
PROTECTING
EMBEDDED SYSTEMS 101
From an asset owner's perspective:
Defining firmware and discovering embedded
vulnerabilities to protect devices from exploitation

Verve Industrial
1415 North Cherry Avenue, Chicago, IL 60642 | www.verveindustrial.com Verve Industrial

1415 North Cherry Avenue, Chicago, IL 60642 | www.verveindustrial.com Verve Industrial
1415 North Cherry Avenue, Chicago, IL 60642 | www.verveindustrial.com

TABLE	OF	CONTENTS	

Legal Notice...3

Embedded Vulnerabilities..4

Introduction ..4
What is an embedded system? ...5
What is firmware? ...8

What is contained in firmware? ... 10

How does firmware fit into a product How does it add security, functionality, or lack of?..... 12

What kinds of vulnerabilities can be present in firmware of an embedded product? 13

What are vendors doing, and where do firmware-related problems arise in the product?... .14
How do I determine if an embedded system has vulnerabilities? ... 16
How do I protect embedded systems from vulnerabilities? ...18

Author and Company Information..2 3

3

LEGAL NOTICE
All information products included in this document are provided “as is” for
informational purposes only. Verve does not provide any warranties of any kind
regarding the information contained herein, however, all reasonable efforts have been
made to understand, collect, and aggregate publicly available information in this
specific instance. All information is to be considered advisory, and all responsibility
lays upon the reader regardless.

Further dissemination of this product is governed by the Traffic Light Protocol (TLP)
marking in the footer of the document & any watermarks contained within. Suggested
risk and impacts are indeed suggestions based on Verve expertise, available
information, best-practices, and Verve cannot be held responsible nor make decisions
ultimately on behalf of the reader or asset owner who owns all responsibilities.

This document is coded TLP-WHITE.

Verve Industrial
1415 North Cherry Avenue, Chicago, IL 60642 | www.verveindustrial.com Verve Industrial

1415 North Cherry Avenue, Chicago, IL 60642 | www.verveindustrial.com Verve Industrial
1415 North Cherry Avenue, Chicago, IL 60642 | www.verveindustrial.com

EMBEDDED VULNERABILITIES

INTRODUCTION
Awhile back I wrote about the fact that URG11 and network stack flaws are not anything
new, and are miscreants left over from the 1990’s and early 2000’s – a period where
these types of software flaws were rampant.

For the most part, these flaws represent an era that devices lacked proper robustness
testing, and had customers obligated to trust the vendor’s security practices. Whilst
most of these were stranded in a land of security by obscurity or islanded (“air-
gapped”), eventually were retired or rotated out of deployment and into the hands of
researchers with ubiquitous network-stack protocol “fuzzers” (a strategy/application
where you test all permutations of a protocol to see if there unintended effects or
erroneous logic).

Yet, despite some of these vendors possibly having visibility or reports on these exact
issues (or ones like them), stack-based vulnerabilities are commonly forgotten by
vendor quality assurance and systems integration processes.

Well even if these systems are deployed in critical infrastructure, energy, oil & gas,
manufacturing, building automation, or are consumer Internet of Things (IoT) products
– the same issues are fundamentally present in all of those types of systems, and
represent a variable level of opportunity & susceptibility to exploitation by a malicious
entity.

Before I continue too far, I want to define the following
questions:

• What is an embedded system?
• What is firmware?
• What does firmware contain? What are the

components?
• How does firmware fit into a product - whether

for function or security?
• How do I manage embedded system

vulnerabilities?

History Repeats

And as such, we arrived again

at the same situation with

RIPPLE20, so what gives? Why

is it a gift that keeps on giving?

And how can an asset owner

keep tabs on embedded

firmware vulnerabilities and

reduce their OT cyber security

risk?

This is a vocabulary problem that results from various
disciplines: between software development, electrical
engineering, systems management, vendors, market segments,
and cyber security (IT, OT and even IoT/IIoT), but it is critical to
understand the general concept on what is in an embedded
system, regardless of the buzzword attached to it.

4

A commodity system:

• Usually running a commodity Operation
System (OS) such as Windows or mainline
Linux

• Has replaceable parts, and can be highly
customizable (e.g., an Administrator or
Technician often can change policy
configurations, install applications, or replace
a hard drive)

• Has cyber security controls and technologies
that are often enterprise or IT in origin

• Relatively easy to perform software upgrades

• Can be virtualized in many use cases

• Performs general computation and usage
tasks fit for a wide audience

Secondly, there are different kinds of vulnerabilities (or flaws), and these need to be
discussed at some level because they are relationship to specific risk families, and/or
vulnerabilities known or unknown that a device may encounter during its lifetime.
Therefore, as an individual assessing risk, or as someone managing vulnerabilities, it is
extremely important that you understand the concepts in this document so you can
come to terms on the security realities for embedded devices.

