EXPLORING DISSOCIATED HUMAN TISSUES AS AN ALTERNATIVE TO FRESH TISSUE FOR MULTIPLE DOWNSTREAM APPLICATIONS

Shawn P. Fahl, Discovery Life Sciences, Huntsville, AL

INTRODUCTION

The acquisition of fresh tissue is often an impediment to significant research advances. To provide an alternative to this issue, we have established cryopreserved dissociated human tissues as a viable specimen source with many applications. These single cell suspensions remain viable during the cryopreservation process and can be advantageous for multiple downstream applications, including immunophenotyping, cell culture, and sequencing, among others. Specifically, we have performed multiparametric flow cytometry on over 500 dissociated human tissues (tumor and normal) across 10 different oncology indications. As expected, we observed significant heterogeneity among the cellular composition for each individual tumor type. Across indications, however, trends were observed with regard to percentages of tumor and immune cell populations. Our data, case studies, and observed trends will be discussed.

GENERATION OF DISSOCIATED TISSUE

Tissue is collected following surgical resection and shipped to the central Cell Processing Lab. The tissue undergoes mechanical and enzymatic dissociation to a single cell suspension and is cryopreserved for long term storage in liquid nitrogen. Dissociated tissue cells are annotated with detailed pathology reports and patient data provided by the surgical site and are ready for downstream assays such as flow cytometry, cell culture, and genomic analysis.

DOWNSTREAM APPLICATIONS

In Vitro Cell Culture **FIGURE 1.** Day 0 Day 5 Colorectal Cancer Ovarian Cancer

FIGURE 1. In vitro Cell Culture of Dissociated Tumor Cells.

Ovarian and colorectal dissociated tumor cells were analyzed for tumor (EpCAM+) and immune (CD45+) cells by flow cytometry. Single cell suspensions were then cultured in DTC Growth Media. Following 5 days in culture, cultures were examined for the presence of tumor and immune cells by flow cytometry. Cultures were also analyzed for the formation of tumor spheres by light microscopy.

© 2021 Discovery Life Sciences © 2021 Discovery Life Sciences © 20

FIGURE 2. Immunophenotyping of Dissociated Tumor Cells by Flow Cytometry.

(A) Single cell suspensions of dissociated tumors were analyzed for tumor (EpCAM+) and immune (CD45+) cells by flow cytometry. CD45+ immune cells were further analyzed for CD4+ T cells (CD3+ CD4+), CD8+ T cells (CD3+ CD8+), B cells (CD19+), NK cells (CD3- CD56+), monocytic cells (CD14+) and granulocytic cells (CD15+). Data are representative of 560 unique samples across 11 different indications. (B) The average percentage of each cell population described in Figure 2A across 11 indications (left panel). Tumor and immune cells were calculated from total viable cells, while each immune cell subset was calculated as a percentage of CD45+ immune cells. (C) Lung adenocarcinoma dissociated tumor cells were subdivided by stage based on the pathology reports (top panel) or patient smoking history (bottom panel) and correlated with the flow cytometry data described in Figure 2A.

© 2021 Discovery Life Sciences

Indication	Total	Biallelic	Multiallelic	SNPs	INDELs
Lung	306101	302560	3541	257557	48544
Lung	278780	275696	3084	234989	43791
Melanoma	278227	275009	3218	235337	42890
Melanoma	264421	261360	3061	222973	41448
Ovarian	306066	302239	3827	256017	50049
Ovarian	340699	337235	3464	288397	52302
Bladder	307065	304425	2640	262345	44720
Bladder	317221	313953	3268	268901	48320

Donor 110003345						
ID	Reference	Alternate	Gene			
rs1558544	А	Т	EGFR			
rs1140475	Т	С	EGFR			
rs1050171	G	А	EGFR			
rs2692456	G	А	EGFR			
rs4947986	G	А	EGFR			
rs759162	С	Т	EGFR			
rs6970262	А	G	EGFR			
rs34723095	С	CAG	EGFR			
rs10241326	Т	С	EGFR			
rs2293348	С	Т	EGFR			
rs4947987	G	C	EGFR			
rs712831	Т	С	EGFR			
rs3752651	Т	С	EGFR			
rs13222549	G	С	EGFR			
rs6964705	С	А	EGFR			
rs148883365	А	AAC	EGFR			
rs55678943	G	А	EGFR			
rs2472520	G	С	EGFR			
rs371572654	А	G	EGFR			
rs141162488	TACAC	Т	EGFR			
n/a	С	А	EGFR			
rs1076452	G	А	EGFR			
rs55920948	G	GACAC	EGFR			

FIGURE 3. Genomic Analysis of Dissociated Tumor Cells.

DNA and RNA were isolated from eight unique dissociated tumor samples across four different indications and analyzed by whole exome sequencing and RNASeq, respectively. (A) The total genomic alternations were compiled across the eight unique patient samples. The sample from lung cancer patient 110003345 was examined for genetic alterations across the EGFR locus. (B) Heat map of log2 FPKM values and clustering analysis from the genes expressed across all eight

• Cryopreserved Dissociated Tissue Cells Represent an Alternative to Fresh Tissue - High viability immediately after dissociation and following cryopreservation

- Flow Cytometric Analysis Revealed Significant Tumor Heterogeneity - All major cellular components are present - Indication-specific trends observed in immune cell composition
- Cells Remain Viable in Short-Term Cultures - Tumor cells aggregate into spheroid clusters
- High Quality DNA and RNA Isolation - Suitable for whole exome and whole transcriptome analysis
- Tumor and Immune Cells can be Further Purified via Magnetic Separation - High purity and viability of isolated cells
- Integration of Large Datasets Enables In-depth Characterization

