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A B S T R A C T

Background: rTMS may influence on both cognitive and motor function in PD but the daily routine and the
predictors of responders to rTMS are not known.
Objective/hypothesis: We hypothesized that the frequency and intensity of stimulation somehow relate to each
other. Our goal was to select the optimal frequency with low intensity for PD. We clarified the importance of age
in the effect of rTMS.
Methods: A total sixty-six patients with PD were included in the study. In an open investigation, randomly
selected patients were divided into three groups. The effects of 1 Hz (N = 28), 5 Hz (N = 13) and 5 + 1 Hz
(N = 25) frequency at low intensity over each DLPFC and the brain stem for 7 days were compared. Patients
were followed for six months. UPDRS, the Trail Making Test, and dual tasks were applied. Patients
≤65 years> 65 yrs were compared. Data were analyzed by repeated measure ANOVA.
Results: Only 1 Hz had an effect on motor scores. Before the trial patients ≤ 65 yrs had UPDRS total scores of
30.3 ± 16.9, after 1 month: 17.8 ± 8.9 p < 0.001, after 6 months 18.3 ± 8.8 p < 0.001. Improvement of
patients> 65 yrs was observed after one month (p < 0.01). Executive function> 65 yrs (N = 16) was sig-
nificantly worse compared with C (N = 15) and it was improved temporarily by 1 Hz. Five Hertz and 5 + 1 Hz
did not cause improvement.
Conclusion: One Hertz with proper intensity has a good outcome in PD. Patients> 65 yrs show deterioration in
their executive function and they have shorter duration in their therapeutic effect of rTMS. This study draws
attention to the importance of stimulation intensity and age as a predictor of the effect of rTMS.

1. Introduction

Nearly 20 years ago repetitive transcranial magnetic stimulation
(rTMS) was recommended for the treatment of Parkinson’s disease
(Málly and Stone, 1998,1999). The pharmacokinetic effect of anti-
parkinsonian drugs and the physical intervention of rTMS deeply differ
from each other. While the antiparkinsonian drugs have a faster and
shorter effect, rTMS has a delayed effect after the stimulation. Fur-
thermore, its effect is maintained for months (Málly and Stone, 1998,
Dragasevic et al., 2002Shirota et al., 2013Málly and Stone, 1998,
Dragasevic et al., 2002; Shirota et al., 2013). These characteristics of
physical intervention with rTMS need a longer follow-up period after
the stimulation, than those for antiparkinsonian drugs. Therefore, time
is very critical when we examine patients after their treatment with
rTMS. After the first observations, the favorable effect of low frequency
stimulation was confirmed (Dragasevic et al., 2002; Shirota et al., 2013;
Li et al., 2015), but in contrast, a Jack of effect from 1 Hz stimulation
was also published (Arias et al., 2010; Filipovic et al., 2010a; Flamez

et al., 2016). In the first part of the 21st century, the high-frequency
stimulations entered the therapeutic protocols (Khedr et al., 2003;
Khedr et al., 2006; Lomarev et al., 2006; Pál et al., 2010; Brys et al.,
2016). Despite numerous publications, there is no full agreement about
which frequency for stimulation is the most favorable improving the
behavior of PD patients. However, there is agreement on having the
period of stimulation last for 7–10 days. A shorter period (4 days) had
no effect in Parkinson’s disease (Filipovic et al., 2010b). One session of
stimulation was not effective in PD (Tergau et al., 1999) nor was a
single stimulation. However, Pascual Leone published a short after-ef-
fect on reaction time after both a single stimulation and a one-session
stimulation (Pascual-Leone et al., 1994), and this was confirmed by
Siebner (Siebner et al., 1999). The intensity of the stimulation has
shown great variation in different publications, which may reflect the
diversity of the results in PD with rTMS stimulation. Lately, meta-
analyses have compared the lower frequency and higher frequency
stimulations, but their conclusions were contradictory. The first meta-
analysis confirmed the superiority of high-frequency stimulation over
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low-frequency stimulation (Elahi et al., 2009), while the next meta-
analysis preferred low-frequency stimulation in PD (Zhu et al., 2015).
The latest meta-analyses concluded that either the low- or high-fre-
quency stimulation may be effective in PD (Chou et al., 2015; Wagle
et al., 2016). Evidence-based studies have confirmed the usefulness of
the stimulation over both hemispheres in a graded level “C”
(Lefaucheur et al., 2014).

