

TUTORIAL IGBT Level-2 Model

October 2017

PSIM

The IGBT level-2 model takes into account the IGBT turn-on and turn-off transients. It provides a quick way of studying IGBT's transient behaviour.

This tutorial describes how to use the IGBT level-2 model.

Parameters needed by the model are:

Maximum Vce	Maximum rating of the collector-emitter voltage V_{ces} , in V
Maximum Vec	Maximum rating of the emitter-collector voltage V_{ecs} , in V. If IGBT has an anti-parallel diode, this voltage will be the diode forward conduction threshold voltage.
Gate Threshold Voltage	Gate threshold voltage $V_{ge_{th}}$, in V
Transconductance	Transconductance g _{fs} of the IGBT, in S
Fall Time	Fall time T _{fall} of the current when IGBT is turned off, in sec.
Capacitance C _{ies}	Input capacitance C _{ies} , in F
Capacitance Coes	Output capacitance Coes, in F
Capacitance C _{res}	Reverse transfer capacitance C _{res} , in F
R _{ce_on}	Collector-emitter on resistance R _{ce_on} , in Ohm
V _{ce_threshold}	Collector-emitter threshold voltage $V_{ce_{th}}$, in V
Internal Gate Resistance	Internal gate resistance R _{gate} , in Ohm

To illustrate the process of obtaining the model parameters, this tutorial uses the IXYS IGBT IXXH110N65C4 (650V, 110A) as an example. This device does not have an anti-parallel diode.

Parameters V_{ces}, V_{ge th}, g_{fs}, T_{fall}, C_{ies}, C_{res}, C_{oes}:

These parameters can be read directly from the manufacturer datasheet, as highlighted in the red boxes on the datasheet images below.

From the datasheet, we have:

 $V_{ces} = 650$ $V_{ge_{th}} = 6$ $g_{fs} = 52$ $T_{fall} = 35n$ $C_{ies} = 5500p$ $C_{oes} = 267p$ $C_{res} = 80p$

XPT™ 650V IGBT GenX4™ Extreme Light Punch Through IGBT for 20-60 kHz Switching		XH1	10N6 8	5C4	C E	$V_{CES} = 650V$ $I_{C110} = 110A$ $V_{CE(sat)} \le 2.35V$ $t_{fi(typ)} = 35ns$				
Symbol	Test Conditions	Maximum Ratings								
V	T, = 25°C to 175°C	650 V			V	TO-247 AD				
V _{CGR}	$T_{\rm J}$ = 25°C to 175°C, $R_{\rm GE}$ = 1M Ω		650		V	OT				
V _{GES}	Continuous		<u>+</u> 20		v					
V _{GEM}	Transient		±30		V	G				
C25	$T_c = 25^{\circ}G$ (Chip Capability)		235		Α	C E Tab				
LRMS	Terminal Gurrent Limit		160		A					
"C110	$T_c = 25^{\circ}$ G, 1ms		600		A	G = Gate C = Collector				
SSOA	V _{ce} = 15V, T _{vi} = 150°C, R _c = 2Ω		l _{cu} = 220		Α	E = Emitter Tab = Collector				
(RBSOA)	Clamped Inductive Load	@\	V _{CE} ≤V _{CES}							
t _{se}	V _{GE} = 15V, V _{CE} = 360V, T _J = 150°C		10		μs	-				
(SCSOA)	$R_{g} = 10\Omega$, Non Repetitive					Features				
Pc	T _c = 25°G		880		w	 Optimized for 20-60kHz Switching 				
T,		-5	5 +175		°C	Square RBSOA				
T _{JM}			175		°C	 Avalanche Gapability Short Circuit Capability 				
T _{stg}		-5	5 +175		°C	 International Standard Package 				
T _L	Maximum Lead Temperature for Soldering		300 °C							
T _{SOLD}	1.6 mm (0.062in.) from Gase for 10s		260		°C	Advantages				
M _d	Mounting Torque		1.13/10 Nm/lb.in			Autumuges				
Weight			6		g	High Power Density				
						Fxtremely Rugged				
						Low Gate Drive Requirement				
Symbol	Test Conditions	Chara	cteristic	Values						
$(1_j = 25^{\circ}G,$	oniess Otherwise Specified)	win.	iyp.	wax.		Applications				
BV _{CES}	$I_{\rm C} = 250\mu A, V_{\rm GE} = 0V$	650			V	• UD0				
V _{GE(th)}	$I_{c} = 4mA, V_{CE} = V_{GE}$	4.0		6.5	V	OPS Motor Drives				
CES	$V_{CE} = V_{CES}, V_{GE} = 0V$			10	μA	• SMPS				
	I _J = 150°G			500	μΑ	PFG Gircuits				
IGES	$V_{CE} = 0V, V_{GE} = \pm 20V$			±100	nA	 Battery Chargers Welding Machines 				
V _{CE(sat)}	$I_{c} = 110A, V_{GE} = 15V, Note 1$		2.06	2.35	V	Lamp Ballasts				
	1 ¹ = 190.0		2.00		V	• High Frequency Power Inverters				

