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. ABSTRACT

Helical anchors have been used in various applications,
including the underpinning of distressed foundations for
either stabilization or rehabilitation. In such applications,
the possible buckling of the slender shaft under eccentric,
compression loading is of interest. The authors have studied
this phenomenon using full-scale load tests and computer
modeling to determine under what conditions buckling is a
practical concern. Prior to computer solutions, however,
laboratory testing of the underpinning bracket assembly was
required. Brackets were attached to a concrete block and
axial loads were applied in increments with a typical jacking
arrangement. Careful measurements then yielded the rotational
characteristics of the bracket. The anchor system was then
modeled, using the finite-difference technique as implemented
in the program LPILE’'S. Buckling loads were computed for
helical anchor shafts of different sizes and lengths in soils
of various strengths, with the lateral response of the soil
represented by nonlinear p-y curves. Full-scale, field

 loading tests were conducted in both granular and cohesive
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soils and the results found to be in agreement with the
computer simulations. The results of the computer modeling,
confirmed by the field loading tests, indicated that buckling,
either linear or nonlinear, is of practical concern only
for long anchor shafts in the séftest soils. This is in
agreement with past findings regarding conventional pile
foundations. Data are presented which allow a preliminary
determination of whether buckling might be a practical concern
for a given application. In these cases, load tests or
computer simulation using the modeling techniques developed
for this study can be used to predict buckling loads and
the design can be adjusted accordingly.

" INTRODUCTION

Helical anchors, also known as screw anchors, consist
of one or more helically shaped plates attached to a central
shaft. They are twisted into the ground using any convenient
method from a hand wrench to vehicle mounted drilling

equipment. Historically, helical anchors have been used

mainly as tension anchors for electric transmission line
support structures, but they have also been used successfully
to resist compression and lateral loads.

An important compression application of helical anchors
is in the underpinning of distressed foundations for stabili-
zation against further damage or remediation (Figure 1).
Typically, anchors used in such applications have either
a 38 mm or 44 mm (l-1/2" or 1-3/4") round-cornered square
solid steel shaft. The shaft length may vary as necessary
to get the helical bearing plate(s) embedded into competent
soil, typically 2 to 3 m (7 to 10 ft) but sometimes as much
as 15 m (50 ft) and never less than 1.5 m (5 £t) . Slenderness
ratios (L/R) in the 100 to 200 range are thus typical, making
buckling of the shaft a matter of some concern. Mitigating
factors include the fact that the loads are typically a small
fraction (less than 1/4) of the shaft’s compressive yield
load and the restraint provided at the top of the shaft (by
the bracket) and along the shaft (by the soil). The necessity
of coupling together several short shafts when overhead
clearance is small, or depths greater than 3 m are required,
may heighten the susceptibility to buckling due to the
looseness of the £it at the couplings. These factors combine
to take buckling analysis of helical anchors in underpinning
applications out of the realm of the simple Euler eguation.

The typical helical anchor underpinning system consists
of a helical anchor and a foundation bracket assembly installed
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Figure 1: Helical Anchor Underpinning Installation

in a temporary excavation next to the distressed foundation.
The helical anchor shown in Figure 1 is a single helix type
‘with a one-piece shaft, but multiple helices and/or extension
shafts may be used depending on site conditions and required
load capacity. The bracket assembly (Figure 2) consists
of two major parts (a foundation bracket and a T-pipe) and
some fasteners. The bracket is bolted to the face of the
foundation with its lip extending under and in contact with
the foundation bottom. The anchor shaft extends up between
the bracket’s gussets. The T-pipe slides over the anchor
shaft and is partially restrained by the welded brace and
~a cross-bolt (Figure 3). In this configuration, the T-pipe
can slide freely upward along the anchor shaft. Other motions
are restrained by either the bracket or the anchor. The
T-pipe can be prevented from sliding up by tie bolts passing
through the T-pipe flange and ears provided on the bracket
as shown in Figure 2. This is the configuration used for
foundation stabilization, where it is not intended to jack
the foundation back to its original position. Any load the
foundation puts on the bracket is transmitted to the anchor
through tension in the tie bolts.

HELICAL ANCHOR UNDERPINNING SYSTEM

The same system can be used with a reusable jack and
jacking frame to remediate the foundation (Figure 4). 1In
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FOUNDARTION
BRACKET

Figure 2: Standard Underpinning Bracket Assémb1y

' this configuration, the tie bolts pass freely through the
T-pipe flange to connect the bracket to the jacking frame
‘via extension bolts and couplings. Once the foundation has
been lifted, the tie bolt nuts can be locked off against
the top surface of the T-pipe flange and the jack and jacking
frame removed.