Without further delay – let us talk “embedded systems 101” from an asset owner
perspective.

WHAT IS AN EMBEDDED SYSTEM?
Without a historical lesson on embedded systems and how they have altered process
automation – or even whether they are the basis for industrial process control and
automation altogether, let’s examine what an embedded system is, and what makes it
different from that of a typical workstation or server.

At first glance, an embedded system appears to be like a typical computer – it often has
a CPU, RAM, storage, and potentially network connectivity. However, the main general
differences between a commodity system (e.g., a PC) is that:

Embedded System

An embedded system is a

collection of electronics and

software that are packaged

together into a specialized

product for a specific purpose.

It is often not commoditized

and is highly proprietary.

5

An embedded system:

• Usually running a specialized OS that has special customizations for specific
hardware

• Features non-serviceable parts that are soldered onto a circuit board/module or
even built into a single chip (also called a System on a Chip (SOC)) - like a cell phone

• Not typically virtualizable due to customized hardware - software does not work
well in every situation or scenario

• Provides specific function at a specific frequency with minimal latency in Real-Time
(RT) (e.g., microseconds and not milliseconds)

• Less trivial to update software due to their deployment environments, but the
complexity to build monolithic updates

• Often designed to continuously monitor and interact with a cyber-physical solution
through the usages of inputs and outputs (digital or analog)

There are other differences and exceptions, but to many users and Administrators from
the enterprise space, they may find it perplexing why one cannot rip out outdated
equipment when there is an issue, or to even upgrade it. There are a number of reasons
as to why (and some of those are specific to the OT realm), but I’ll illustrate an example
that may be familiar for those of you that have had Android cellphones (which is an
embedded device) for quite some time, you may have noticed a few things:

• Updates come in two formats usually - the base OS and per application

• The vendor of the phone often repackages or relies on other vendors as part of the
product supply chain (software and hardware) - this can complicate vulnerability
management and the availability of fixes

• Previously, applications were "baked in" or contained into the base OS updates,
which may or may not have ever been made available for an update, despite
including cyber security updates

• New software might have adverse effects on "older" hardware, such as consuming
additional resources and slowing down a "perfectly" good phone

6

• Upgrades can be tricky in some cases due to connectivity, per component
contained within the device, update integrity and authentication - and even rolling
back if there is a failure

• Ultimately, fragmentation of the ecosystem - the same SOC used in a phone
packaged by several different vendors can have different versions floating around
for the same setup

I realize a cell phone is not a Programmable Logic Controller (PLC) or “Smart”
home thermostat, but I think this highlights a simplistic illustration of the
challenges for embedded devices, but also the constraints around them. Looking down
from a 65k’ foot level, what is in a general embedded system in the following figure:

Mfg
Interfaces

Power
Circuitry

PC
B

&
Ch

ip
 D

es
ig

n

UX /
Displays

UX
Inputs

Serial/
USB etc.

System Interconnects/Buses

System Interconnects/Buses

Misc
IC’s

Dedicated
IO Storage

GPU CPU
Co-

Processors

External
Phys RAM

Integrated
Features

Figure 1: Physical Component Architecture Example

As you can see, there are a few basic areas that need to be understood:

• Interfaces for inputs/outputs (IO)
• Interfaces to connect other chips (ICs and

buses)
• Secondary or purpose-specific chips
• Power circuitry
• Software that makes the hardware

operate as designed, therefore as a
product

• Core purpose of the system
• Hardware that encompasses the entire

system
• CPU or a specialized processor/module
• Memory or RAM
• Storage for the file system, configuration

or data
• Connectivity modules for networking

7

• Microcontrollers - where all software including a "micro" OS, bootloader, applications
and drivers are all in the same chip. There might be limited storage, but the key
element to remember here is that these are very specific chips that focus on
completing a few designated tasks under specific constraints. That's it, but they may
be expanded by other peripheral chips and do not have an MMU.

For most asset owners or consumers, this is more than enough information to
understand what an embedded system is all about, but it is important enough to know
how these components enable a device to operate.

Each of these components may require certain drivers, configurations, specific software
to power-on the device, and bits/bytes to be sent to chips to enable functionality, and all
of that + hardware/software make the system an embedded system.

There is a whole world dedicated to this domain, and I have left out some elements that
are likely going to convolute this topic, but also on the hardware level. There are a
number of interfaces often left over in final products that were used for manufacturing,
accessing consoles, and even for quality assurance purposed during production. Be
aware they they exist, but those are out of scope generally for most asset owners.