Finally, the demand arose to clarify the most important criteria by
which the effect of stimulation is weaker or amplified. What are the
predictors of non-responders or responders to rTMS in PD? In this study,
we focused on the age of recruited patients and examined the effect of
different frequencies with low intensity.

2. Materials and methods

2.1. Patients

The study was approved by the Regional Ethics Committee of
University Hospital of Petz Aladár in Győr, Hungary. Sixty-six patients
with PD were enrolled into the study from 2011 to 2015. They were
randomly separated into three different groups according to the fre-
quency of the stimulation with 1 Hz (N = 28), 5 Hz (N = 13) or
5 + 1 Hz (N = 25). They were followed for half a year in an open
study. The patients with PD belonged to Hoehn-Yahr stages I–III. The
groups were divided into subgroups according to their age
(≤ 65yrs<). Baseline demographic data are shown in Table 1. At the
baseline of the study, their states did not differ significantly from each
other, but the patients> 65 yrs had a more advanced state of disease.
Their executive function was compared with that of an age-matched
healthy control group. Persons under 65 yrs (N = 11) and above 65 yrs
(N = 15) were involved in the control study groups.

2.2. The applied methods

The patients were tested with the Unified Parkinson Disease Rating
Scale (UPDRS) (Fahn et al., 1987), Trail Making Test (Reitan, 1992) and
a dual test. The dual test had three parts. The time to walk a distance of
25 m was measured. The measurement was repeated counting back
from 100 by 3 and 7. We measured the distance walking for 6 min and
the time for a distance of 10 m. A Mini Mental Rating Scale excluded
the patients with dementia from the study. Patients were tested before
the study and then one week, one month and six months after the rTMS
treatment. The examinations were performed during the effect of
medication. Patients were taking levodopa with dopamine decarbox-
ylase and cathecol ortho-methyl transferase inhibitors.

2.3. Protocol for stimulation with rTMS

One-Hertz stimulation was applied over both dorsolateral-prefrontal
cortices (DLPFC) and over the brain stem. Each DLPFC was marked
with an EEG cap. The brain stem was labeled 2 cm over the edge of the
occipital bone. The intensity was 25% of the maximum output of the

device (2.3 T) (Magstim 220). The intensity was chosen according to a
dose-response curve where the optimal intensity for treatment in PD
was determined (Málly and Stone, 1999a, 1999b Málly & Stone, 1999a,
1999b). Fifty stimuli with 25% of 2.3 T were given over each DLPFC.
One hundred stimuli with 40% of maximum output were applied over
the brain stem. Twelve sessions were done for 7 days.

Five-Hertz stimulation was applied over both DLPFC. Four hundred
stimuli were given to each of them. The intensity was 30% of the
maximum output of the device (Magventure Pro) (Maximum output
2.0 T). The brain stem stimulation with 1 Hz was same as the former
description.

Five + one Hertz stimulation was given over both DLPFC one after
the other according to the previous descriptions. The brain stem was
stimulated with 1 Hz.

2.4. Statistical analysis

Results are expressed as the mean ± standard deviation of mean
(S.D.) and sample size (N) for each treatment group. The normality of
data was checked by applying Shapiro-Wilk’s test. When non-normality
of data could not be rejected, homogeneity of variances was assessed
through the Levene’s test. Means were compared by a t-test or by se-
parate repeated measures analysis of variance (ANOVAs) with Tukey’s
correction for multiple comparisons applied where appropriate.

Analysis was two sided, with a level of significance of α= 0.05. All
statistical analyses were done using the SAS 9.4. (SAS Institute Inc.,
Cary, NC, USA.) software package.

3. Results

The 1-Hz stimulation with low intensity for 7 days had the most
favorable behavior in PD. The rTMS with 1 Hz caused a significant
improvement in motor symptoms as assessed by UPDRS total after one
month (before trial (BF) ≤ 65 UPDRS total score 30.3 ± 16.9, after 1
month: 17.8 ± 8.9 p < 0.001,> 65 BF: 26.3 ± 16.8, after 1 month:
19.3 ± 10.1 p < 0.01). It was maintained for six months in the
group ≤ 65yrs (N = 12, 18.3 ± 8.8 p < 0.01) (Fig. 1).