Once the tie bolt nuts are locked off, the bracket/anchor

assembly is able to support the foundation. If the founda-
tion/ bracket/T-pipe/anchor shaft assembly were rigid, the
. computer model could be restricted to just that portion of
the anchor shaft below the lower end of the T-pipe, with
fixed end conditions (deflection y, and slope s, = 0) at the
"top." The lateral shear P, and the axial load Q would be
“input values, while. the moment M, at the top would ke
calculated by the software (Figure 5). However, neither
the bracket/foundation rotational joint nor the bracket/T-pipe
translational joint nor the T-pipe/anchor shaft rotational
joint is rigid within the working load range.

The load path from the bracket to the T-pipe consists

of tension in the tie bolts. Any such tension produces clock-
wise moment on the foundation bracket when viewed from the

" side as in Figure 3. In the absence of the anchor shaft,
this would cause the bracket to rotate clockwise until the

4 Hoyt, et al




offset the A v "
imposed moment. With the 7
" anchor shaft in place, the . N
+ 4

" anchor or the foundation (Q

resisting moment due to
bending of the bracket

brace imposes a lateral
load on the T-pipe which
in turn puts a "kick-out"
force on the anchor shaft.
Bracket rotation ceases
when the combined moments
due to bracket bending
resistance and the anchor
shaft’s reaction on the T-
pipe and brace offset the
moment due to the tie bolt
tens;on.

FOUNDATION

X
IN-BRACKET BOLTED
TO FOUNDATION

N

As load is trans-
ferred to the anchor, it
and the T-pipe move
axially with respect to ‘ ,
the bracket. This intro- Figure 3: Bracket Installed on
duces frictional forces, Foundation & T-Pipe on
face and £, at the ' Anchor
welded brace and cross-

bolt, respectively (Figure 6). In foundation stabilization

applications, these frictional forces are inconsequential

- since they only reduce the load Q,;, in the tie-bolts. 1In

the case of remediation, however, it is common to measure
the jacking load Q. jack and important to realize that some of
the jacking load (as much as 20%, according to test results)
is resisted by this friction and does not reach either the
anchor 204 Qgy,, respectively). The
equations of statics shown in Figures 6 and 7 assume that
Qunchor 20d Q¢ are oriented the same, of course. While this
cannot be expected the equations nevertheless serve to show
in a qualitative way the effects of the frictional forces.

In general, the end of the anchor shaft does not
perfectly match the underside of the T-pipe flange. This
is due to imperfect cutoff in the manufacture of the shaft
as well as field misalignment. Therefore, the load tends
to be transferred along one of the edges of the shaft end.
This and the T-pipe kick-out force described above cause
the shaft to bend within the loosely fitting T-pipe, resulting
in rotation of the shaft with respect to the T-pipe.
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""the buckling load of a
“underpinning application
column ®“on an elastic
difference technique can

~ governing differential

“solution occurs.

the beam-column on a e |

 Hetenyi  (1946). The —1 %
~assumption is made that a

BUCKLING ANALYSIS BY FINITE
DIFFERENCES IT JACKING FRAME H

One way to determine

helical anchor in an COUPLING

is to model it as a beam-—

foundation. The finite

then be used to solve the

equation for successively
greater loads until, at or
near the buckling load,
failure to converge to a

'I‘hé derivation for the : v

differential equation for |

foundation was given by

bar on an elastic founda-
tion is subjected not only L. ‘
to lateral loading, but Figure 4: Bracket Assemb]_y (;onfig—
also to a compressive force ured for Remediation

Q acting at the center of

gravity of the end cross-sections of the bar, leading to
the differential equation

dty . ~d%y
EIdX4+QdX +Ey=0 (1)

where y is the lateral displacement, x is the distance along

the axis, EI is the bending stiffness, and E, is the secant

- modulus of the soil response curve. If a distributed lateral

load w acts along some portion of the shaft length, the final
equation becomes

dly . ,d%y ‘ -
EIdX +de +EY+W(X) 0 (2)
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Closed form solution of this equation is possible for
some simplified cases, but for general applications, formula-
tion of equation (2) in numerical terms for computer solution

. is advantageous (Reese, 1971). Some advantages of a general
~purpose computer solutionares - - o e s e e

The bending stiffness EI of the beam-column can be
varied along its length. This variation may be due
to changes in material or geometry along the length,
or to stress effects.