WHAT IS FIRMWARE?

Taking a step back now, we know that cellphones, IoT devices, and PLCs share a common
ancestry – electrical engineering, hardware components, and software to “glue” it all
together. However, what is unclear is how this really is different than a PC – after all,
they have drivers, file systems, and applications.

Historically, PC’s were a closed ecosystem, but eventually, they became more open, and
easier to manage or the vendor/platform had good enough support built right in (e.g.,
network stacks). However, embedded solutions because of their nature to fulfill the
goals of an envisioned product – are tightly controlled in both scope, development, costs,
and maintenance vs. a PC where it should just work with everything. At the end of the
day though, it’s really about cost, and as costs go down on more capable components –
embedded solutions will converge similarly to PCs, but likely with amble layers of
abstraction to decouple software from hardware.

Until that day though, embedded solutions typically come in a few flavors:

8

• CPUs with a MMU – these are X86 chips, PPC,
xScale, Intel, AMD, and ARM just to name a few.
These chips may run a limited OS such as that as
a Real-Time OS (RTOS), VxWorks, and even
Linux. These systems are often far more capable
and are the genetic link to the IoT devices today,
or even provide mini PC-like designs such as the
infamous RaspberryPi.

• FGPA and ASIC based - these are highly
specialist solutions, and I will not get into the why
or how, but they are very tightly coupled to the
hardware similarly to micro-controllers and
should be noted.

Regardless, embedded systems have a symbiotic relationship tying hardware to
software, and it is that relationship that operates the device, and that “entire thing” is
called firmware collectively. Generally, firmware can be all the following, or a subset
of them (which I’ll break out in the next section):

It's Misleading

Firmware can be both the entire

files ystem or software required

to make electronics “work”, or it

can be a specific component, and

even be labeled as an update.

Therefore, it is important to be

clear on its scope OR its nature in

general

Configs Binaries Libraries
Loadable

kernel
modules

Services &
daemons Logs

Keys,
password

hashes,
certificates

Proprietary
firmware/

blobs

Storage
File System

Generic
drivers

Storage
interfaces

Network
connectivitiy

Memory
management

Bus, IC, &
other feature
management

System
Watchdog Firewall Debugging

facilities

Operating System (OS)

System
INIT

System boot
parameters or

variables

Low
level

drivers

Kernel & OS
verification

Image
loading

functionality

Failover
detection &

recovery

Bootloader

Platform Microcode

Hardware

To
ol

ch
ai

n/
Cr

os
s-

co
m

pi
le

r/B
ui

ld
ro

ot
/B

SP
s/

Pa
tc

he
s/

So
ur

ce

Figure 2: Simplified Diagram of a "Straightforward" Architecture

9

Depending on your development background, experts consider firmware a misnomer, but
also as a collective term that describes everything running on a system, that's not a
traditional PC-type device or even a small section of the software or a configuration
required to update/alter a device. It can be "versionable", describe the platform/kernel/
bootloader, and even the vendor applications specific to the product, etc.

There is a whole world in there, and we haven't even added the world of hardware-specific
vulnerabilities such as exposed programming interfaces (e.g., JTAG) or even compiler and
programming language-related inheritances (e.g., GLIB or GCC).

WHAT IS CONTAINED IN FIRMWARE?

At this point, I imaged this conversations went from "I know embedded system security is
going to make vulnerability management difficult," to "This will be impossible if vendors
struggle to write secure code, provide timely updates, and I have my own constraints such
as respecting scheduled downtimes or outages."

The reality is that updating/patching except for microcontrollers/FPGAs is unlikely to
occur today unless it solves a process-specific issue. But for systems that use CPUs and
commodity (also referred to as components that have out-of-the-box support for OS
because they include "mainline" support) - patching as a process shouldn't be that hard if
vendors/OEMs reduce their obstruction as they often are a bottleneck in the whole
firmware system.

But fear not. Let's break down what is in firmware a bit more, understand these
components, and some potential vulnerabilities for each using Figure 2: Simplified
Diagram of a "straightforward" architecture for reference.

The table below is not exhaustive, but gives an idea of the comparison I am trying to put
forward. Unless an embedded system is a purpose-driven microcontroller, an embedded
system is nearly identical to a high-performance system (albeit with some alterations and
customizations). Some systems do have different architectures, such as micro-kernels
and several other advanced isolation techniques, but for legacy systems, very few utilize
those to prevent cross-component compromise.