However, in the group> 65 yrs (N = 16) a better outcome was
observed only after one month (BF: 26.3 ± 16.8, 1 month later
19.3 ± 10.1 p< 0.01, after 6 months: UPDRS total score:
22.1 ± 12.3 p = 0.06). While stimulation with 5 + 1 Hz decreased
the scores assessed by UPDRS, stimulation with neither 5 Hz nor
5 + 1 Hz caused significant changes in PD after 6 months. The clinical
data are shown in Tables 2 and 3. The dose of levodopa in the groups
was maintained at the same level for the next half year (See Tabl. 2 and
3).

Results of the Trail Making Test and dual tests in PD≤ 65 yrs did
not differ from those in controls (C) below 65 years. However, the ex-
ecutive function of patients over 65 yrs (N = 16) was significantly
worse compared to controls (N = 15) (C: Trail B-A: 50.0 ± 25.1 s, PD:
Trail B-A> 65 yrs: 76.0 ± 45.1 s p< 0.01). One month after rTMS
treatment with 1 Hz, an improvement was observed in the Trail Making

Table 1
Demographic data of the study. The table presents the data of the patients involved in the study. Patients with Parkinson’s disease were divided into three groups according to the
frequency being applied. The main three groups of patients were divided into two subgroups:≤65 and 65< years.

1 Hz 5 Hz 5 + 1 Hz

≤ 65 >65 ≤ 65 >65 ≤ 65 >65

Number 12 16 6 7 17 8
Age 56.1 ± 9⋅5 72.3 ± 4.2 62.1 ± 2⋅3 72.7 ± 3.2 60.0 ± 3.4 70.6 ± 3.0
Duration of disease 4.08 ± 2.08 3.9 ± 2.7 6.0 ± 3.1 6.2 ± 2.0 5.0 ± 3.5 4.6 ± 2.8
F/M 5;7 5;11 5;1 1;6 7;10 1;7
Years of education 16.6 ± 2.95 15.8 ± 2.8 15.0 ± 3.8 14.4 ± 2.1 16.3 ± 3.0 16.7 ± 2.4
Tremor or akinesis dominance 6T;6A 11T;5A 4T;2A 5T;2A 11T;6A 4T;4A
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Test compared with data at the baseline of treatment (PD:
48.70 ± 21.4 s p < 0.05) (Fig. 2).

The dual test results deteriorated in the group over 65 years com-
pared to age-matched controls. The 1-Hz stimulation did not reverse
their values. (C: counting back (CB) −3: 50.0 ± 25.9 s, > 65 yrs PD
CB −3: 57 ± 21, 1 month after rTMS CB −3: 69 ± 20, 6 months
after rTMS: 60 ± 19 s; PD BF CB-7 100 ± 45 s, 1 month 102 ± 32 s,
6 months: 82 ± 23 s).

4. Discussion

In this study, low intensity rTMS treatment was studied with dif-
ferent frequencies. The stimulation affected both sides of the hemi-
spheres and the brain stem. The low intensity treatment combined with
low frequency influenced motor function as assessed by UPDRS in both
subgroups according to their ages. The long-lasting effect was more
significant in the younger group of patients with PD after a half year
than in patients with over 65 yrs. The UPDRS motor score showed a
similar tendency as the UPDRS total score. The study confirmed the age
dependency of the effect of rTMS on motor function because the group
of patients above 65 yrs had a shorter effect on their reaction to rTMS

than the patients below 65 yrs. This new observation of the study may
be taken into account in future studies.

In the present study, the intensity was much lower than the motor
threshold, although it was effective in the group stimulated with 1 Hz
but not in the 5 Hz and 5 + 1 Hz stimulations. Although, low intensity
seems unusual in the therapeutic studies with rTMS, previously pub-
lished studies showed that low-intensity stimulation with rTMS has an
effect on brain activity according to TMS-evoked brain response as-
sessed by EEG (Komssi 2004). In this study, rTMS stimulation at 60% of
motor threshold produced a distinct change in amplitudes assessed by
EEG (Komssi et al., 2004). Another study proved that there was an
optimal intensity for reducing the amplitude of MEP after rTMS with 2
and 6 Hz for 10 min (Todd et al., 2006). Neither the 70% nor the 90% of
the maximum output caused a significant reduction in the amplitude of
MEP or even induced a great variation in the facilitation or inhibition,
but the low intensity stimulation evoked a consistent reduction in the
amplitude of MEP (Todd et al., 2006). Not only did this study confirm
the favorable effect of low intensity, but an animal study with evoked
LTP in the hippocampus further confirmed the superiority of low in-
tensity (0.75 T) over the 1 T (Ogiue-Ikeda et al., 2003). The inhibitory
effect of rTMS with 1 Hz was demonstrated after stimulation for one
session over the later I-waves in humans (Di Lazzaro et al., 2008). There
was a significant suppression in the amplitude of MEP detected in the

Fig. 1. The effect of rTMS with 1 Hz in PD. The columns represent the values of the
UPDRS total score. The baseline is fully filled, 1 month after stimulation is striped and 6
months after stimulation is dotted. The first three columns show the patients with
Parkinson’s disease≤65 yrs. The second three columns show the results of patients>
65 yrs. The one-Hz stimulation with low intensity for 7 days caused highly significant
improvement in the symptoms of PD assessed by UPDRS, which was maintained for a half
year. The alleviation of motor disability in PD>65 yrs appeared in shorter time and
smaller amount.

Table 2
Clinical data of motor scores of patients with Parkinson’s disease taking levodopa
≤65 years. The table presents the data after rTMS treatment with low intensity and with
different frequencies for a week. Patients≤65 years with Parkinson’s disease improved in
a highly significant way (p < 0.01) one month after stimulation, and they maintained
this improvement for half a year. None of the other frequencies altered the parkinsonian
motor symptoms.

Baseline of the study After one month of
rTMS

After six months of
rTMS

1 Hz (N = 12)
H-Y 1.90 ± 0.94 1.68 ± 0.71 1.54 ± 0.52
UPDRS Total 30.3 ± 16⋅9 17.8 ± 8⋅9** 18.3 ± 8⋅8*
UPDRS Motor 15.2 ± 8⋅5 10.9 ± 6⋅2* 10.3 ± 5.6*
Levodopa (mg) 345.45 ± 246.42 390.90 ± 228.93 395.45 ± 255.39
5 Hz (N = 6)
H-Y 1.66 ± 0.81 1.66 ± 0.81 2.0 ± 0.89
UPDRS Total 21.6 ± 9⋅0 17.6 ± 10.2 19.8 ± 8.5
UPDRS Motor 11.5 ± 4⋅4 10.4 ± 5⋅9 10.6 ± 4.1
Levodopa (mg) 391.66 ± 159⋅42 400 ± 164.31 466.66 ± 147⋅19
5 + 1 Hz (N = 17)
H-Y 1.43 ± 0.62 1.5 ± 0.63 1.56 ± 0.62
UPDRS Total 16.61 ± 7.79 13.41 ± 6.00 16.73 ± 6⋅78
UPDRS Motor 8.65 ± 4⋅13 7.37 ± 3⋅59 9.42 ± 3⋅57
Levodopa (mg) 400 ± 247.65 396.87 ± 259.78 400 ± 237.34

Table 3
Clinical data of motor scores of patients taking levodopa with Parkinson’s disease> 65
years. The table shows the data after different frequencies of rTMS with low intensity for
one week. Patients with Parkinson’s disease> 65 years were followed for half a year. The
dose of levodopa was not changed. A significant temporarily reduction in the score of
UPDRS and motor score of UPDRS was observed after the treatment with 1 Hz. Neither
5 Hz nor 5 + 1 Hz caused improvement in the symptoms assessed by UPDRS. The low
intensity rTMS is effective only with 1 Hz stimulation.

The baseline of the
study

After one month of
rTMS

After six months of
rTMS

1 Hz (N = 16)
H-Y 1.85 ± 0.77 1.71 ± 0.72 1.64 ± 0.74
UPDRS Total 26.3 ± 16.8 19.3 ± 10.1* 22.1 ± 12.3
UPDRS Motor 13.1 ± 8.0 10.0 ± 4.8* 11.7 ± 6.7
Levodopa (mg) 210.71 ± 203.97 225 ± 183.71 242.85 ± 178.51
5 Hz (N = 7)
H-Y 2.5 ± 0.54 2.5 ± 0.54 2.5 ± 0.54
UPDRS Total 27.1 ± 9.4 27.0 ± 6.9 30.8 ± 5.8
UPDRS Motor 13.5 ± 4.5 12.3 ± 3.8 14.8 ± 2.9
Levodopa (mg) 500 ± 181.65 475 ± 175.35 475 ± 175.35
5 + 1 Hz (N = 8)
H-Y 1.66 ± 1 1.55 ± 0.88 1.66 ± 0.86
UPDRS Total 19.2 ± 7.95 15.55 ± 4.39 18,0 ± 7.34
UPDRS Motor 10.8 ± 4.68 9.44 ± 3.16 9.83 ± 4.83
Levodopa (mg) 272.22 ± 148.13 272.22 ± 148.13 316.66 ± 180.27

+

*

mean ± SD 
* = p  0.05
+ = p  0.05

0
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Fig. 2. The effect of rTMS with 1 Hz on the executive function assessed by Trail Making
Test (B–A). Persons were above 65 years. The columns represent the Trail Making Test
(B–A) values in sec. B–A shows the executive function without slowed movement. Patients
with PD> 65 years were compared with age-matched healthy controls. The baseline
values were significantly different from controls (+=p < 0.05). The rTMS with 1 Hz
and low intensity for 7 day temporarily improved the executive function in patients> 65
years (* = p < 0.05).
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cervical epidural space. The low-intensity stimulation evoked a dopa-
mine release on both sides of the striatum, while the high intensity
around the motor threshold elevated the dopamine level only on the
contralateral side of stimulation with 10 Hz (Strafella et al., 2006). The
authors declared the effect of low intensity stimulation to be a placebo
effect, but in the present study it may be caused by the real low-in-
tensity stimulation of rTMS. The importance of intensity at different
frequencies was also confirmed by our study. When the intensity was
elevated up to the motor threshold, there was no favorable effect of 1-
Hz stimulation (Arisen et al., 2010). It seems that the low frequency is
more effective with low intensity. However, a high frequency connected
with higher intensity around the motor threshold is much more favor-
able to produce a good outcome in PD, as was published in earlier
studies (Khedr et al., 2003; Khedr et al., 2006; Lomarev et al., 2006;
Hamada et al., 2008; Kang et al., 2010; Brys et al., 2016). However,
elevation of the frequency up to 50 Hz did not cause a good outcome in
PD (Benninger et al., 2012). The different clinical effects of high- and
low-intensity stimulations with rTMS for one session were published in
a study. While, the high-intensity stimulation over the primary motor
cortex evoked changes only in the symptoms on the contralateral side of
stimulation, the low frequency induced alteration in the symptoms on
both sides of the brain of PD patients after one session of rTMS
(Lefaucheur et al., 2004). We can not say that low- or high-frequency
stimulation is effective in PD, but we can say that the proper intensity
with adoptive frequency can alleviate Parkinsonian symptoms.

The present study also reveals the importance of age in PD with
rTMS treatment. The therapeutic effect was significant even after half a
year in the group treated with 1 Hz rTMS in the group of patients ≤65
yrs. This does not mean that rTMS is ineffective in patients with over 65
yrs, but they react to rTMS for a shorter time, which may indicate more
frequent treatment with rTMS for better outcomes. In this study, we
observed a significant improvement after stimulation that lasted for half
a year. The same observation was made by Brys, who noted a positive
effect at 21 weeks after stimulation with rTMS with 10 Hz (Brys et al.,
2016). Despite high-frequency stimulation with rTMS, the improvement
in parkinsonian symptoms was missed in a follow-up period for 14 days
(del Olmo, 2007). The observation time was only two weeks, which
seems too short to detect a better outcome in PD. In contrast, when the
follow-up period was 12 months with rTMS treatment at 5 Hz, a fa-
vorable improvement in articulatory dysfunction of PD was detected by
the end of the observation (Murdoch et al., 2012). The age dependency
of the effect of rTMS and a delayed effect of stimulation may be partly
responsible for the different results in the previous publications.

In the present study, the mental function in patients over 65 yrs
assessed by the Trail Making Test and dual tests showed significant
deterioration compared with age-matched healthy controls. The re-
version was detected after one month of treatment with 1 Hz rTMS,
however, it did not last for half a year. The other studies published
earlier, observed improvement in cognitive function after one session of
rTMS over DLPFC on the right side but not on the left side (Srovnalova
et al., 2012; Sedlácková et al., 2009). Lately, one publication revealed
that context-dependent learning was influenced by one session of rTMS
with 1 Hz over DLPFC (Lee and Fisher, 2017). The same observation
was made by Solé-Padullés, who found that memory performance in
elderly patients whose memory was slightly disturbed presented a
temporary improvement after treatment with rTMS using 5 Hz stimu-
lation (Solé-Padullés et al., 2006). Reviews have summarized the con-
tribution of non-invasive brain stimulation to improving disturbed
cognition (Miniussi and Rossini, 2011; Floel and Cohen, 2007;
Lawrence et al., 2017). In this study, motor and mental effects of rTMS
were detected after rTMS with l Hz stimulation in PD with patients of
different ages, but the high-frequency stimulation had no effect on
symptoms of PD.