PSIM

IGBT Level-2 Model

Symbol Test Conditions (T _J = 25°G Unless Otherwise Specified)		Charac	Characteristic Values								
		Min.	Тур.	Max.							
g _{fs} I _C = 60A, V _{CE}	= 10V, Note 1	30	52	S]	1.4		<u> </u>	17		
C _{ies}			5500	pF			₽�₹	ŤŤ	IFI		
C _{oes}	_{se} = 0V, f = 1MHz		267	pF		Ì.	I, I, I	∽l⊘ P			
C _{res})			80	pF		1 4			ΠĽ.		
Q _{g(on)}			167	nG		ĻŤ					
Q_{ge} $I_c = 110A, V_g$	_e = 15V, V _{ce} = 0.5 • V _{ce}	s	44	nC		1					
o _e)			63	nG		b1-	┛╟┽║╽	,	┉┥╞╷	с	
t d(on)			30	ns		b-	┉╝				
nductive loa	ad, T _J = 25°C		45	ns	т	erminals:	1 - Gate	2 - Col	lector		
E _{on} I _c = 55A, V _{GE}	= 15V		2.50	mJ			3 - Emitter				
t _{d(off)} V _{CE} = 400V, F	$R_{g} = 2\Omega$		110	ns	_	Dim.	Millimeter Min. Max.	Min.	Max.		
t _{fi} Note 2			35	ns		A	4.7 5.3	.185	.209		
E _{off} J			0.63	1.05 mJ		A ₁ A ₂	2.2 2.54 2.2 2.6	.087	.098		
d(on)	1.7. 4700		26	ns		b	1.0 1.4	.040	.055		
	ad, $I_{\rm J} = 150^{\circ} {\rm C}$		45	ns		b ₂ 2	2.87 3.12	.113	.123		
$I_{\rm C} = 55A, V_{\rm GE}$	= 10V		3.55	mJ		C D 20	.4 .8 0.80 21.46	.016	.031		
$d_{(off)}$ $V_{CE} = 400V, F$	n _G = 288		120	ns		E 1	5.75 16.26	.610	.640		
Note 2			40	ns		e : L 19	5.20 5.72 9.81 20.32	0.205	0.225		
Foff /			0.90	mJ		L1	4.50		.177		
R _{thuc}				0.17 °C/W		Q S	3.55 3.65 5.89 6.40	.140	.144 0.252		
H _{thCS}			0.21	°G/W		R 4	4.32 5.49	.170	.216		

Parameter V_{ecs}:

This parameter is not provided in the datasheet. We will use a typical value of 15V in this case.

If there is an anti-parallel diode, this parameter will be the diode forward conduction threshold voltage.

Parameters Rce on and Vce th:

These two parameters can be obtained from the Ic-Vce characteristics, as shown below.

The parameter R_{ce_on} represents the slope of Vce vs. Ic, and the parameter V_{ce_th} is the voltage when Ic = 0.

We will use the curve corresponding to Vce = 15V. From the graph, we can obtain the following:

 $V_{ce_th} = 1.2 V$

Also, based on two points from the graph, we can calculate the resistance. From the graph, we have:

Then

 $R_{ce_on} = (2.75 - 2) / (200 - 100) = 7.5 \text{ mOhm}$

Note that the graph used here is for Tj = 25° C. To better match the circuit, the values of R_{ce_on} and V_{ce_th} may need to be adjusted for the actual operating temperature Tj.

Parameter R_{gate}:

The internal gate resistance is typically not given in a datasheet.

If the curve of the turn-on delay time t_{d_on} vs. the gate resistance R_G is given (such as in this case), the internal gate resistance can be calculated approximately from the curve. If the curve is not given, one can set up a test circuit with the same test condition as in the datasheet, and adjust the internal gate resistance until the simulation result of the turn-on time or turn-off time is close to the datasheet result.

From the datasheet, we have the switching times vs. the gate resistance as below:

The total gate resistance $R_{g_{total}}$ is equal to the external gate resistance R_{G} plus the internal gate resistance R_{gate} . If the turn-on delay time is doubled, we can assume that the total resistance is doubled. From the graph, we have:

PSIM

IGBT Level-2 Model

 $t_{d_on,1}$ = 26n, $R_{G,1}$ = 2 $t_{d_on,2}$ = 52n, $R_{G,2}$ = 12

We have:

 $R_{G,2} + R_{gate} = 2 * (R_{G,1} + R_{gate})$

Or

 $R_{gate} = R_{G,2} - 2 * R_{G,1} = 12 - 2*2 = 8$

For better fit of the rise time, an internal gate resistance of 5 Ohm is used.

In general, model parameters may need to be adjusted to have a better match to the datasheet results or experimental results.

