
Achieving Strength Through
Chaos Engineering

IF THERE’S ONE PERFORMANCE MEASURE
YOU HAVE TO DELIVER ON, IT’S UPTIME

Introduction
It’s the unexpected and unpredicted that will cause the problems
– and in a world where systems are complex and inter-dependent,
those are an accident waiting to happen.

The key to finding and fixing the unpredicted and unexpected is chaos

engineering. This playbook looks at what chaos engineering is, how to

conduct it, and the tools you need.

The difference between 99% and the gold standard of 99.9999% uptime is

significant. It’s the difference between over 3.5 days of downtime in a year,

which would be unacceptable to many people, and just over 30 seconds,

which is potentially barely noticeable.

The simple fact is that customers rely on your service and expect it to be

available. It’s bad for business – and your reputation – if you let them down.

Hourly (0%)

Monthly (2.22%)

Yearly (97.3%)

Daily (0.04%)

Weekly (0.043%)

Achieving Strength Through Chaos Engineering | 2

Examples of system failures:
• When Amazon’s web services S3 system went down in March 2017,

it was estimated to have cost U.S. businesses at least $310 million. [1]

• When the UK bank TSB experienced an online banking system failure
in 2018, it cost the business £330m and lost it 80,000 customers. [2]

• When Facebook went down in March 2019 after a server configuration
change, it attracted negative headlines across the globe. [3]

That’s just the commercial sector. The systems that organizations in

the aerospace, defense, and healthcare rely on are mission-critical.

Downtime could literally put lives at risk.

Achieving Strength Through Chaos Engineering | 3

https://www.axios.com/amazon-outage-cost-150m-for-s-p-500-companies-2295532812.html
https://www.tsb.co.uk/news-releases/tsb-announces-2018-full-year-results/
https://globalnews.ca/news/5057562/facebook-outage-platform-down/

The difficulty in
maintaining service
It’s easy to say uptime is important. It’s much harder
to achieve in practice.

In the past, software ran in a highly controlled environment. Little could

go wrong and problems were easy to find. Software updates happened

very infrequently, allowing plenty of time for testing before release. [4]

Fast forward to today and we live in radically different times. Software runs

on multiple servers and relies on distributed networks. Speed of release is

a critical competitive differentiator but testing needs to be as robust and

detailed as ever. [5]

In short, there are infinitely more opportunities for things to go wrong and

it’s infinitely harder to find the problem.

Testing goes some way to finding and fixing the problems. But by its

very nature testing finds and fixes known problems or problems that

can be anticipated.

It doesn’t test for different configurations, different error conditions or the

many factors beyond your control in an internet-distributed system, such

as the failure of your third-party host server or a surge in usage. It’s these

problems that will really trip you up – and bring down your systems.

It is possible to find workarounds and fallback positions, of course – but you

don’t want to be finding them on-the-fly in the live environment. Instead, you

need to have anticipated the problem and have a protocol to cope with it

if it happened.

The key to finding the unexpected and unanticipated problems is chaos

engineering – and it’s anything but. It’s the tightly controlled methodology

developed by Netflix and used by enterprises worldwide who know that

maximum uptime is central to their success.

Achieving Strength Through Chaos Engineering | 4

https://globalnews.ca/news/5057562/facebook-outage-platform-down/
https://www.tsb.co.uk/news-releases/tsb-announces-2018-full-year-results/

The concept of
chaos engineering
The term ‘chaos engineering’ was invented by engineers at
Netflix, but in many senses, the concept has always been
with us.

Standard testing practices such as failure testing, disaster recovery and

game days all look to achieve a similar thing as chaos engineering does

– proactively perform experiments, inject failures and engineer disaster

scenarios so solutions can be developed thoroughly and calmly rather than in

the heat of the moment when the clock is ticking.

By conducting chaos engineering, developers and testers can have more

confidence in the resilience of their systems in even worst-case scenarios –

and according to the engineers at Netflix, it was a necessary evolution in the

history of software development. [6]

Chaos engineering reflects a cultural shift within the software industry away

from coordinated design and architecture, monolithic applications, and

topdown engineering toward coordination of API boundaries, microservice

architectures, and flattened engineering hierarchies.

