

(1/22)
©silex technology,Inc. CONFIDENTIAL

Title: SX UVL Client SDK for Win32

Drawing Type: API Specifications

Drawing No.: SC02790XH

Date: August 01, 2016

Drawing No: SC02790XH

Date: August 01, 2016

(2/22)

Delivery / Revision History

©silex technology,Inc.

CONFIDENTIAL

Rev Description Date

XX First edition Jul.13, 2005

XA Second edition

Modified clerical errors

Sep.8, 2005

XB Third edition

Added API

Jan.17, 2007

XC Fourth edition

Added API

Sep.30,2009

XD Fifth edition

Modified SXUSBDEVICE structure

Nov.12,2010

XE Sixth edition

Added support OS

Apr.12,2013i

XF Seventh edition

Added support OS

Added API

Mar. 19,2014

XG Eighth edition

Added support OS

Jul. 21, 2015

XH Nine edition

Added API

Aug.01,2016

Drawing No: SC02790XH

Date: August 01, 2016

(3/22)

Contents

©silex technology,Inc.

CONFIDENTIAL

1. Overview ... 4

2. Specification ... 4

2.1. Operating Environment ... 4

3. Device server communication API specifications .. 5

3.1. Device server search process ... 5

3.2. USB device list obtaining process ... 6

3.3. Device connection process .. 8

3.4. Enhanced device connection process ... 8

3.5. Enhanced device connection process ... 9

3.6. Device disconnection process ... 10

3.7. Enhanced device disconnection process .. 10

3.8. Status receiving process... 11

3.9. Device server information acquisition process ... 12

3.10. Device Server search rule number setup process .. 12

3.11. Device server reboot process .. 13

3.12. System status retrieval process .. 13

4. Disconnect request API ... 14

4.1. Initialization process for disconnect request API .. 14

4.2. Disconnect request API termination process ... 15

4.3. Receipt process for disconnect request ... 15

4.4. Approval process for disconnect process ... 16

4.5. Denial process for disconnect request ... 16

4.6. Completion notice of disconnect process ... 16

4.7. Disconnect request process .. 16

4.8. Transmission process of disconnect request ... 17

4.9. Cancel process for disconnect request .. 17

4.10. Handle closing process for disconnect request ... 18

4.11. SRU_NOTIFY message .. 19

4.12. Disconnect request message .. 20

5. Device driver API ... 21

5.1. Instance ID retrieval process .. 21

5.2. Instance ID release process ... 22

Drawing No: SC02790XH

Date: August 01, 2016

(4/22)
©silex technology,Inc.

CONFIDENTIAL

1. Overview

This document describes how to use the DLL developed to allow control of the basic

functions of SX Virtual Link (excluding GUI) by a user application. SX Virtual Link is the

utility used to manage silex device servers.

2. Specification

2.1. Operating Environment

Item Description

OS Microsoft Windows 2000

Microsoft Windows XP (32bit / 64bit)

Microsoft Windows Vista (32bit / 64bit)

Microsoft Windows 7 (32bit / 64bit)

Microsoft Windows 8 (32bit / 64bit)*

Microsoft Windows 8.1 (32bit / 64bit)*

Microsoft Windows 10 (32bit / 64bit)*

* Classic desktop applications are supported while Modern UI

applications are not supported.

* Windows RT is not supported.

Compiler Microsoft Visual C++ 6.0 SP6

Microsoft Visual Studio 2005

Microsoft Visual Studio 2008

Microsoft Visual Studio 2010

Microsoft Visual Studio 2012

Microsoft Visual Studio 2013

Drawing No: SC02790XH

Date: August 01, 2016

(5/22)
©silex technology,Inc.

CONFIDENTIAL

3. Device server communication API specifications

3.1. Device server search process

SxuptpEnumDeviceServers

SxuptpEnumDeviceServers searches the specified broadcast address and lists the device

servers on the network.