The soil secant modulus can vary from point to point
along the beam-column’s length and, at a given point,
as a function of deflection.

" ThHe eéffect of the axial load on deflection and bending
moment can be considered and buckling problems can be
solved.

The effect of the axial load Q is most obvious in the-
second term of the differential equation (the secondary
moment) . However, the axial load also affects combined
stress. Once the combined stress at a point exceeds the

-~ 'yielding level, the flexural rigidity of the section will

decrease, which effect shows up in the first term of equation
(2). This causes more deflection, which affects the third

_term and all the derivatives of y with respect to x. The

increased deflection generates more secondary moment, leading
to yet another round of effects. While Q has a direct effect
on combined stress, its effect on deflection is much less
pronounced so that the process is stable for loads below
some critical value. The beam column is unable to support
loads above the critical due either to elastic (Euler)
buckling or the formation of a mechanism of plastic hinges.

To define the critical load for a particular structure
using the finite difference technique, it is necessary to
analyse the structure under successively increasing loads.
This is necessary bécause the solution algorithm becomes

“unstable at loads above the critical. This instability may

be seen as a convergence to a physically illogical configu~-

- ration or failure to converge to a solution at all. Since

physically illogical configurations are not always easily
recognized, it is best to build up a context of correct solu-
tions at low loads with which any new solution can be
compared.
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' DATA COLLECTION AND

ANALYSIS ‘ g% |
I e T R
The general method i_TTEE,T-..‘ r;
"used in this study was to | \lgél o
utilize the finite differ- Nt
| E’QL@QH

various strengths. Limit \

loads were determined and P oo oo T
then the results were | <l |
~ validated by comparing them 1 Lol |
' to actual field test data. L
_Oonce the results were | Mo
validated, they were used gt

- computer program used was
‘laterally loaded piles.

‘software are algorithms to

ence technique to analyze N
various lengths of shaft | ¢7¢* ‘T |
embedment in soils of \ o

to prepare charts enabling Iy | ! |

the designer to check ERRL

specific applications for Pt —ppX! m:gtﬁl

buckling susceptibility.
The particular

developed for analysis of

Two useful features of this

generate p-y curves from Figure 5: Laterally Loaded

soil property and stratifi- Pile Model (Rigid

cation data and the ability Bracket)

to handle piles whose

stiffnesses vary with depth and axial load. There were some
drawbacks to its use for this particular project, however,
in that the available pile top boundary conditions did not
include the particular conditions imposed by the typical
helical anchor underpinning bracket assembly. A method was

devised to model the conditions utilizing the input

distributed lateral load capability of the software. Since
the charts presented herein do not allow comprehensive
determination of the buckling susceptability of all
applications, the method is described in some detail for
the benefit of those who may be faced with the necessity
of conducting similar analyses. :

: Since the program models only the pile and soil, the
effects of the foundation, bracket and T-pipe on the pile
must be modeled with boundary conditions. The boundary
conditions chosen for this study were specified lateral
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Figure 6: Free Body Diagrams for Stabilization
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Figure 7: Free Body Diagrams for Remediation

displacement (y,), axial load (Q) and moment (M) at the top,
where the anchor shaft contacts the bottom of the T-pipe
flange plate (Figure 8). The lateral displacement y, is
a function of the axial load and the position of the T-pipe
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- value specified, so a

B imposed load and the moment

within the bracket.
Previous laboratory and
field testing have shown
that the T-pipe and portion ; M
" of the bracket below the | &
foundation attachment bolts :
tend to rotate as a rigid
" body about a yield line
passing through the
attachment bolts. It can
be seen from the dimensions
given in Figure 3 that
under such conditions Yy,
" will be about 25% of the
~displacement of the lower
end of the T-pipe and in
- the opposite direction.
Sensitivity analysis showed
the solution to be rela-
tively insensitive to the

constant wvalue of 2.5 mm
was used for most analyses.
The axial load Q is, of
course, the independently

M, is a function of Q and
the position of contact Figyre 8: Laterally Loaded Pile
between the anchor shaft Model (Flexible Bracket)
end and the T-pipe flange

“plate. For this study, contact was assumed to be at one
or the other worst-case pos:Lt;Lon such that

S
M=x0—
Qz

where s is the size of the square shaft across flats.