10

https://www.youtube.com/watch?v=-3zWnIupqYM

Component
Area

Specific
Subcomponent Function

Bootloader Bootloader itself Instantiates the minimum
hardware to boot the system
and load the kernel/mount the
file system

Risk Examples

If compromised, an attacker
could load their own
arbitrary code

Environment/
config/device
trees

Often provides specific
information used to describe a
device's hardware or even OEM
information

If compromised,
emergency/backdoors for
diagnostics may be abused,
or product key/licenses can
be manipulated

Kernel itself
If the kernel is replaced,
compromised, or exploited,
the system is often owned
invisibly. It can also suffer
from network stack flaws
and thereby be denial of
services or compromised by
the network

Kernel Loads the core operating
system, instantiates all
necessary hardware, mounts
the file system

If the supply chain is
compromised, or a third-
party module/binary blob/
contributed module has a
flaw - so does the kernel

Drivers may be loaded in, open
source, binary blobs, and/or
statically compiled in. This
enables a variety of functions
for hardware and software

RootFS Could contain any number
of vulnerabilities present
in the file system and
components contained
within it

File system Contains all of the following...

Loadable
kernel modules
and drivers

If modules are unsigned,
an attacker may replace a
module with their own and
load a rootkit on the device

Adds an ability for modules to
be loaded at will by the kernel
where necessary

Binaries and
libraries

Many embedded systems
do not employ signed
binaries and libraries;
therefore, it is very easy to
side load your own binaries
unless a read-only file
system is employed.
Secondly, many
applications use software
stacks and libraries here,
and those are the source of
many vulnerabilities and
challenges.

Provides functionality,
daemons, connectivity,
network stacks, and more

Configurations If the device has an
insecure configuration,
insecure credentials or
insecure daemons/
services, the device could
be compromised

Contains necessary
parameters, options to run a
variety of applications, or even
describe the program

Shell and
related shells

If the device has a sell and
access is required, the
system can be completely
owned by any number of
vectors if access is
obtained and/or not
obstructed

Provides "shell" functionality
on the system and a variety of
binaries, and even scripting
interpreters

11

Don't Forget the Hardware

Physical hardware, interfaces,

and the protocols interfacing

them can generate

vulnerabilities or conditions

that affect a devices operation.

Be aware that often many

different versions of the "same

chip" can and do exist, but may

have documented "errata" also

known as flaws.

Ultimately, does this realization result in additional risks I need to manage? On the
surface, the answer is a staggering yes, but – do not panic. As seen in the movie
Dr. Strangelove or otherwise titled “how I learned to stop worrying and love the
bomb”, you will soon realize that there are things we can do to reduce the collective
risk for an embedded system and it’s components, but also to put pressure on
vendors and their suppliers to improve cyber security in the long term.

Note though that I have excluded physical security concerns about embedded hardware.
This is another in depth exercise for those in the world of embedded electronics, but for
an asset owner, just be aware that if someone can get physical access – they can usually
compromise a system. That also includes obtaining a similar product, exploring it off-line
outside your environment, weaponizing any findings, and bringing them into your
environment (theoretically); fortunately, this might be more of an OEM focused threat.

HOW DOES FIRMARE FIT INTO A PRODUCT? HOW DOES IT ADD
SECURITY, FUNCTIONALITY, OR LACK OF?
This circles back to the concept of firmware is largely that is simply either a complete
“image” containing everything a system needs to run, or a small package of updates,
configs, or binaries (even updates). It basically is the logic that makes relatively lifeless
electronics come alive and perform their duties.

Therefore, firmware is an integral part of a product,
but it can contain vulnerabilities, add remediations/
hardening, decrease or increase security
through the provisioning of services or programs,
and can also be completely devoid of any security
or security-related functions.

Conversely, when a vendor states “secure firmware”
– it might mean any number of possibilities. For
example:

• Does it imply the firmware is encrypted? Is it
signed and validated for authenticity and
integrity?

• Does the word "secure" imply specific security
functionality, literally embedded and used within
the product? Such as tamper-resistant
hardware.

12

https://en.wikipedia.org/wiki/Dr._Strangelove

• Does it imply that the system has been hardened? Or follows a rigorous software
development lifecycle (SDLC)?

• Does it mean security functionality is contained within it? Or only more secure
functionality is provided, and not necessarily deployed out-of-the-box unless
configured?

And should a vendor be taking proper precautions or enabling security features within a
product, you the asset owner can benefit from them because a malicious entity will
require additional efforts (theoretically) to compromise the device, or might even reduce/
eliminate threat vectors to your environment over the long term.

Security is often fodder for the industry marketing machines, but it is important to tease
out the definition of security, and to validate it. In fact, it is your responsibility as an asset
owner to make an informed decision where possible, and to ensure due diligence when it
comes to the security of critical infrastructure or industrial environments.