As the complexity of these loosely coupled architectures increases, reliance

on automated tooling to provide end-to-end tests for business-critical

assumptions about the system becomes unavoidable. Confidence in the

endto- end behavior of the system is manufactured by experimenting with

worst-case failure scenarios in the production, scaled-out system.”

Peter Alvaro, Kolton Andrus, Chris Sanden, Casey Rosenthal,

Ali Basiri and Lorin Hochstein. [6]

Achieving Strength Through Chaos Engineering | 5

https://dl.acm.org/doi/10.1145/2987550.2987555
https://dl.acm.org/doi/10.1145/2987550.2987555

How does chaos engineering
differ from testing?
But if much of what chaos engineering does is already
present in standard testing setups, the question is: what
makes it different?

Perhaps the biggest difference is that chaos engineering seeks to generate

new information and find out what happens when something unlikely or

unpredictable happens.

It is also true to say that traditional testing techniques typically have a binary

output, making it the software equivalent of a closed question. Chaos

engineering, in contrast, is the equivalent of an open question that reveals

new areas for investigation.

Achieving Strength Through Chaos Engineering | 6

What are the benefits
of chaos engineering?
There are benefits to all stakeholders from conducting
chaos engineering and deliveringmore resilient and more
reliable systems.
• Customers benefit because uptime is maximized. (Remember the gold

standard of 99.9999% uptime and how that translates in practice.)

• Developers benefit because there are fewer critical incidents to solve
and there are fewer damaging postmortems that affect team morale
and a better standing within the organization.

• Businesses benefit from an improved reputation for reliability and lower
levels of revenue loss caused by downtime.

So if the benefits of chaos engineering are clear, the next question is:

how do you conduct it. We’ll look at that in the next section.

Chaos engineering aims to create controlled chaos to see how much

stress a system can withstand and to identify weaknesses. The website,

principlesofchaos.org, defines the process of chaos engineering in

four steps:

• Start by defining ‘steady-state’ as some measurable output of a system
that indicates normal behavior.

• Hypothesize that this steady-state will continue in both the control group
and the experimental group.

• Introduce variables that reflect real-world events like servers that crash,
hard drives that malfunction, network connections that are severed, etc.

• Try to disprove the hypothesis by looking for a difference in the steady-
state between the control group and the experimental group. [7]

Achieving Strength Through Chaos Engineering | 7

https://principlesofchaos.org

As this definition shows, chaos engineering is far from
chaotic. It is highly controlled and measurable. The idea
is to understand what happens when chaos ensues –
not to cause chaos.

There are also several best practices that have evolved to further add to

the sense of control. These can be summarised as follows:

• Start small before scaling up.

• Start in a staging environment before moving to the production
environment.

• Prioritize your activities and conduct the most important activities first.

• Calculate the cost of the experiment vs the ROI to understand its
importance.

• Keep track of everything and be able to roll back to the steady
state immediately.

• Don’t conduct experiments on known problems – fix them first.

• Automate the testing when you understand a failure to maximize
efficiency.

• Invest in Intelligent Exploratory Testing to increase the test coverage
of your application, cutting edge technology powered by Artificial
Intelligence will ease the testing load and increase productivity.

• Decide whether it’s more effective and efficient to build your own tools
to conduct the experiments or to buy tools. In either case, they must
give you the ability to carry out best practice – i.e. intelligent, planned,
controlled, safe, and secure experiments.

In the next section, we’ll look at this last point in more detail and

consider one of the tools available for conducting chaos engineering:

Eggplant performance.

Achieving Strength Through Chaos Engineering | 8

The power of eggplant performance
in chaos engineering
Eggplant performance provides open, extensible, and easy-
to-use performance and load testing tools that can test the
widest range of technology and can scale up to simulate any
load you need. It offers testing teams six key benefits:

Application-level virtual users Eggplant performance is the only tool that

allows testers to easily combine protocol-level client simulation to put the

server under stress and verify the user experience at the same time. For

example, it can place a load of 10,000 users on a server via protocol-level

simulation and simultaneously validating the user experience on a mobile

device, a tablet, and a PC (in several different browsers).