‘ The effect of bracket flexibility was modeled by using
distributed lateral load and input p-y curve modeling
capabilities. The T-pipe kick-out force due to bracket
rotation was modeled using an input distributed lateral load
(W) which was defined so that it only acted on one shaft
node. This load was opposed by an input p-y relation which,
as the shaft moves laterally, generates an opposite load
on the same node to model the effect of increasing bending
resistance in the bracket. The values to be input were
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determined from a laboratory test of the bracket assembly
mounted on a concrete test fixture.

This laboratory test setup is depicted in Figure 9.
As the axial load is increased, the bracket and T-pipe tend

“to rotate clockwise but-are restrained-from doing-so-by-the-

strain-gaged load cell. The load cell is mounted such that
its movement, and thus the movement of the T-pipe and bracket,

can be controlled. During the test, the load was first varied

from zero to 178 KN (40k, twice the rated load of the bracket)
in 22 KN (5k) increments, with the deflection of the T-pipe
as indicated on the dial indicator being held to zero. The

‘restraining load provided by the load cell for each applied

axial load was measured. The procedure was then repeated
with an increasing value of deflection at the dial indicator
being imposed for each series of axial loads. The result
was a series of restraining loads vs deflections for each
value of applied load (Figure 10). '

Jacking Load applied and
measured via calibrated
underpinning jacking
arrangement (see Figure 5)

3
vertical reaction provided & L )
£ L. 2L L L L L Z L

measured by Baldwin BTE-300
universal testing machine

T-pipe restrained

‘ " laterally by load
Dial Indicator | cell attached to

ad?ustable support

S 7777 7777

Figure 9: Laboratory Test Setup for Bracket
' Stiffness Measurement

For a given axial load, the "distributed" lateral load
used in computer modeling was that which was necessary to
produce a lateral nodal load equal to the restraining load
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Figure 10: Underpinning Brééket Assembly
: ‘ stiffness Data

sign convention used was such that a negative value was
'~ required to correspond with the configuration shown in Figure
3. This load will "follow" the anchor shaft, maintaining
a constant value regardless of lateral deflection, so it
' was necessary to provide some means of moderating it to model
the increased bracket bending resistance with deflection.
This was accomplished with an input p-y relation at the same
node. The input y values could be those values of deflection
which were imposed on the lower end of the T-pipe during
the laboratory test, with the p value for each y value being
such that the "soil" reaction will reduce the net lateral
load at the node to the value which was measured in the
laboratory test. However, the test data showed a consistent
stiffness of 795 KN/m (4545 lb/in), at all values of the
axial load, for deflections less than 19 mm (0.75 in) and
230 KN/m (1313 1lb/in) for deflections above 19 mm, so these
stiffnesses were used to generate the input p-y curves for
the computer runs.

For a given axial load Q,

: L
w (F/L) =- 2 , where
Xfinal " Xinitial

L, = Load (F) measured in laboratory test at
zero deflection,
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Xinitial = distance (L) along shaft to starting point
: of distributed load, and v
Xeina = distance (L) along shaft to ending point of

distributed load

Then for each value of deflection y,

L,.—-L
p (F/L) = Ll 4 , where

Xfinal ™ Xinitial

I‘S’ = Load (F) measured in laboratory test at y deflection

- If X, is the value of x at the node closest to where the

bottom of the T-pipe contacts the anchor shaft, x,, is the
% value at the nearest node above it and x;,, is the value
at the nearest node below it, then meeting the conditions

X; 1< Xinjeia1 <Xi
and ' (6)

Xy < Xfinal < X1

will cause the distributed lateral load and p-y relation
to affect only the desired node.

The particular computer program used had two other
features which had to be addressed for use in this project.
First, routines were provided to calculate the moment vs
stiffness (EI) relations for given axial loads of steel pipe
and various reinforced concrete sections. However, neither
round-cornered nor sgquare-cornered square solid sections
were included. This was handled by revising the code to
allow direct input of moment-stiffness relations which had
been calculated separately (Figure 11). Second, the
algorithms for calculating p-y relations in stratified soils
were arranged such that input p-y curves at lesser depths
affected the internally calculated p-y relations for greater
ones. This made it difficult to model the 0.5 m (20 inch)
free length and the bracket stiffness described above without
affecting the p~y relations generated for true soil contact.
This was eventually handled by generating and printing out
the p-y curves in preliminary runs, then inputting those

‘same p-y curves directly for depths greater than the 0.5
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Figure 11: Bending Stiffness EI for 38 mm, 497
- MPa Square Bar

RESULTS

v Results of several full-scale underpinning load tests
" were reported by Seider (1993). In one of these tests, a
helical anchor of the type ("SS5") investigated in this
project was used. This test was modeled using the revised
software with good results, i.e., the maximum moments were
comparable, and they occurred at approximately the same depth,
and the solution was stable over the range of loads that
was actually applied. Two new full-scale load tests were
also performed with more extensive strain-gaging of the
shafts. In these two tests, a large (about 1 m cube) concrete
block was anchored down on the ground surface to provide
the bracket mounting surface and reaction. One test was
conducted in clay in Centralia, MO (soil profile similar
to that reported by Seider) and the other test was in uniform
" sand in Leadwood, MO. This test was on the same site (Eaton
Dam) as that used by Clemence, et al (1994). Actual test
data is compared to the computer results in Table I for all
three tests. Data is given for loads Q in approximately
44 KN (10k) increments, with the actual test results in the
first row and the computed results in the second row for
each load Q. In the table, M,_,,, is the bending moment at
the end of the T-pipe, X,, is the distance along the shaft
where the bending moment first reaches zero and M+ _ is the
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maximum positive bending moment. The last column (labeled
@x=) gives the distance along the shaft where M+  occurs.

| Tab]e I Actual vs Computed Bending Moments

- ~For—FulT-Scale—load-Tests— - — — — =~

Q M. Xyye M, Bx=

(KN) (ak-m) m (KN (m)

- First Centralia, MO Test (Seider, 1993)

40.0 -2.15 1.09 0.565 1.55
-2.28 1.09 0.610 1.60

89.8 -2.15 1.07 1.568 1.55
-6.49 1.30 4.11 1.88
Second Centralia, MO Test

42.2 -1.08 1.64 NA 2.01+
-1.22 0.762 0.279 ' 0.940

87.1 -2.50 - 1.38 NA 2.01+
-3.13 0.787 .860 1,07

137 -5.14 1.12  1.08 1.66
-6.37 0.940 2.79 1.35

Leadwood, MO Test
39.3 -1.94 NA NA 1.93+
' -1.28 0.787 0.268 1.02
- 79.9 -4.31 1.89 NA 1.93+

-2.48 0.813 0.723 1.07

X200

In the table, M+ is listed as NA (Not Avallable) in some
cases because the maximum positive moment did not occur in
the strain-gaged section. Also, x,, is listed as NA for
the 39.3KN load at Leadwood because the moment was negative
for the entire strain-gaged section. It will be seen that
in all three cases the computed moment curves differ from
the experimental ones sufficiently to bear further
investigation.

Next, computer runs were made for various loads and
shaft lengths in six different clay strengths and five
different sand densities. The basic soil property data used
is given in Table II, where N is the blow count per
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ASTM-D1586, P-Y Code is a software-specific input value which

determines the p-y curve generation algorlthm that was used,

Cu is one-half the unconfined compre551ve strength, Phi is
the angle of internal friction, Gamma is the dry unit weight,

"e50 is the strain corresponding to one=half—the maximum -~ - o

pr1ncmpal stress difference in an undrained shear test, and
Ks is the horizontal subgrade modulus. A P-Y Code of 1
implies p-y curves for soft clay using the criteria of Matlock
(1970) were generated, while a P-Y Code of 2 implies p-y
curves for stiff clay using the Reese et al (1975) criteria
and 4 implies p-y curves for sand using the criteria of Reese
et al (1974). The soil property data was not varied with
depth. The results of these runs are depicted graphically
in Figure 12. :

Table II: Soil Parameters Used in Computer Analyses

" Description N P-Y Cu Phi Gamma  e50 Ks
Code (kPa) (deg) (kN/m) (MN/m*)
Clays

Very Soft 1- 1 9.58 0. 12.9 0.060 8.
Soft - 3 1 19.2 0. 13.5 0.020 27.
Medium 6 1 38.3 0. 14.4 0.010 136.
Stiff 12 3. 71.9 0. 16.3 0.005 271.
Very Stiff 24 3  143. 0. 18.8 0.004 542.
Hard 32+ 3 287. 0. 20.7 0.0035 1085.

" Sands
Very Loose 2 4 0 28. 11.0 0. 1.
Loose 7 4 0 29. 15.1 0. 7.
Medium 20 4 0 33. 17.3 0. 24.
Dense 40 4 0 38.5 20.4 0. 61.
Very Dense 50+ 4 0 43 22.8 0. 92.