WHAT KINDS OF VULNERABILITIES CAN BE PRESENT IN
FIRMWARE OR AN EMBEDDED PRODUCT?
While we flirted with the terminology of what a vulnerability is, or even the definition of a
flaw – what does it mean? And types of vulnerabilities at a general level can be present
within an embedded product?

In essence – a vulnerability is quintessentially a flaw, that if under the right conditions,
can be exploited by user with mal-intent, result in instability or failure over time with little
interaction, and/or by accident. In other words, a “bug” that results in anything, but the
expected “correct” behavior.

In OT, or ICS environments, those flaws and the threats that might take advantage of
them often differ from those in traditional enterprise IT. At the end of the day though, the
asset owner still needs to understand what they are, how they relate to their
environment, and which to remediate.

From a classic perspective, there are seven high-level vulnerability families:

• Software vulnerabilities
• Hardware vulnerabilities
• Network and communications vulnerabilities
• Logic and configuration-based vulnerabilities
• Physical vulnerabilities
• Organizational vulnerabilities (including deployment environments)
• Personnel-related vulnerabilities

13

To some degree, embedded systems can suffer from all the general areas – especially
within an asset owner perspective. And on the other side of the coin, a vendor might
only need to concern themselves with the threats and vulnerabilities as they relate to the
product only. For the most part, an asset owner should be concerned with protecting
themselves at the physical, organizational, and personnel levels regardless of the
system under consideration, but to also be considering the vulnerabilities outright for a
specific product such as an embedded system (items in bold indicate primary risks, and
secondary risks in italics that apply to embedded systems).

And lastly, it is important for an organization to understand that they often add
unnecessary risks to embedded systems by insecurely deploying devices (e.g., default
or weak passwords, and insecure protocols when secure versions exist), and they often
deploy insecure logic or mis-use security features. Therefore, it is critical that even PLC
logic and configurations are considered from a security point of view.

WHAT ARE VENDORS DOING, AND WHERE DO FIRMWARE-
RELATED PROBLEMS ARISE IN A PRODUCT?
Verve would love to say that most vendors are doing a great job, but in truth, writing
software is difficult, and suffers from both the human condition & the consequences of
business motivators. Devices are complex system of systems, and as they get more
powerful, or offer even more features – the likelihood of a vulnerability being present
also increases.

However, some vendors are doing a better job than others, and those that are quickly
responding with clarity to their customers are leading the pack, and often regularly
publishing security disclosures while assisting customers in finding solutions. Other
than that, here are some areas that may seem obvious, but directly cause or complicate
managing vulnerabilities in an embedded device:

• If a product is end of life (EOL), insecure by default, and vulnerabilities are found in
a component within it – these vulnerabilities will be carried to the device’s grave.

• Many device vulnerabilities arise from a lack of quality and robustness testing.
Today, many asset owners are requiring audits and certifications of products, which
ideally, will act as a second set of eyes on a vendor’s products & practices. This can
be gamed, but ideally, a company is also doing their own security testing for due
diligence.

14

• Some vendors have encrypted update/firmware packages, but most vendors
may or may not use other security mechanisms correctly (or at all), such as
signed bootloaders, file systems, kernel modules etc. Therefore, it may be a false
pretense that they offer “secure” firmware.

• Many products improperly use cryptography primitives and therefore, suffer
from several implementation issues, or even re-use of “secrets” such as
asymmetric/symmetric cryptographic keys.

• Insecure configurations, especially defaults hinder the device’s security, but
unfortunately, this is pushed onto the asset owner by both the vendor and
integrator. Alternatively, configuration options may conflict with each other and
produce an insecurity, and therefore, validation is required.

• ALL PRODUCTS contain software that is obtained from somewhere else, and this
poses some statistical possibility that it can introduce a flaw that might be
exploited under SPECIFIC conditions. Without scaring the audience, a compiler
may introduce flaws, a C library may have a poor implementation of malloc or a
binary function, and software may rely on a software component or library
obtained from another source.

• Some software and protocols are insecure by default or design, have poor
implementations, AND little can be done about it except to disable them, limit
access, or use a more secure alternative, if available. For example, if Telnet is
enabled by default, but SSH is potentially available, Telnet should be disabled,
and SSH used (if necessary), but this might not be possible

• ZERO PRODUCT is intrinsically secure, even if developed entirely in-house, and
can suffer from software engineering lapses, logic errors, or any other
vulnerability.

• Hardware MAY also contain its own vulnerabilities, or flaws when used in a
particular fashion. For example, a network PHY that uses SPI and interrupts may
overwhelm a CPU, and cause a software watchdog in the kernel to cause a
reboot.

15

HOW DO I DETERMINE IF AN EMBEDDED SYSTEM HAS
VULNERABILITIES?
To be fair, many organizations know their environments very well, and they have
developed immense troves of expertise at the process level (sometimes even for cyber
security), but not all have the necessary experience or available resources (e.g., time) to
investigate if an embedded system has vulnerabilities (disclosed, undisclosed, or
insecure by design).

Regardless, to find a vulnerability does not require a trained eye in all cases, but it does
require a certain amount of knowledge about how systems work, how they are put
together, how software is designed, and even a certain amount of detective skills.
Systems engineering, programming/computer science, and even cyber security can
accelerate vulnerability discovery. Initially, there are some systemic approaches to
discovering vulnerabilities without high-risk/active discovery, this can happen in a
couple of ways:

• From a known and up-to-date database of vulnerabilities, compare your inventoried
assets to that list. This can include software on a host, to even embedded systems,
but readily available in many product’s dashboards for example.

• Looking for information that implies legacy protocols are in use. By themselves,
legacy protocols are not a direct security risk, but unprotected and unfettered
access to them is. And using that same train of thought, there is nothing wrong with
them being present if they are being protected & provide essential service, but you
can note them by having an appropriate product intelligently discover assets and
examine the results

• Using industry/product knowledge, look for markers of weakness. For example, if a
device has an FTP server, and it has a particular OS vendor such as VxWorks being
listed on the banner – you might be able to find a series of undisclosed
vulnerabilities for this particular device (e.g., by cross referencing the version
provided by the OS vendor, to that in the OEM product in front of you).

• Reading documentation such as release notes, or deployment guidelines. Often
weaknesses are noted within those documents such as, device will only accept one
connection at a time, or if multiple connections are performed, the oldest will be
shut down and so on…

16

• Continually monitor all product, vendor, and potential third-party software
component providers for updates and security commentary. This can be fairly
time consuming, and assumes you have an active and accurate inventory of your
assets, but also, may be overwhelming to make sense of the jargon and
challenging to determine relevancy to your environment. If this can be automated
and consumable, there would be a lot of value in this approach.

The above are very safe and reliable methods to potentially discover vulnerabilities but
are not “deep” by themselves. One method might be to invest in your own technical
testing and follow processes outlined in ISA/IEC 62443 for example, but for more in-
depth vulnerability discovery, submission of devices to researching firms, specialized
analysis, and other deep knowledge can be obtained by a variety of experts or companies.
However, for the curious – it generally follows an approach that looks like:

Candidate device
selected for

testing

Alert is released

Aggregate device
& vulnerability

state information

Add (un)known
flaws and

supporting info

Discover &
summarize
available

information

Add platform,
OS, and BSP

info

Probe
hardware if

possible

Form
hypothesis &

test

Report findings

Find
issues

Figure 3: General Approach to Finding Vulnerabilities, but Assumes a Number of Tools,
Probes or More Delicate Expertise to Obtain Adequate Confidence in Results

Unfortunately, all vulnerabilities may not be reliably found, and so it is wise to take a
defensive position that assumes all devices (even with zero published vulnerabilities) are
likely to contain vulnerabilities that could impact your organization. It also takes some
finesse to determine their achieved protection levels, capabilities, and how to limit the
likelihood of threats that may target or affect them.

17

https://www.youtube.com/watch?v=lB3fOvW4FtE

HOW DO I PROTECT EMBEDDED SYSTEMS FROM
VULNERABILITIES?

In a perfect world, all devices would be secure by default, or have vulnerabilities that are
easily resolved. Unfortunately, this is not often the case, and surely, this series of
vulnerabilities will likely persist long into the future – including after the retirement of
many devices.

And after all, the ability to patch many embedded systems is dependent on the OEM, the
parties that contributed components, and your organization’s preferences towards
updating embedded OT systems.

Therefore, neither any security product vendor nor an asset owner can outright issue
firmware-related fixes in many scenarios, but what they can do – is to help you secure
them (mitigate or remediate vulnerabilities) with adequate compensating controls that
reflect your organization & the risks those assets might pose if compromised.

