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The pandemic has exposed weaknesses in conventional 
machine learning (ML) algorithms, which have been unable to 
adapt to the new normal. However, even in periods of relative 
stability, these algorithms are liable to fail. 87% of ML projects 
in industry never make it beyond an experimental phase, 
according to one estimate. 

Google research recently demonstrated an often-overlooked 
but key reason for real-world failures of ML systems. The crux 
of the problem is that large numbers of models perform equally 
well in training. Some are well-behaved in the real world, but 
others fail disastrously — and conventional ML pipelines can’t 
tell them apart. 

The forty-strong Google team concluded that causality-
based methods provide a “promising solution” to the problem 
of specifying models that perform in deployment. Causal AI 
pipelines create opportunities for domain experts to constrain 
models, while causal discovery algorithms zero in on causal 
predictors, that are resilient against real-world stresses and 
environmental shifts.

We explore the problem and illustrate why Causal AI makes far 
better predictions in the real world, not just in the environment 
under which the model is trained. 

The “underspecification” problem
The problem (see the Figure below) goes by many names, 
including “underspecification”, “the multiplicity of good models” 
and the “Rashomon effect” — after the 1950 Kurosawa film 
which tells the story of four witnesses giving incompatible 
descriptions of the same incident. Like the witnesses in 

Figure: an illustration of underspecification in conventional ML pipelines
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Rashomon, many equivalently good models give incompatible 
descriptions of the data and make widely varying predictions.

Underspecification is exacerbated by several factors in 
conventional ML pipelines. Conventional ML models are known 
to be biased towards learning spurious correlations, which are 
likely to be fragile under real-world conditions.

There are also strong theoretical grounds for believing that, 
when there are many models that are roughly as accurate as 
each other in training, some will have desirable properties 
beyond just making good predictions — such as fairness, 
interpretability and simplicity. However these key properties 
are often sidelined in conventional ML systems, which tend to 
produce needlessly complex “black box” models. 

Worryingly, chance plays a pivotal role in determining which 
model is ultimately selected. Researchers have demonstrated 
that tweaking seemingly irrelevant parameters, such as 
the random seed value (a randomly generated number that 
determines how a model is initialized in training), while holding 
all other aspects of the ML pipeline fixed, leads to totally 
different models being trained. 

Underspecification is not just a theoretical problem. AutoML 
users and other business users of conventional ML systems 
often find that the same data science pipelines output 
completely different models each day. The Google team 
details how it undermines applied ML systems in the contexts 
of computer vision, natural language processing and medical 
diagnostics. 

The problem illustrated
Consider an insurer pricing motor insurance premiums. 

Actuarial datasets are big and growing, as traditional risk 
proxies are increasingly augmented with new kinds of data: 
telematic data and data about the vehicle itself, especially any 
on-board Advanced Driver Assistance Systems (ADAS).

Typically, insurers rely on “generalized linear models” (GLMs), 
simple ML models that relax some of the assumptions of 
ordinary linear regression, to calculate insurance premiums. 
GLMs are popular because, although simplistic, they are 
explainable, and so meet regulatory requirements, and are easy 
for actuaries to interact with. 

Worryingly, chance plays a pivotal role 
in determining whether conventional ML 
pipelines work in the real world”
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But GLMs are also underspecified, making them fragile in 
production. If there are fifty features in the dataset from which 
five variables are selected, then there are approximately two-
million combinations of features that can be used in the GLM. 
Many of these models will be roughly as good as one another 
in development, but will give very different pictures of the 
underlying risks in real-world settings:

Picture 1:

Picture 2:

A minority of insurers use more powerful ML algorithms, like 
neural networks, for risk pricing. Insurers have been slow to 
adopt more advanced algorithms in part because they are 
“black boxes” that fail to offer the transparency or fairness 
characteristics that regulators require.

These more powerful ML models suffer from a more extreme 
form of underspecification. There are vast numbers of ways of 
parametrizing, say, deep learning models that achieve roughly 
equal loss in training. Many of these possible models are likely 
to pick up on misleading correlations in big actuarial datasets. 

 

Causal specifications

There are two broad solutions to underspecification: more 
testing and more specification. One option for more testing is 
to retest the equivalently-good models to try to weed out the 
ones that make errant predictions in deployment. This can be 
done on data drawn from the real world, assuming it’s possible 
to get access to fresh data. Another option is to conduct 
“stress tests” — tests that deliberately discard the simplifying 
assumption that the real world shares an identical distribution 
with the training data, (which has been called “the big lie of 
machine learning”).

In addition to more rigorous testing, the other possible 
solution to underspecification is to supply more constraints. 
As advocated by the Google research group, Causal AI provides 
promising techniques for creating “causal specifications” to 
create models that perform in the real world.

One upshot of underspecification is that, as the Google 
researchers state, “there is a need to find better interfaces 
for domain knowledge in ML pipelines”. Traditional ML pipelines 
have limited scope for integrating domain knowledge, which is 
largely confined to feature selection. Causal AI facilitates far 
deeper integration of domain knowledge: highly intuitive causal 
diagrams enable experts to convey information that can assist 
the AI in parameter selection. 

Figure: artwork depicting the “loss landscape” of a deep learning model during training. There are a vast number of ways of weighting the variables in the 
model that have roughly the same loss (a measure of the amount of error made in the development environment). Photograph: www.losslandscape.com
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Figure: levels of AI maturity in insurance risk pricing. Impact estimates 

based on McKinsey analysis. 

•   Regional insurers & tech laggards.
•   Use static pricing rules that may not have changed 

in decades.
•   Results in adverse selection, leading to unsustainable 

loss ratios, and lost revenue due to overcharging.

•   Use of representation learning systems (deep learning and 
neural networks) that automate feature engineering.

•   Radical underspecification problem.
•   Models are not explainable, do not incorporate actuarial 

expertise, and encode spurious correlations and biases.
•   Improved loss ratio of new business by 2.1-4.2% over L0, but 

high failure rates in deployment lead to inconsistent results.

•   Late majority (1 in 2 insurers).
•   GLMs.
•   Moderate underspecification problem. 
•   Pricing models are labor-intensive, slow to bring to 

production and inaccurate.
•   Improved loss ratio of new business by 0.8-1.5% over L0, but 

losing ground to AI leaders and InsurTech. 

•   Being actively explored by AI vanguard. 
•   Causal AI systems make predictions that are explainable, 

fair, adaptable to new conditions, and incorporate actuarial 
expertise.

•   Properly specified: models are robust in deployment. 
•   Counterfactual analysis improves tail risk estimation. 
•   Interventional analysis allows Causal AI to model price 

elasticities and design targeted marketing interventions 
to prevent churn. About Us

causaLens is pioneering Causal AI, a new category of 
intelligent machines that understand cause and effect - a 
major step towards true AI. Its enterprise platform is used 
to transform leading businesses in Finance, IoT, Energy, 
Telecommunications and others.

Current machine learning approaches, including AutoML 
solutions, have severe limitations when applied to real-world 
business problems and fail to unlock the true potential of AI 
for the enterprise. For instance, in the case of predictions, 
they severely overfit and do not adapt when the environment 
changes. causaLens’ Causal AI Platform goes beyond 
predictions, providing transparent causal insights and 
suggesting actions that directly improve business KPIs. 

causaLens is run by scientists and engineers, the majority 
holding a PhD in a quantitative field.

Contact us on info@causaLens.com or follow us on LinkedIn 
and Twitter.
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Returning to the motor insurance example, actuaries are gathering 
insights into the ways in which ADAS is impacting claims. There seems 
to be a nascent trend that more cutting-edge ADAS features are 
reducing claims frequency, by averting accidents, but are increasing 
claims severity, as the cost of repairing sophisticated on-board 
computer systems hikes up the total claim amount. Experts can 
convey this information succinctly to a Causal AI, via causal diagrams, 
in order to narrow down the search space of model parameters. 

More fundamentally, while conventional ML analyses observable data 
patterns, Causal AI aims to learn the data-generating process: the 
underlying system of causes and effects that gives rise to observable 
data. By focussing on underlying causes, the AI disregards 
incidental and spurious properties of the training data that mislead 
conventional algorithms. 

The causal model that the AI learns is also robust to stresses, 
perturbations and distribution shifts that inevitably occur in the real 
world. A large body of research explores the connections between 
causal models and robustness across different environments. To 
cite two prominent examples: “invariant causal prediction” is a 
causal discovery algorithm based on the idea that direct causes 
are invariant across different environments; and “invariant risk 
minimization” learns high-level causal representations that 
generalise in new distributions. “The problem of robustness in its 
broadest form”, as AI luminary Judea Pearl writes, “requires a causal 
model of the environment”. 

Conventional machine learning systems fail when the world changes, 
while Causal AI is more adaptable and robust to change. We’ve found 
that Causal AI adapts 3x faster than conventional algorithms during 
the crisis. However, even when we enter the next normal, AutoML and 
other conventional ML algorithms will continue to break down, and 
underspecification will be partly to blame. Causal AI is by far the best 
technology for properly specifying ML models — using both domain 
expertise and causal discovery algorithms — in order to work well in 
the real world, and in a transparent and explainable manner.

Levels of AI maturity in insurance
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