X0 P

The two dashed lines in Figure 12 represent the
previously mentioned minimum installed shaft length of 1.5
m (5 ft) ‘and bracket assembly strength limit of 178 kN (40
K) configurations outside these limits were not investigated
since they are not of‘practlcal interest. The areas to the
rlght of and below the various labeled solid lines define
‘regions where convergence to a physically logical solution
always occurred. Conversely, the areas to the left of and
above these boundaries define regions where convergence to
illogical solutions and failure to converge at all were
encountered. Where the boundary is inclined, an increase
~ in shaft length will result in an increase in axial load
capacity due to the increased area available to develop
lateral resistance. The horizontal portions of the "Very

16 Hoyt, et al
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Soft Clay" and "Soft Clay" boundaries represent true buckling
limits. In very soft clay, the shaft buckled elastically
while in soft clay it first yielded and then buckled
inelastically. No buckling of either type was encountered

for‘“any‘o’f “the other soil- conditions: T Tt e e

o RO
R e, 3 STRENGTH L T
"""""" B2 T3 NI\ Shainintied ettt Eeletlele
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l;\me‘f‘*\)/\'\\‘ko;@ /
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21
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Figure 12: Axial Load Capacity vs Shaft Length
: . for Various Soils

The convergence problems encountered in the areas to
the left of and above the boundaries are illustrated in Figure
13. All the deflection curves were obtained at an axial
load of 129 kN in very soft clay. Curve (a) was obtained
with a shaft length of 0.61 m and represents a shaft which
is too short to effectively resist the T-pipe kick-out force.

At a length of 0.76 m, the solution failed to converge at
all. Curve (b) was obtained at a length of 0.91 m and is
clearly illogical for the applied forces. Failure to converge
was again encountered at a length of 1.12 m, while illogical
curve (c) occurred at 1.22 m. At 1.68 m curve (d) occurred,
followed by curves (e) at 2.24 m and (f) at 3.05 m with no
intervening convergence failures. A relatively large interval
of continuous convergence failures followed before the region
of continuous convergence success was reached (curve (g),
5.49 m). Note that the deflections of curves (d) through
(g) have been scaled up by a factor of 5 for clarity.

curves (b) through (f£) are termed "illogical" because
at least some part of the shaft is seen to have deflected
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opposite to expectation. This is most obvious in curves
(b) and (c). Of course, one must ask whether it is the
expectation which is invalid rather than the solution, since
the solution is at least known to obey the laws of mechanics.

"If’"t'li“e‘s‘é““c:“ﬁfVé"s“‘d’id‘“r“e‘pre‘sent“va‘l"i'd solutions; then-solutions- -~ -

would also exist for all lesser loads on shafts of the same
length in the same soil. Such is not the case for the
examples or for solutions in general in the areas of the
chart to the left of and above the various boundary lines.

(a) ) (e) d) (ed (F (g)

SOIL: VERY SOFT CLRY
AXIAL LOAD 129 kN

e R R
(a) 0. 61 1
(b) 0.91 1
() .22 !
CO 1.68 5
Ce) 2. 24 5
k. 3.05 5
(g) 5. 49 5

Figure 13: Deflection Curve Variation with Shaft
Length

CONCLUSIONS

Computer modeling of the three full-scale load tests
showed good, but not complete agreement, with the experimental
data. Two possible sources of error are the effects of the
anchor shaft couplings on the shaft stiffness and the soil
resistance. The couplings fit together loosely, forming
a local moment-free area for small rotations. Once the free
rotation has been used up, the stiffness of the coupled area
is about the same as for the rest of the shaft. Also, the
coupling opens up a larger hole than the rest of the shaft
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area.

can fill, so an annular space is left within which there
is no shaft/soil contact. No attempt was made to model either
of these effects. Further investigation is needed in this

The modeling showed that buckling is a practical concern
only in the softest soils, and this is in agreement with

' past analyses and experience on other types of piles (Sowers

and Sowers, 1970). Figure 12 can be used to determine whether
a particular application is clearly stable (well to the right
and below the applicable boundary line), clearly unstable
(well to the left of or above the boundary), or questionable
(in the vicinity of the boundary). Load tests can be used
to resolve questionable applications.

Further work is planned to investigate the effects of
soil stratification and shaft couplings.
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