Determine
assets & comms’

Assess & identify
risks

Select &
champion a site

Identify
solutions to

protect assets

Implement
solutions

Record
decisions, asset

info & vulns

Acknowledge
residual risk &

state
responsibility

Risk?
YES

Has
solutionYES

NO

NO

Includes
compensating

controls &
remediation

With
adequate
support

Use your
favorite

framework(s)
and existing risk
info (e.g., cyber

phazops)

Something
representational,

but also lower risk
initially

Initial steps
are usually

XLS and
workshops

Gather data
via a variety of

means and
methods

Consider any
changes to org

policies &
procedures +
risk registrar

Figure 4: Another Generalized Example Process to Examine How to Protect an
Embedded System (or Systems Under Consideration) with Reflection on their
Deployment and/or Related Context, Specific to the Organization

18

Again, the good news is that an asset owner has a series of powerful tools easily
accessible on the market and a number of capabilities already available to them
regardless of the realities of managing some types of vulnerabilities in embedded
systems. It is very doable to identify embedded systems, their models, known
vulnerabilities, potential network born risks on a number of legacy insecure network
protocols, weak authentication schemes, and even to determine their location (with a bit
of work sometimes). And it is through these products or capabilities that you secure
embedded systems through a layered approach (or defense in depth) through securing
assets via their functional role, but also by their site, zone, and/or communication
conduit.

To manage the risks potentially represented by embedded vulnerabilities, or to
remediate them, we recommend to asset owners the following (but not specifically
limited to):

• Continually maintain an accurate inventory of deployed assets and consider
embedded systems as part of your vulnerability, risk, and OT systems management
programs. Notably, these systems may have different operational constraints,
however, several techniques have been successfully been used to safely identify,
inventory, and manage non-commodity devices. Verve recommends including them
as part of a holistic solution that raises the visibility of these devices such that they
are illuminated for actionable risk management reduction and remediation.

• Ensure firmware and software updates are obtained from a legitimate source. This
could be software directly downloaded from the product’s vendor portal (e.g., X OEM
portal), or confirmation that the software matches a legitimately distributed hash,
which can be used to confirm authenticity, but also that it is 100% exactly as
released; this could prevent any corruption during transit etc… Secondly, ensure all
software and firmware is stored securely and archived appropriately within the
organization.

• Evaluate your desired security levels for the devices, their function, or zone under
consideration. This might seem obvious, but it might be fair to both assume that
embedded devices need protective controls, and that they need to be securely
deployed. If a device is performing a specific function over another, then another
target level might be needed, or you may want to re-evaluate your deployments (and
integrators delivery) to determine if secure deployment guidelines were followed.
However, it has been known that security decreases over time (rots) and therefore,
re-evaluating should be continuous and technologically driven if possible.

19

https://us-cert.cisa.gov/sites/default/files/recommended_practices/NCCIC_ICS-CERT_Defense_in_Depth_2016_S508C.pdf

• Patch or update affected devices that have a firmware update available WHEN/
HOWEVER that is applicable, and/or re-configure devices such that they do not
use vulnerable protocols where feasible. This can potentially lower the risk
exposure of a device, improve device stability, prevent accidental encounters
(e.g., situations that are discovered by accident without a malicious entity) with
these vulnerabilities, and deny a network-based attack vector from potentially
affecting your environment. I do acknowledge though that this is at the discretion
of the asset owner, and a mature risk/vulnerability management process is
required to assess whether a firmware update is applicable or required (if it even
exists at all).

• Track vendor security portals through automation and mailing list subscriptions.
Of course, it should be obvious, and it might take a little bit of investment, but
security updates in OT are far less frequent than those in IT, and this should be
less strenuous than you might imagine, especially if partners offer services to
support risk and vulnerability management.

• Protect systems, network infrastructure, endpoints and points of ingress that are
commonly compromised, have a higher risk exposure, and possess a statistical
likelihood of being targeted. A majority (likely most attacks) originate from
commodity IT systems or have a significant effect on the success of an attacker,
and as such, should employ a variety of recommended cyber security controls
and best practices. This includes protection against commodity malware threats,
security updates and patches, application whitelisting, secure configuration/
hardening, firewalls, monitoring, and other technologies.

• Prevent direct access to vulnerable devices by using network access controls,
segmentation, and limiting network communications to only authorized systems
and/or specific communication protocols; in particular, isolate them from
business networks and functions through zone and conduit protection concepts.
This includes ensuring DNS connections are monitored, filtering upon network
protocol flags, block fragmented IP traffic, block uncommon ICMP messages and
responses, disable DHCP or use an alternative, disable IP tunneling, disable or
block IPv6, block/sanitize if possible malformed Ethernet and TCP frames, limit
to traffic only trusted domains or zones, and ensuring that these devices cannot
be reached from the Internet.

• Sanitizing network protocols for irregularities or non-standard usage by a
capable network security device may also reduce the risk or reduce unintended
behavior by a device using a stack such as this one. However, it may cause
issues for devices or vendors that regularly exhibit non-standard behavior and
disrupt network communications.

20

• Monitor ARP tables, DHCP requests, DNS lookups, IP connections, and other
network related infrastructure for conditions that would enable an organization to
identify malicious activity or an anomaly. All logs should be forwarded, monitored,
and investigated as part of a continuous process to manage alarms in a way to
detect events, and differentiate those from accidental, steady-state, and
malicious activity.

