.

Extrapolated even to a moderate code base of 1M
LOC, it is obvious that these will become very
expensive, lengthy and risky projects.

Astadia advocates automated migration as the only
realistic approach for large legacy COBOL
applications:

It offers speed and continuous improvement
possibilities
A complete code base can be converted in a
couple of hours, meaning that this process can
be repeated as often as needed or wanted.

It offers a very large degree of testability
When keeping the converted application’s
functionality unchanged, the original application’s
behavior can effectively be used as a regression test
(and running this regression test, too, can be
automated).

It offers minimal interruption
Existing developers and IT departments can keep
working on their daily tasks, including the ongoing
maintenance of the COBOL code.

All the above, combined with a vast experience in
executing migration projects, gives Astadia the
confidence to offer projects with fixed duration and
fixed price, equivalent functional behavior
and equivalent performance.

[1] Gartner Research Note "Forecasting the Worldwide IT Services Industry: 1999,1"

1.2. Approaches: Replacement, Rewrite or Automated Migration to C#

Like most IT projects, a migration project is a complex undertaking, one that deserves the right
amount of expertise and dedication. Astadia has developed project and product methodologies
over the past decades to deal successfully with these challenges: we are happy to provide you
with more information and case studies.

Page 6/11

Transforming COBOL into C#

It offers consistency

Since all code is translated by software, there
can be no differences in quality and all existing
functionality is kept as-is.

REPLACE REWRITE MIGRATE

2.1. Keys to a Successful Migration

What are the keys to a successful migration
project? A primary concern in any migration is
how to validate the functional correctness of the
migrated programs. In COBOL to C# migrations,
this can be hard, especially if the COBOL programs
are driving business-critical processes and they are
being adapted to evolving user requirements
while a migration is running at the same time.

Under these circumstances, migrations should
target:

Equivalent program behavior and
performance

For programs to be functionally correct, business
users have to accept them. For large COBOL
applications that are being actively maintained,
users and developers have an existing and well-
tried process to specify changes, develop, test and
bring new releases into production. This familiar
process should not be disturbed by migration
efforts.

An important best practice in migrations is
targeting functional and performance equivalence
with the production release, and avoid whenever
possible the introduction of functional extensions
that don’t exist in the COBOL application.

2. COBOL TO C#: ARCHITECTING A MIGRATION

This section focuses on the underlying design principles that any migration from COBOL to C# should
take into account, and how Astadia has incorporated these in its toolset.

This approach makes it possible to leverage
automated testing tools to reduce project costs,
improve accuracy and move the project forward
faster.

Automated iterative processes

To manage risk, the generally accepted process in
migrations is no different from that of
conventional software engineering: using agile,
iterative processes that can periodically align the
migration project to the latest versions of the
COBOL programs undergoing the migration.
Consistency and speed are also critical to a parallel
iterative process. Using tools to automate the
migration imposes rigorous consistency of
transformation and brings the end goal within
reach of stakeholders.

Developer confidence

There are many differences between COBOL
(a structured, compiled, business-oriented
language) and C# (an object-oriented, managed,
multi-purpose language). COBOL developers that
need to maintain the new C# programs will need
to be confident in their ability to recognize the
business rules and correctly implement and test
the changes they make after the migration is
completed. Meanwhile, new C# developers also
need to feel comfortable with the migrated code
to maintain it like any other regular C# program.

Page 7/11

Transforming COBOL into C#

This will facilitate the recognition of business
entities and rules in C# by the COBOL developer. At
the same time, C# developers with limited
exposure to COBOL should be able to pick up the
programs and be optimally productive in the
shortest possible timeframe. Simple design
principles improve the understandability of the
converted programs also by C# developers. Typical
COBOL constructs that are unknown in C# (like
DECLARATIVES or PERFORM) are transformed into
their closest C#-style equivalents.

Functional Equivalence with COBOL and Full
Support for the Target Platform

The basic requirement of a conversion tool is that
the code it produces is 100% functionally
equivalent (including side effects encountered at
runtime) with the original COBOL code. At the same
time, the code that is produced should enable full
use of the richness of the target .NET platform.

This means some COBOL language syntax will be
replaced with calls to .NET APIs. It also means that
the code should be fully usable in Visual Studio and
support execution in debug mode.

Last but not least, the converted programs must
easily be integrated with newly written C# (and to a
wider extend: .NET) programs and vice versa,
hereby ensuring a solid basis for continuous
improvement and further modernization.

2.2. Key Traits of a Professional Software Conversion Tool

Customization and Consistency

Anyone who has written software in a
team before knows any program can be written in
a variety of ways. A professional software
conversion tool will provide the means to apply
customization options that suit the requirements
of the customer. These options can be simple
things, like naming conventions and the
formatting of comments, or they can be more
sophisticated, like the extent to which the tool will
optimize structural patterns in the COBOL code.

At the same time, the tool should make
it possible to manage such a configuration of
customization options for a consistent application
in an iterative process. These management
facilities should also include the configuration of
other aspects of the migration like the translation
of scripts, screens, or databases.

Maintainability by COBOL and C# Developers

Consistent translation improves the
maintainability of the generated C#, but for the
C# code to be easy to work with for the original
COBOL developers, it also needs to be based
around simple design principles.

This means the tool should generate code that
allows as much as possible a 1:1 relationship
between the number of lines of COBOL code and
the number of lines of C#, and reuse (wherever it
is syntactically allowed) the names of identifiers
appearing in code.