BOOL SxuptpEnumDeviceServers(

LPDWORD lpdwBroadcasts, /* Array address of broadcast address*/

DWORD dwCount, /* Number of broadcast addresses */

LPVOID lpbServers, /* Array address of the structure */

DWORD cbBuf, /* Number of bytes of array */

LPDWORD lpdwReaded, /* Parameter’s address to which the number of byte copied

will be returned*/

LPDWORD lpdwReturned /* Parameter’s address to which the number of structure

copied will be returned*/

);

Parameter Description

lpdwBroadcasts Pointer for broadcast address array. Specify the broadcast address

to search for the device server. Multiple broadcast addresses can be

specified as array of DWORD value. When NULL is specified,

device server in local address (255.255.255.255) will be searched.

dwCount Specifies the number of broadcast addresses designated at

lpdwBroadcasts. When NULL is set at lpdwBroadcasts, this

parameter will be ignored.

lpbServers Pointer indicating the SXPSERVER structure array. It receives the

device server search result.

cbBuf Specifies the size, by byte, of array pointed by lpbServers.

lpdwReaded Indicates the number of byte copied to lpbServers.

lpdwReturned Pointer indicating the parameter to which the number of device

server searched is returned.

Return value

TRUE is returned when the function is successfully completed or else FALSE is returned.

Note

SXPSERVER structure

typedef struct _SXPSERVER {

BYTE bNodeaddr[6]; /* Ethernet address */

DWORD dwIp; /* IP address */

char szMachineType[16]; /* Device server model name */

char szHostName[16]; /* Host name */

} SXPSERVER, *LPSXPSERVER;

Drawing No: SC02790XH

Date: August 01, 2016

(6/22)
©silex technology,Inc.

CONFIDENTIAL

3.2. USB device list obtaining process

SxuptpEnumDevices

SxuptpEnumDevices lists the USB devices connected to the specified device server.

BOOL SxuptpEnumDevices (

DWORD dwIpaddr, /* Device server IP address*/

LPVOID lpbDevices, /* Array address of the structure */

DWORD cbBuf, /* Number of bytes of array */

LPDWORD lpdwReaded, /* Parameter address to which the number of byte

copied will be returned */

LPDWORD lpdwReturned /* Parameter address to which the number of structure

copied will be returned */

);

Parameter Description

dwIpaddr Specify IP address of the device server of which the USB device will

be listed.

lpbDevices Pointer indicating the array of SXUSBDEVICE structure. It

receives the USB device list.

cbBuf Specifies the size, by byte, of array pointed by lpbDevices.

lpdwReaded Indicates the number of byte copied to lpbDevices.

lpdwReturned Pointer indicating the parameter to which the number of USB

devices listed is returned.

Return value

TRUE is returned when the function is successfully completed or else FALSE is returned.

Drawing No: SC02790XH

Date: August 01, 2016

(7/22)
©silex technology,Inc.

CONFIDENTIAL

Note

SXUSBDEVICE structure

typedef struct _SXUSBDEVICE {

char szPortName[32]; /* USB logical port name */

char szDeviceName[64]; /* Device Name */

DWORD dwIpPc; /* IP address of connected PC */

WORD wStatus; /* Status information */

WORD wVid; /* Device VID */

WORD wPid; /* Device PID */

char szLocation[16]; /* USB port info which the device is connected to */

WORD wClass; /* USB Interface Class */

} SXUSBDEVICE, *LPSXUSBDEVICE;

Parameter Description

szPortName USB logical port name of the server. This parameter is necessary for

connection and disconnection.

szDeviceName USB device name. Maximum length is 63 characters.

dwIpPc IP address of the PC having sole possession of device. It is displayed

as 0.0.0.0 when no device is connected over SVL.

wStatus Device status is indicated in BIT as below.

0x8000

0x4000 Disconnect OK/NG.

0x2000 Encrypted communication on/off.

0x1000 Device server supporting encrypted communication.

0x0800 Wireless on/off.

0x0400 USB devices supporting isochronous transmission

0x0200 USB error occurred

0x0100

0x0080 Fixed to low.

0x0040 Fixed to high.

0x0020

0x0010 Connect password on/off.

0x0008 Device server supporting connect password.

0x0004 (TBD)

0x0002

0x0001 Device searched/not.

wVid Indicates the VID of USB device.

wPID Indicates the PID of USB device.

szLocation Indicates which port the device is connected to (NULL terminated

string). Character indicating the connection speed

(H:High/F:Full/L:Low) is indicated in the first 1 byte, and it is

followed by host controller device number, root hub port number, and

hub port number. Each number uses the character from 0 to 9 and A

to F. For example when connected to host controller device number 1

+ root hub port number 1 + hub port number 1, this parameter is

“H111”.

wClass Indicates the USB Interface Class of the device.

*The values for USB Interface Class are as defined at USB.org.

Drawing No: SC02790XH

Date: August 01, 2016

(8/22)
©silex technology,Inc.