Scalable and distributable Eggplant Performance allows testers to partition

virtual users any way they like across injectors. This means you can choose

to run 100 virtual users from one injector, 200 from another injector, and so

on. This means that Eggplant Performance is scalable to any number of virtual

users. And by putting injectors in different geographical regions, it also means

testers can analyze the impact of the client’s location on the user experience.

Broad technical coverage and customizable virtual users Eggplant

Performance has deep support for testing websites, but it also has in-built

support for other common clientserver technologies such as Java, .NET, and

Citrix. And for protocols and technologies that are not supported ‘out-of-

the-box’, Eggplant Performance provides ‘customizable virtual users’. This

enables you to create new virtual user types that understand your protocols

and technologies.

Dynamic run control Eggplant performance allows testers to modify the test

parameters at runtime, for example, increasing the number of virtual users.

Combined with real time monitoring of the server and client, this allows the

testers to efficiently perform exploratory testing.

Data gathering, analysis, and presentation Eggplant Performance gathers

comprehensive diagnostic information from the server and the client, and

gives testers tools to analyze this information.

For example, statistical analysis of response times (including mean, max,

min, and percentiles), ability to correlate factors, ability to compare test runs,

ability to quickly aggregate and drill down into data, and the ability to import

data from external monitoring tools and include this in analyses. Information

about application errors is also gathered, exposing errors that might not

normally be seen when the system isn’t under load.

Easy but powerful automation script creation to create a typical Eggplant

Performance automation script you simply execute the scenario once

manually (e.g. by opening a browser and navigating the target website),

and Eggplant Performance will record the network traffic and create a script.

The system is able to handle the noise of factors such as sessions, cookies,

dynamic forms, asynchronous communications, mobile devices, and security,

which means that scripts are quick and easy to create and maintain.

Achieving Strength Through Chaos Engineering | 9

Case Study: William Hill
Founded in 1934, William Hill has one of the most recognized,
respected, and trusted brands in the gambling industry.

Founded in 1934, William Hill has one of the most recognized, respected, and

trusted brands in the gambling industry. Employing more than 16,000 people

in nine countries, the company continually works to transform its business,

investing in new technology and innovation, and extending its vast product

range to capture substantial growth and opportunities.

Sports betting is the largest and fastestgrowing section in the online gambling

sector. Horse racing represents a significant proportion of the sports betting

market. The Grand National race generates over £150 million, making it the

busiest day for betting companies in the UK.

Achieving Strength Through Chaos Engineering | 10

The problem: load
William Hill guarantees betting platform performance for
the Grand National.

As the UK’s leading bookmaker and one of the most recognized and

trusted brands in the gambling industry, it is imperative that William Hill is

able to handle the load on its online sports betting platform for the Grand

National day.

The load placed on William Hill’s systems during the Grand National period is

significantly different than for any other race, and is comparable with the load

increases seen during Boxing Day sales for online retailers.

The betting platform’s infrastructure is hence significantly strengthened to

support the workload, but performance testing this infrastructure is made

more complex as it can only be conducted in live environments.

The goal
William Hill set the goal of maximizing the uptime for the company’s web

and mobile sports betting applications around the Grand National betting

period. The company’s performance testing solution is composed of Selenium

WebDriver running on Grid with custom wrappers built to run from Amazon

cloud instances. This testing solution was limited in terms of the accuracy

of workload profiles, the repeatability and consistency of tests, and the

scalability limitations of the tools.

“The key to achieving our goal was being able to simulate as best as

possible the transactions and user journeys that would be seen on the

Grand National day.

To achieve this we needed to build a robust performance test framework

using a tool that was flexible, scalable, and capable of simulating large

transactional volumes. And all of this with the ability to script using Java —

our preferred language of choice. We also needed a performance testing tool

that would allow us to build an accurate and repeatable process to undertake

tests on our live infrastructure.”