The key hallmarks of a professional language translation tool are the way it can strike a balance
between three spectra of interest. Astadia's COBOL-to-C# conversion toolset offers a solution
to each of these areas:

Page 8/11

Transforming COBOL into C#

2.3.1. Rationale
For transformations from one programming
language to another, Astadia has built a set of tools
collectively called CodeTurn. These tools share one
important consideration: each customer is
different, and each migration is different. Every
organization has its own development and design
standards, patterns and frameworks. Some prefer
all data access in a separate layer, others choose
for embedded data access.

When migrating from COBOL to C#, some
organizations prefer to keep the resulting code
relatively close to the original COBOL, for reasons
of readability and maintainability by the existing
developers. Other organizations will choose a more
radical approach and prefer code that uses more
Object-Oriented design patterns. In order to be
able to accommodate these considerations,
standards and frameworks the Astadia tools can be
parameterized and customized for each project.

Parsers that support all COBOL dialect syntax,
and also embedded languages (e.g. EXEC CICS or
EXEC SQL) Resolvers that link together the AST[1]
that is produced by the parsers with control-flow
and data-usage information

Conversion rules for all COBOL syntax, from
single statements to complex patterns of code,
as part of the COBOL to OO Converter

Code generators for Java, C#, and various COBOL
dialects enabling any desired coding style

To address the stringent requirements listed above,
Astadia has chosen a modular approach to building a
migration toolset for all of its supported source
technologies (COBOL, IDMS, Natural, …).

For language to language transformations, such as
from COBOL to OO, the architectural overview of the
internals of CodeTurn looks like this:

2.3. Flexible Tools

Transforming COBOL into C#

IDMS/ADS Converter

Natural Programs,
Subprograms,
Data areas...

COBOL Programs &
Copybooks

ADS/A Application
Definitions,

ADS/A Dialogs &
Responses

Natural
Parser

Natural
Resolver

Natural
Conversion

Rules Engine

COBOL
Parser

COBOL
Resolver

ADS
Parser

ADS
Resolver

Java
Generator

C#
Generator

COBOL
Generator

Java ClassesCOBOL
Conversion

Rules Engine

IDMS / ADS
Conversion

Rules Engine

C# Classes

COBOL Programs &
Copybooks

MicroFocus,
NetCOBOL
COBOL IT

Natural Converter

COBOL Converter

Code Generators

Assembler Converter

Assembler
Programs,

Subprograms,
Data areas...

Assembler
Parser

Assembler
Resolver

Assembler
Conversion

Rules Engine

2.3.2. Intelligent Transformation

To keep up with the design principle of a fully
automated migration, transformation rules have
been implemented in the COBOL to OO
Tranformation module to cover all possible edge
cases. From time to time this could lead to
relatively complicated OO code. Therefore, the
conversion tools also recognize coding patterns (by
static code analysis) that indicate where simpler,
more elegant code can be generated while still
staying 100% functionally equivalent to the COBOL
original.

A good example of this is the conversion of the
COBOL GO TO statement. In its most general use a
GO TO statement can implement a complex state-
machine and translating this to C# leads again to a
state-machine: the conversion engine has a
baseline rule that produces this state-machine
code. Oftentimes however, a GO TO is simply used
as an early exit point (e.g. GO TO exit-paragraph), or
as a way to avoid a certain block of code, or even to
emulate a loop. In these circumstances, much more
elegant code is generated as can be seen further
down this document.

In a typical project, more than 95% of all GO TO
statements are automatically converted to a more
structured equivalent.

Static code analysis limits the optimization of the
transformed code that can be done by CodeTurn.
Application architects can however help to
understand additional restrictions and coding
patterns that exist, and based on this understanding,
new conversion rules can be implemented. Good
examples of where this is likely to help are again the
use of GO TO, but also the use of code copybooks
and ENTRY statements are typical candidates for
such optimization.

2.3.2. Procedural vs. Object-Oriented Paradigm

Another example of the importance of flexible tools
lies in the preference of some developers for
Procedural-Style code, while others prefer to take
maximum advantage of OO-concepts.

Astadia offers both variations, as can be seen in the
following short COBOL code snippet:

Natural
Parser

Natural
Resolver

COBOL

Procedural-Style C#

OO-Style C# 1

SELECT DATFILE ASSIGN TO "test.dat"

* ...
 OPEN OUTPUT DATFILE
 ACCEPT W-TIME FROM TIME
 MOVE SS OF W-TIME
 TO BREAK-VAL
 WRITE DAT-REC

Cobol.Open(datfile, "test.dat", FileOpenMode.Output);
Cobol.acceptTime(wTime);
Cobol.move(wTime.ss, datfile.datrec.breakVal);
Cobol.write(datfile);

datfile.Open("test.dat", FileOpenMode.Output);
wTime.SetValue(Cobol.GetTimeAsString());
datfile.Datrec.BreakVal.SetValue(wTime.ss);
datfile.Write();

Page 10/11

Transforming COBOL into C#

OO-Style C# 2
datfile.Open("test.dat", FileOpenMode.Output);
wTime.Value =
(AlphanumericLiteral)Cobol.GetTimeAsString();
datfile.Datrec.BreakVal.Value = wTime.ss;
datfile.Write();

Page 11/11

Transforming COBOL into C#

datfile, wTime and breakVal are true C# objects in the OO-Style: they represent a specific portion of
data and they offer the methods to set, get and manipulate this data.
In the Procedural-Style, the order of the operands is more like in the original COBOL code, leading to an
even stronger visual link between original COBOL code and migrated C# code.
Both the Procedural and the OO style sometimes require different operands: in the last lines the file
object datfile is used to as argument, respectively target of the write method, while in COBOL the
WRITEstatement works on the record DAT-REC.
The OO-Style can take advantage of C# properties for setting the value of a field.

Notes:

For more information

Astadia
info@astadia.com

www.astadia.com
+1 877-727-8234