• Ensure default passwords are changed to something of reasonable hardiness and
ensure insecure legacy interfaces are disabled at deployment IF secure
alternatives exist. The chances of an organization migrating to a more secure
“modern” alternative is very low in a running environment, but also CVEs or alerts
are less likely to ever be released for a known security issue IF a secure option is
documented/provided; therefore, vulnerabilities will NEVER/RARELY ever be
noted by single focus vulnerability management solutions that rely solely on
scanning.

• Use an OT SIEM to receive asset and application logs where possible and monitor
for deviances or fluctuations in the environment. Most environments are steady-
state (rarely change or are very predictable) and so identifying anomalies should
be infrequent if alarming is sufficiently tuned (just as you would on an HMI or
SIS). Focus on quality and context regardless.

• Ensure multiple levels of security exist to protect embedded devices. It is safe to
assume a number of hurdles exist in receiving updates or even deploying them,
but it is also safe to assume that “unknown” vulnerabilities exist within them,
ranging from zero-days to “forever days”. Best to protect investments with
layered security and engineer risks out if possible.

• When remote access is required to access these systems or sites home to these
systems, use secure remote access technologies with the acknowledgment that a
VPN is only as secure as the connected devices (e.g., the remote workstation may
be insecure and pose a threat if compromised)

• Perform regular polling of changes on a system for unauthorized firmware
revisions, configuration changes, or process logic. This is even more true when
devices have functionality that allows for localized clearing of logs or when
connections are not always online to “upload” the latest copy of logic to a
managing station.

21

• Adequate governance, policy, and procedures to sufficiently handle risk,
vulnerabilities, and incidents. It is one thing to receive an alarm, but another to be
able to act on it in a procedural and consistent manner.

• Regularly perform “fire drills” for cyber security in ICS environments. This
includes performing forensics on systems where possible, but also the end-to-
end testing of a process designed for disaster or event handling, reporting, and
recovery.

• Regularly monitor for unauthorized disclosure of intellectual property (IP) or logic,
but also anything which may give an adversary an advantage. For example, logic
on Pastebin, company passwords on the dark web, GIT repos, employee LinkedIn
profiles etc. After all, many embedded vulnerabilities are insecure by design
vulnerabilities and all one needs to know is the default admin username, plus your
organizations’ favorite list of passwords (e.g., AbcOrgPassword123).

• Leverage partners and services to provide timely vulnerability information, testing
and validation for vulnerabilities and risks in your environment. What this means
is, if a device is running X, but the vendor has labeled the product as End of Life
(EOL), or is being secretive about the contents within it, it might be best to
perform adequate due-diligence to test for vulnerable components contained
within it, and a) contact the vendor with concerns, or b) take adequate measures
to reduce inherited risks, and c) report the vulnerability to relevant authorities;
especially if in a compliance-based environment.

• Request that vendors provide certification for cyber security, and validation of
security properties (or achieved security capability levels). One approach is to
ensure testing as part of the conditions to satisfy the RFP, and if they cannot, be
ensure that legal and risk management are astutely aware of the risks this may
entail. Obtaining reference samples, validating secure deployment guidelines, and
performing security testing is also another great way to improve security upfront
rather than later once the investment has already “hit the floor”.

22

ABOUT
THE COMPANY

ABOUT
THE AUTHOR

Ron Brash is the Director of Cyber
Security Insights at Verve Industrial
Protection where he injects a variety of
technical expertise ranging from
vulnerability research to cyber-risk
advisory from several critical
infrastructure domains (O&G, energy,
utilities, aviation). He also has over 12
years’ experience working with
embedded industrial control systems,
possesses a MsCompSci, and a BTech.

Previously, he provided technology risk
advisory, founded a successful systems
design consultancy, created the S4 ICS
Detection Challenges, and was an
embedded developer specializing in
network deep packet inspection (DPI)
for industrial environments.

With over 25 years of OT expertise,
Verve Industrial is an industrial control
systems cyber security company. Verve
partners with clients to bridge IT OT
security challenges in industrial
environments.

The Verve Security Center provides
robust asset inventory, vulnerability
assessment, threat detection and the
ability to safely remediate risks in a
unified software-based platform.

Verve Industrial serves industries
across utilities (such as power, oil & gas,
water), manufacturing, healthcare and
building controls.

Please visit us at
www.verveindustrial.com to learn more.

INFO@VERVEINDUSTRIAL.COM
888-756-3251

	Verve longform template 2020.pdf
	Plant Historians - Verve Industrial.pdf
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page