CONFIDENTIAL

3.3. Device connection process

SxuptpDeviceConnect

SxuptpDeviceConnect will connect the devices connected to the specified device server.

SxuptpDeviceConnect is the function for the old version of device server. Normally, please

use SxuptpDeviceConnectEx.

BOOL SxuptpDeviceConnect(

DWORD dwIpaddr, /* Device server IP address */

LPBYTE lpbNodeaddr, /* Pointer to the variable that Ethernet address is stored

*/

LPSTR lpszPortName, /* USB logical port name */

BOOL bFlags /* Option */

);

Parameter Description

dwIpaddr Specifies device server IP address.

lpbNodeaddr Specifies Ethernet address of the device server for which

connection will be requested.

lpszPortName Specifies USB logical port name for the devices to connect.

bFlags Always specify 0.

Return value

TRUE is returned when the function is successfully completed or else FALSE is returned.

3.4. Enhanced device connection process

SxuptpDeviceConnectEx will connect the devices connected to the specified device server.

BOOL SxuptpDeviceConnectEx(

DWORD dwIpaddr, /* Device server IP address */

LPBYTE lpbNodeaddr, /* Pointer to the variable that Ethernet address is stored

*/

LPSXUSBDEVICE lpDevice, /* USB device information */

BOOL bFlags /* Option */

);

Parameter Description

dwIpaddr Specifies device server IP address.

lpbNodeaddr Specifies Ethernet address of the device server for which

connection will be requested.

lpDevice Specifies the pointer that points to the SWUSBDEVICE structure

of the USB device to be connected.

bFlags Always specify 0.

Return value

TRUE is returned when the function is successfully completed or else FALSE is returned.

Drawing No: SC02790XH

Date: August 01, 2016

(9/22)
©silex technology,Inc.

CONFIDENTIAL

3.5. Enhanced device connection process

SxuptpDeviceConnectEx2

 SxuptpDeviceConnectEx2 will connect the devices connected to the specified device server.

BOOL SxuptpDeviceConnectEx2(

DWORD dwIpaddr, /* Device server IP address */

LPBYTE lpbNodeaddr, /* Pointer to the variable that Ethernet address is stored

*/

LPSXUSBDEVICE lpDevice, /* USB device information */

DWORD dwFlags /* Option flags*/

LPVOID lpbOption /* Option information */

);

Parameter Description

dwIpaddr Specifies device server IP address.

lpbNodeaddr Specifies Ethernet address of the device server for which

connection will be requested.

lpDevice Specifies the pointer that points to the SWUSBDEVICE

structure of the USB device to be connected.

dwFlags Value Content

SVLC_ENCRYPT It encrypts data communication with

the USB device.

SVLC_AUTH Specifies the connect password.

If you connect the USB device

connection password is enabled, you

must specify this flags.

If you use this flag, please specify the

pointer of NULL terminated string that

contains the password string (CHAR

type) to lpbOption.

lpbOption Specifies the additional information in accordance with the

value of dwFlags.

Return value

When the function is successfully completed, status below will be returned:

Value Description

0 USB device is connectable.

1 Network communication error.

2 Encryption error.

Drawing No: SC02790XH

Date: August 01, 2016

(10/22)
©silex technology,Inc.

CONFIDENTIAL

3.6. Device disconnection process

SxuptpDeviceDisconnect

SxuptpDeviceDisconnect will disconnect the devices connected to the specified device server.

SxuptpDeviceDisconnect is the function for the old version of device server. Normally,

please use SxuptpDeviceDisconnectEx.

BOOL SxuptpDeviceDisconnect(

DWORD dwIpaddr, /* Device server IP address */

LPBYTE lpbNodeaddr, /* Pointer to the variable that Ethernet address is stored

*/

LPSTR lpszPortName /* USB logical port name */

);

Parameter Description

dwIpaddr Specifies device server IP address.

lpbNodeaddr Specifies Ethernet address of the device server for which

disconnection will be requested.

lpszPortName Specifies USB logical port name for the devices to disconnect.

Return value

TRUE is returned when the function is successfully completed or else FALSE is returned.

3.7. Enhanced device disconnection process

SxuptpDeviceDisconnectEx

SxuptpDeviceDisconnectEx will disconnect the devices connected to the specified device

server.

BOOL SxuptpDeviceDisconnectEx(

DWORD dwIpaddr, /* Device server IP address */

LPBYTE lpbNodeaddr, /* Pointer to the variable that Ethernet address is stored

*/

LPSXUSBDEVICE lpDevice /* USB device information */

);

Parameter Description

dwIpaddr Specifies device server IP address.

lpbNodeaddr Specifies Ethernet address of the device server for which

disconnection will be requested.

lpDevice Specifies the pointer that points to the SWUSBDEVICE structure

of the USB device to be disconnected.

Return value

TRUE is returned when the function is successfully completed or else FALSE is returned.

Drawing No: SC02790XH

Date: August 01, 2016

(11/22)
©silex technology,Inc.

CONFIDENTIAL

3.8. Status receiving process

SxuptpGetDeviceStatus

SxuptpGetDeviceStatus will acquire status information of USB devices connected to the

specified device server.

DWORD SxuptpGetDeviceStatus(

DWORD dwIpaddr, /* Device server IP address */

LPSTR lpszPortName /* Specifies USB logical port name for a device */

);

Parameter Description

dwIpaddr Specifies device server IP address.

lpszPortName Specifies USB logical port name for a device

Return value

When the function is successfully completed, status below will be returned:

Value Description

0x00000001 USB device is connectable.

0x00000002 USB device is connected to a computer.

0x00000003 USB device is being accessed by other user.

0x00000004 USB device is not detected.

0xFFFFFFFF Network communication error

Drawing No: SC02790XH

Date: August 01, 2016

(12/22)
©silex technology,Inc.

CONFIDENTIAL

3.9. Device server information acquisition process

SxuptpGetDeviceServerInfo

SxuptpGetDeviceServerInfo will acquire information about device server whose IP address

is specified.

BOOL SxuptpGetDeviceServerInfo (

DWORD dwIpaddr, /* Device server IP address */

LPVOID lpbServers, /* Array address of the structure */

DWORD cbBuf /* Number of bytes of array */

);

Parameter Description

dwIpaddr Specifies device server IP address.

lpbServers Pointer indicating the SXPSERVER structure array. It receives

the device server information.

cbBuf Specifies the size, by byte, of array pointed by lpbServers.

Return value

TRUE is returned when the function is successfully completed or else FALSE is returned.

Note

SXPSERVER structure

typedef struct _SXPSERVER {

BYTE bNodeaddr[6]; /* Ethernet address */

DWORD dwIp; /* IP address */

char szMachineType[16]; /* Device server model name */

char szHostName[16]; /* Host name */

} SXPSERVER, *LPSXPSERVER;

3.10. Device Server search rule number setup process

SxuptpSetSrchRuleCookie

SxuptpSetSrchRuleCookie will set the vender the unique check number that is used during

device server search. Only the device server with the same rule number can be searched

with SxuptpEnumDeviceServers.

BOOL SxuptpSetSrchRuleCookie(

WORD wRuleCookie /* Rule number */

);

Parameter Description

wRuleCookie Specifies the rule number.

Return value

TRUE is returned when the function is successfully completed or else FALSE is returned.

Drawing No: SC02790XH

Date: August 01, 2016

(13/22)
©silex technology,Inc.

CONFIDENTIAL

3.11. Device server reboot process

SxuptpRebootDeviceServer

SxuptpRebootDeviceServer performs a remote reboot of the device server.

BOOL SxuptpRebootDeviceServer(

DWORD dwIpaddr, /* Device server IP address */

LPBYTE lpbNodeaddr /* Pointer to variable where Ethernet address is stored */

);

Parameter Meaning

dwIpaddr Specifies the IP address of the device server.

lpbNodeaddr Specifies the Ethernet address of the device server for which a

reboot will be requested.

Return value

TRUE is returned when the function is successfully completed or else FALSE is returned.

3.12. System status retrieval process

SxuptpGetSystemStatus

SxuptpGetSystemStatus retrieves system status information of the specified device servers.

BOOL SxuptpGetSystemStatus(

DWORD dwIpaddr, /* Device server IP address */

LPSTR lpszStatus, /* Pointer to variable where system status is stored */

DWORD cbBuf /* Number of bytes of array */

);

Parameter Meaning

dwIpaddr Specifies the IP address of the device server.

lpszStatus Specifies the pointer of array to store a system status string

retrieved from the device server.

cbBuf Specifies size of array pointed by lpszStatus in byte.

Return value

TRUE is returned when the function is successfully completed or else FALSE is returned.

System status may not be supported depending on model of device servers. In such a case,

the function will fail. Also, system status information will differ on each device server model.

Drawing No: SC02790XH

Date: August 01, 2016

(14/22)
©silex technology,Inc.

CONFIDENTIAL

4. Disconnect request API

To use disconnect request API, call SruInitialize function once within the program. Also, when

completed using the disconnect request API, call SruUninitialize function.

As SruInitialize function is called, the disconnect request becomes ready. The disconnect

request event will be notified to a program by Windows message. Once the message is received,

the program can execute each function of disconnect request by calling APIs appropriate for

the message.

The disconnect request API cannot be called from a worker thread. Please be sure to call it

from a main thread.

4.1. Initialization process for disconnect request API

SruInitialize

SruInitialize performs necessary initialization process to use the disconnect request API.

The applications will need to call SruInitialize function in order to use the disconnect

request API.

BOOL SruInitialize(

HINSTANCE hInst, /* Instance handle */

HWND hParent, /* Window handle to notify disconnect request event */

LPCSTR lpszMyName /* Name to use in communication */

);

Parameter Meaning

hInst Specifies the instance handle of application which uses the

disconnect request API.

hParent Specifies the handle of window to notify Windows message when

disconnect request event occurs.

lpszMyName Specifies the name string to notify to receiver of the disconnect

request when it is sent or replied.

For lpszMyName, up to 64 byte (including NULL) can be specified.

Return value

TRUE is returned when the function is successfully completed or else FALSE is returned.

Drawing No: SC02790XH

Date: August 01, 2016

(15/22)
©silex technology,Inc.

CONFIDENTIAL

4.2. Disconnect request API termination process

SruUninitialize

SruUninitialize performs termination process for disconnect request API. The application

needs to call the SruUninitialize function to terminate use of the disconnect request API.

BOOL SruUninitialize(

HINSTANCE hInst /* Instance handle */

);

Parameter Meaning

hInst Specifies the instance handle of application which has been

specified when SruInitialize function was called.

Return value

TRUE is returned when the function is successfully completed or else FALSE is returned.

4.3. Receipt process for disconnect request

SruSendReply

SruSendReply notifies receipt of the disconnect request to the sender.

BOOL SruSendReply(

WORD wAutoDisconnect, /* Auto disconnect approval flag */

DWORD dwTimeout /* Auto disconnect timeout value */

);

Parameter Meaning

wAutoDisconnect Specifies whether to allow auto disconnect.

Set 1 to allow and 0 to deny it.

dwTimeout Specifies the timeout period until auto disconnect (sec).

After amount of time (in sec) specified with dwTimeout has passed

when wAutoDisconnect value is set to 1, the program needs to

disconnect the target USB device upon receipt of the disconnect

request.

Return value

TRUE is returned when the function is successfully completed or else FALSE is returned.

Explanation

Once the disconnect request receipt message (SRU_REQUEST) is received, application will

be required to check if it is currently connecting the target USB device. If the USB device is

connected, the application will need to make a response immediately using SruSendReply.

Drawing No: SC02790XH

Date: August 01, 2016

(16/22)
©silex technology,Inc.

CONFIDENTIAL

4.4. Approval process for disconnect process

SruAcceptRequest

SruAcceptRequest is called by application to give approval for disconnect request when it is

is received.

BOOL SruAcceptRequest(VOID);

Return value

TRUE is returned when the function is successfully completed or else FALSE is returned.

Explanation

In order to give approval for disconnect request, applications will need to perform disconnect

process for the target USB device after calling the SruAcceptRequest function. Also, after

disconnect process is completed, applications will need to notify completion of disconnect

process by calling the SruDeviceDisconnected function.

4.5. Denial process for disconnect request

SruRefuseRequest

SruRefuseRequest is called by application in order to deny disconnect request when

disconnect request is received.

BOOL SruRefuseRequest(VOID);

Return value

TRUE is returned when the function is successfully completed or else FALSE is returned.

4.6. Completion notice of disconnect process

SruDisconnectedDevice

After disconnect request is approved, SruDisconnectedDevice notifies completion of the USB

device disconnection to the application which has sent the disconnect request.

BOOL SruDisconnectedDevice(VOID);

Return value

TRUE is returned when the function is successfully completed or else FALSE is returned.

4.7. Disconnect request process

SruDeviceNotFound

When the USB device status is not detected or disconnect process fails after disconnect

request is approved, SruDeviceNotFound notifies it to the application which has sent

disconnect request.

BOOL SruDeviceNotFound(VOID);

Return value

TRUE is returned when the function is successfully completed or else FALSE is returned.

Drawing No: SC02790XH

Date: August 01, 2016

(17/22)
©silex technology,Inc.

CONFIDENTIAL

4.8. Transmission process of disconnect request

SruSendRequest

SruSendRequest sends the disconnect request to the user who is currently connecting to the

USB device.

HANDLE SruSendRequest(

HWND hParent, /* Window handle to notify disconnect request event */

DWORD dwIp, /* Device server IP address */

LPBYTE lpbNodeaddr, /* Device server Ethernet address */

LPSXUSBDEVICE lpDevice, /* USB device information */

DWORD dwTimeout /* Timeout value */

);

Parameter Meaning

hParent Specifies the handle of window to notify the disconnect request

event. Event is notified using Windows massage.

dwIp Specifies the IP Address of device server which USB device of

disconnect target is connected to.

lpbNodeaddr Specifies the Ethernet Address of device server which USB device of

disconnect target is connected to.

lpDevice Specifies the pointer indicating SXUSBDEVICE structure for USB

device of the disconnect target.

dwTimeout Specifies the timeout for disconnect request. Timeout value is

specified in sec. When set to 0, there will be no timeout. If

communication is not processed successfully within the specified

time period, the disconnect request will fail as communication error.

The timeout value can be specified in 0-60 sec.

Return value

Handle indicating the disconnect request object is returned when the function is successfully

completed, or NULL is returned when the function fails.

4.9. Cancel process for disconnect request

SruCancelRequest

SruCancelRequest cancels the disconnect request sent by SruSendRequest.

BOOL SruCancelRequest(

HANDLE hRequest /* Handle of disconnect request object */

);

Parameter Meaning

hRequest Specifies the handle of disconnect request object returned by

SruSendRequest function.

Return value

TRUE is returned when the function is successfully completed or else FALSE is returned.

Drawing No: SC02790XH

Date: August 01, 2016

(18/22)
©silex technology,Inc.

CONFIDENTIAL

4.10. Handle closing process for disconnect request

SruCloseHandle

SruCloseHandle closes handle of disconnect request object obtained by SruSendRequest.

To finish sending the disconnect request, close the disconnect request object using the

SruCloseHandle function.

BOOL SruCloseHandle(

HANDLE hRequest /* Handle of disconnect request object */

);

Parameter Meaning

hRequest Specifies the handle of disconnect request object returned by

SruSendRequest function.

Return value

TRUE is returned when the function is successfully completed or else FALSE is returned.

Drawing No: SC02790XH

Date: August 01, 2016

(19/22)
©silex technology,Inc.

CONFIDENTIAL

4.11. SRU_NOTIFY message

SRU_NOTIFY is the message to notify occurrence of disconnect request events.

Parameter Meaning

wParam This is the pointer of SRUINFO structure which receives disconnect

request information.

lParam IP Address of computer to send disconnect request to

Explanation

SRU_NOTIFY is Windows message to notify occurrence of disconnect request events to the

program. The message is notified to handle of window specified by SruInitialize or

SruSendRequest functions. The disconnect request message type is stored in wMessage

member of SRUINFO structure. The program needs to call the disconnect request API

according to wMessage member type.

SRUINFO structure definition

typedef struct _SRUINFO {

DWORD dwSize; /* SRUINFO structure size */

WORD wMessage; /* Disconnect request message */

char szMyName[64]; /* Name of request sender */

char szDestName[64]; /* Name of request receiver */

DWORD dwSrvIp; /* Device server IP address */

BYTE bNodeaddr[6]; /* Device server Ethernet address */

WORD wVid; /* Device VID */

WORD wPid; /* Device PID */

char szDeviceName[64]; /* Device name */

char szLocation[16]; /* Locational info of device connection */

DWORD dwRemainingTime; /* Remaining time until auto disconnection(sec) */

} SRUINFO, *LPSRUINFO;

Parameter Meaning

dwSize SRUINFO structure size

wMessage Stores message type of disconnect request. For the message type,

refer to 4.12 Disconnect request message.

szMyName Stores a name specified by the SruInitialize function.

szDestName Stores a name of disconnect request receiver.

dwSrvIp IP Address of device server

bNodeaddr Ethernet Address of device server

wVid Stores VID of USB device

wPid Stores PID of USB device

szDeviceName USB device name

szLocation Indicates locational info of the connected device. In case of

multi-functional devices, only information of first end point is

stored.

dwRemainingTime Stores the remaining time until auto disconnect when disconnect

request is sent while the auto disconnect function is enabled (in

sec).

Drawing No: SC02790XH

Date: August 01, 2016

(20/22)
©silex technology,Inc.

CONFIDENTIAL

4.12. Disconnect request message

Message Meaning

SRU_REQUEST This is notified when the program receives disconnect request. The

program needs to check if the requested USB device is connected

to itself, and reply a return value.

If the program is connected to USB device, call the SruSendReply

function. Also, return TRUE for SRU_NOTIFY message or else

return FALSE.

SRU_CANCEL This is notified when the disconnect request is cancelled.

SRU_ACCEPT This is notified when the disconnect request is allowed.

SRU_REFUSE This is notified when the disconnect request is denied.

SRU_DISCONNECT This is notified when the USB device disconnection is completed.

The program becomes ready to connect to the USB device when

receiving this message after sending the disconnect request.

SRU_BUSY This is notified when failed to receive the disconnect request due

to communication being processed for another disconnect request.

SRU_REPLY This is notified when there is a reply to disconnect request.

SRU_NOTFOUND This is notified if the program (the one to receive the disconnect

request) fails to detect the target USB device or disconnect from it.

SRU_REPLYEX This is notified when there is a reply to disconnect request. This

message indicates that there is a reply while auto disconnect is

enabled.

SRU_DISCONTIME This notifies the remaining time until auto disconnection.

The program (the one to receive the disconnect request) will need

to disconnect the USB device when dwRemainingTime value

became 0.

Call the API in below order:

SruAcceptRequest

SxuptpDisconnectDeviceEx

SruDeviceDisconnected

SRU_CONFIRM This is notified when the program needs to check if the USB device

of disconnect request is connected to itself.

After receiving this message, the program needs to check

immediately if the requested USB device is connected to itself and

then reply a return value. When USB device is connected, return

TRUE for SRU_NOTIFY message or else return FALSE.

SRU_TIMEOUT This is notified when there is no reply even after timeout period

being specified by SruSendRequest function has passed.

Drawing No: SC02790XH

Date: August 01, 2016

(21/22)
©silex technology,Inc.

CONFIDENTIAL

5. Device driver API

5.1. Instance ID retrieval process

SxuptpGetInstanceId

SxuptpGetInstanceId retrieves the instance ID of USB device driver which is recognized via

SXUPTP. When the target USB device is not connected, the function will fail.

* This function does not support Windows 2000.

DWORD SxuptpGetInstanceId(

DWORD dwIp, /* Device server IP Address */

LPCSTR lpszLocation, /* USB device location */

LPSXDEVINST *lpDevInst /* Instance ID info */

);

Parameter Meaning

dwIp Specifies the IP Address of device server being connected to USB

device to retrieve the instance ID.

lpszLocation Specifies the locational information of the USB device to retrieve the

instance ID.

*lpDevInst Specifies the pointer to SXDEVINST structure pointer. The instance

ID of USB device driver is saved to *lpDevInst. After calling this

function, the application will need to release memory by calling

SxuptpFreeInstanceId.

Return value

Number of retrieved instance ID is returned when the function is successfully completed.

Usually, only 1 instance ID is returned when a USB device is connected, while as many

instance IDs as device functionalities are returned when multi-functional device is

connected.

Note

SXDEVINST structure

typedef struct _SXDEVINST {

LPSTR lpszInstanceId; /* Instance ID */

} SXDEVINST, *LPSXDEVINST;

Drawing No: SC02790XH

Date: August 01, 2016

(22/22)
©silex technology,Inc.

CONFIDENTIAL

5.2. Instance ID release process

SxuptpFreeInstanceId

SxuptpFreeInstanceId releases memory of SXDEVINST structure retrieved by

SxuptpGetInstanceId function.

* This function does not support Windows 2000.

BOOL SxuptpFreeInstanceId(

LPSXDEVINST lpDevInst /* Instance ID info */

);

Parameter Meaning

*lpDevInst Specifies the pointer of SXDEVINST structure retrieved by

SxuptpGetInstanceId function.

Return value

TRUE is returned when the function is successfully completed or else FALSE is returned.