The crucial question is how we can explain the effects of rTMS. The
site of action of rTMS may cover many mechanisms, which may be
partly important to develop the therapeutic effect in PD or even in any

other disease of the central nervous system. We briefly look over the
brain plasticity, dopamine release, change in the microcirculation, in
the elevation of BDNF, induction of progenitor cells and non-synaptic
spread of the neurotransmitters from the focal stimulation site of rTMS.

Even the first publications revealed the effect of rTMS on brain
plasticity. The intracortical excitability is changed in PD as detected by
a shorter silent-period (SP) and a reduced short intracortical inhibition
(SICI) (Priori et al., 1994; Ridding et al., 1995; Elleway et al., 1995;
Chen et al., 1997; Beraradelli et al., 1996; Tsuji and Rothwell, 2002; Wu
et al., 2007; Golaszewski et al., 2016), which are reversed by dopami-
nergic drugs (Pierantozzi et al., 2001; Mir et al., 2005). The transcranial
magnetic stimulation influences intracortical excitability as do dopa-
minergic drugs. The shorter silent period in PD and decreased long
interval intracortical inhibition (LICI) mediated by GABA B transmis-
sion are characterized for PD (Chen, 2004; Ni and Chen, 2015). There is
deterioration in cortical LTD-like plasticity in PD. Presynaptic inhibi-
tion is impaired in PD, and it is not recovered by dopamine (Ni and
Chen, 2015). Alterations assessed by electrophysiological parameters
last for hours or even a day (Peinemann et al., 2004; Bagnato et al.,
2005; Filipovic et al., 2010a,b). Brain plasticity can be changed by one
session of rTMS. This means a rapid alteration in facilitation or in-
hibition in the intracortical connections, but its after-effect is too short
to explain the therapeutic effect of rTMS lasting for a number of months
(Chen et al., 1997; Romero et al., 2002; Schambra et al., 2003; Gorsler
et al., 2003; Di Lazzaro et al., 2011). The two effects, the brain plasticity
and the therapeutic effect, are partly connected with each other, but do
not give a full explanation for the long-lasting therapeutic effect of
rTMS in PD. The different mechanisms have been collected in a study
(Rajan et al., 2016). Furthermore, there is great variation among people
in excitability after stimulation with 1 Hz, 5 Hz or theta burst stimu-
lation, but the therapeutic effect in PD is a much greater consequence
after the stimulation for 7 days than the effect on brain plasticity
(Gangitano et al., 2002; Romero et al., 2002; Hamada et al., 2013).
Following focal stimulation with rTMS, the electrophysiological effects
appear not only locally, but also far from the stimulation site and can be
detected on both sides of the brain (Bagnato et al., 2005; Schambra
et al., 2003; Chen, 2004; Gorsler et al., 2003). Focal stimulation with
rTMS affects both hemispheres, as well as the deeper areas of the brain
(Kim et al., 2008).

Increased dopamine release was shown after one session of stimu-
lation with rTMS over the motor cortex and DLPFC (Strafella et al.,
2005; Ko et al., 2008; Strafella et al., 2001). Even today, everything
revolves around dopamine in PD. rTMS over the DLPFC or primary
motor cortex induces dopamine release in the striatum (Strafella et al.,
2006; Ko et al., 2008; Kim et al., 2008). It relates to the stimulation and
it does not have a long-lasting effect. This temporarily favorable effect
of rTMS does not explain the therapeutic effect of rTMS after one month
of stimulation.

The remote effect of rTMS was confirmed not only by the electro-
physiological observations, but also by changes in circulation in dif-
ferent areas of the brain (Park et al., 2017). Alterations in the micro-
circulation in different areas of the brain after rTMS may further
confirm the general effect of focal stimulation with rTMS. Furthermore,
the general change in amplitudes of waves assessed by EEG after TMS
stimulation (TEP), less than 48 msec over both sides of the brain was
found to be involved in the effect of one session of TMS (Chung et al.,
2015). Despite the focal nature of stimulation with rTMS, both elec-
trophysiological and microcirculation assessments have proved a broad
effect in the brain thereafter.

The remote effect of rTMS after focal stimulation may induces non-
synaptic transmission mechanism: transmitters are released into the
extrasynaptic space. This effect was first published by Vizi (Vizi, 1984;
Vizi et al., 2010). This non-synaptic transmission mechanism spread
over the brain may increase or decrease the GABA and glutamate
transmission in different areas of the brain, which may explain the ef-
fect of non-invasive brain stimulation (Vizi, 2000; Ardolino et al.,
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2005). It should be noted that the effect of rTMS is similar to that of
field stimulation: both are able to produce action potentials in the axons
and release transmitters (Di Lazzaro et al., 2001). Neurochemical evi-
dence has been obtained that field stimulation releases GABA (Lőrincz
et al., 2016) noradrenalin/dopamine (Vizi et al., 1993; Milusheva et al.,
1996; Sircuta et al., 2016; Borbély et al., 2017) serotonin (Vizi et al.,
1981) and ATP (Vizi and Burnstock, 1988).

Finally, the non-synaptic transmission mechanism may be explained
by the remote effect of focal stimulation with rTMS, but the long-term
effect of rTMS may relate to the elevated brain derived nerve factor
(BDNF) and the enhanced production of progenitor cells from the
subventricular zone and the hippocampus gyrus dentatus region.
According to animal studies, BDNF is increased after rTMS (Müller
et al., 2000; Cheeran et al., 2008). The BDNF polymorphisms
(Val66Met, Val66Val, Met66Met alleles) have a definitive impact on
brain plasticity in humans and on the effect of rTMS and tDCS (Cheeran
et al., 2008; Antal et al., 2010). There is no regeneration in the central
nervous system without BDNF, it may contribute to synaptic plasticity,
and it relates to learning, memory and the improvement of sensory and
motor decline (Lipsky and Marini, 2007; Schäbitz et al., 2007; Hariri
et al., 2003; Coelho et al., 2012). In a long-term study, polymorphism of
BDNF was confirmed as a main genetic factor in the deterioration of
executive function (Erickson et al., 2008). According to animal ex-
periments, the effect of BDNF is realized through AMPA receptors
(Clarkson et al., 2011). BDNF increases the production of progenitor
cells.

rTMS not only elevates the concentration of BDNF but also induces
the production of progenitor cells (stem cells) from the subventricular
zone and the dentate gyrus of the hippocampus, which migrate into
striatum and contain thyrosine hydroxylase enzyme (Arias Carrión,
2008; Yuan et al., 2014). Further studies confirmed that rTMS promotes
neuronal stem cells in both the subventricular zone and the hippo-
campus (Guo et al., 2014; Ueyama et al., 2011; Liu et al., 2015; Luo
et al., 2017). Stimulation with 1 Hz was compared with 30 Hz of sti-
mulation in the brains of adult mice (Abbasnia et al., 2015). The effect
of 1 Hz stimulation started earlier, and more cells were induced than
from the stimulation with 30 Hz. Both stimulation levels increased the
differentiation of stem cells. The clinical studies and animal experi-
ments were reviewed by Winner and later Radad (Winner et al., 2011;
Radad et al., 2017). If BDNF and neurogenesis are involved in the site of
action of rTMS for days in humans, rTMS is not only symptomatic, it
may be the etiological treatment of the disease. The physical inter-
ventions more frequently involved in therapy for central nervous dis-
eases and their various of stimulation types produce a wide range to
influence on motor programming and cognition (Santarnecchi et al.,
2017).

5. Conclusions

In this study, we confirmed the importance of the intensity of
treatment with rTMS, which may differ according to the frequency of
stimulation. The effect of rTMS develops slowly, and its effect is
maintained for months. We observed strong age dependence in the ef-
fect of rTMS, which may indicate the need for more frequent treatment
with rTMS in patients over 65 yrs than in the younger age group. The
longevity of the effect is not solely explained by the modification of
brain plasticity or the induction of dopamine release in the striatum by
rTMS. However, the role of the prolonged elevation of BDNF and the
production of progenitor cells in the brain may be important mechan-
isms in the effect of rTMS.
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