- SDET Manager, William Hill

Achieving Strength Through Chaos Engineering | 11

Eggplant
performance selected
William Hill selected Eggplant performance as its new
performance test solution based on several of the product’s
key features. Eggplant Performance provides sophisticated
performance and load testing capabilities that can test the
widest range of technology and can scale up to simulate
any load, but are still easy to use.

The product helps ensure that applications continue to work, perform, and

provide an excellent server performance when being accessed and used by

thousands of simultaneous users.

And its script creation capabilities allow software development engineers in

test to quickly create powerful scripts,Eggplant Performance also delivers

significant productivity advantages.

The forecast transactional volumes were focused on William Hill’s

key business transactions and a general profile of browsing activity

in the background.

The key business transactions consist of actions including bet placement,

registration of new customers, and depositing funds from a card into an

account. Testing coverage ranged from web apps on desktop and mobile

devices like iPhone and iPad.

As the performance tests were undertaken in live environments,

numerous control procedures were put in place to ensure there was

no impact to customers.

Initially, about three tests were executed during the day, but as bottlenecks

were resolved, tests became more complex and user numbers were tweaked

for further increases in load.

Gradually, tests were executed on demand, and during the project new

transactional records were set almost on a daily basis.

“Ultimately, the testing load we generated using
Eggplant Performance was more than the peak
transactions compared to some of the world’s

busiest stock exchanges.”
— SDET Manager, William Hill

Achieving Strength Through Chaos Engineering | 12

50 performance tests in
10 weeks with Eggplant
performance
15 performance tests in 10 weeks last year.

In the build up to the 2015 Grand National, William Hill conducted a total

of 50 performance tests over 10 weeks, compared to just 15 tests over the

same time during the previous year.

On Grand National day, all of William Hill’s betting systems coped with the

workload and not a single high-severity incident was raised. In all, there were

only two incidents for the entire day, and infrastructure remained stable.

“The consistency of tests in
Eggplant Performance helped us ensure
that fixes applied between tests, were

working as intended.”
— SDET Manager, William Hill

Achieving Strength Through Chaos Engineering | 13

Conclusion
Today’s developers are under more pressure than ever before.
Uptime remains a significant performance measure but at the
same time systems are becoming more complex and more
dependent on third-party systems, making them harder to test.

Chaos engineering gives developers the methodology to find the problems

and develop solutions out of the glare and before they happen. And one of

the most powerful tools to support their efforts is Eggplant Performance.

At Eggplant we help businesses to test, monitor and analyze their end-to-end

customer experience and continuously improve their business outcomes.

We provide business with award winning software such as the winner

of Codie’s Best DevOps tool 2019 – Eggplant Digital Automation

Intelligence Suite.

Companies worldwide use Eggplant to surpass competitors, boost

productivity, and deligh customers. How? By dramatically enhancing the

quality, responsiveness, and performance of their software applications

across different interfaces, platforms, browsers, and devices – including

mobile, IoT, and desktop – in agile, DevOps, and innovative application and

data environments.

We are a global company serving more than 650 enterprise customers in over

30 countries. Sectors include automotive, defense and aerospace, financial

services, healthcare, media and entertainment, and retail. Eggplant is owned

by Keysight Technologies (NYSE : KEYS).

Achieving Strength Through Chaos Engineering | 14

Information is subject to change without notice. | 7121-1177.EN © Keysight Technologies, 2021 | Published in USA, November 03, 2021 | keysight.com

Learn more at: www.keysight.com/find/eggplant
For more information on Keysight Eggplant products and solutions, please contact us.

Learn more about Keysight Technologies at www.keysight.com

http://www.keysight.com
http://www.keysight.com/find/eggplant
https://www.eggplantsoftware.com/contact-us?hsCtaTracking=652fe680-7190-44ab-9121-dddde22327c6%7Cbd356fd6-b20e-45ec-a0d5-29b93fdff1d4
http://www.keysight.com

	Lower Nav Button Ch:
	 2:

