

Quality as Competitive Advantage

How the LEGO Group work with Quality and Product Safety

Betina Vedel

Senior Quality Manager Head of Six Sigma Capability Building Program Lean Six Sigma Master Black Belt Betina.Vedel@lego.com

- Lean Six Sigma Master Black Belt
- APQP, D/P-FMEA, Control Plan, Certified Supplier Auditor from AIAG in Detroit
- Engineering background
- Solid track record of LSS improvement projects.
- Profound utilization of Design for Six Sigma
- Implementing Business Process Management (BPM) in parts of LEGO System A/S.

Who is the LEGO Group and what is important to us?

leco

Family owned Danish

Founded

#1 Reputable brand

To inspire and develop the builders of tomorrow

When children play - they learn

21st century skills

- Emotional
- Cognitive
- Physical
- Social
- Creative

65% of all kindergarten children will conduct jobs that are not created yet.

Quality as Competitive Advantage

How the LEGO Group work with Quality and Product Safety

In-House Training

Why would I as a manager want to use Lean Six Sigma?

4 days training program linking to DMAIC for "rusty" belts

Yellow Belt

Awareness

Training

Statistics

4 days training program Lean Six Sigma Yellow Belt IASSC

Green Belt

Lean Six Sigma for leaders Green Belt IASSC

Financial Result of Lean Six Sigma Green Belt Certification Projects

1,018,000 Improve validation of index of jig

5,300,000 Optimize visual quality inspection method of molded elements

- **258,000** Reduce the rework cost of moulds
- 522,000 Remove 1 week lead time
- 2,600,000 Improve yield of the Model Build Process

Problem Solving Approaches/ Methodology	Know the problem	Know the causes	Know the solution	Single incident	Data availability/ obtainability	Urgency/ Time to solve	Business Impact/ Ressources	Document/ template
Design for Six Sigma (DFSS)	×	×	×	×	\checkmark	According to LDP etc.	High	LSS Project Charter
Lean Six Sigma DMAIC	×	×	×	×	\checkmark	3-9 months	High	LSS Charter
Lean Continuous Improvement Thinking	\checkmark	×	×	\checkmark	\checkmark	1-2 months	Low-medium	LCI Thinking Template
Practical Problem Solving	\checkmark	×	×	\checkmark	×	5-30 days	Low-medium	PPS Template
Plan, Do, Check, Act (PDC)	\checkmark	\checkmark	×	\checkmark	×	1-20 days	Low-medium	PDCA Template
Kaizen Process Rapid Improvement Event (RIE, Sprint)	\checkmark	\checkmark	×	\checkmark	×	1-5 days	Low	None
Kaizen Event (Kaizen week, Blitz, Burst)	\checkmark	\checkmark	×	\checkmark	×	5-7 days	Medium-high	None
Just Do It (JIT)	1	\checkmark	\checkmark	\checkmark	×	1 -5 days	Low	None

PRO-ACTIVE (before-the-event)

- New elements
- New platforms
- New technology
- New equipment
- New processes

RE-ACTIVE (after-the-event)

- Improve
- Reduce
- Optimize
- Problem Solving

Management & Leadership day by day

- Business Process Management
- Employees, Mentoring, Training & Coaching
- Technology and data

stored Street and			Antes &	NS.
		0	Story (Alles)	1
	James & Gorald	Ar C		12
				5 K
			Aliteration of the second s	
			Last	
			_	

Меа	asurement System Analysis	Descriptive Statistics	Inferential Statistics	Predictive Analytics	Prescriptive Analytics
Purpose	 Make sure measuring works Do we agree on how we assess things? Are we able to repeat and reproduce our measurements? How much of the total variation is due to variation in the measurement system? 	 Concise summary of data reporting "state of the nation" Visualization of problems/ opportunities 	 Use a random sample of data from a population Compare and conclude 	 Improve process Make predictions based on historical data Focus on relation between two variables Modelling 	Prescriptive Analytics anticipate what will happen, when it will happen and why
ΤοοΙ	 Gauge Reproducibility & Repeatability Attribute Agreement Analysis 	Boxplot, Histogram, Pareto, Scatter Plot, Capability, Control Charts etc.	Hypothesis Test	 Correlation Simpel/Multiple Regression Design of Experiment 	OptimizationSimulation

Sources of variation in measurement systems

Don't believe you have valid measurement systems

- PROVE IT

Visual Inspection

Visual Inspection

Minitab - Minitab MSA operatør.MPJ1 (12).MPJ - [Worksheet 1 ***]
 File Edit Data Calc Stat Graph Editor Tools Window Help As

	- ∞ ∞ + ► ≉						
<u> 🍋 I</u>							
Ŧ	C1	C2-T	C3	C4-T	C5-T	C6-T	
	RunOrder	Appraisers	Trials	Test Items	Results	Standards	
1	1	Appraiser 1	1	ltem 24	Bad	Bad	
2	2	Appraiser 1	1	ltem 26	Bad	Bad	
3	3	Appraiser 1	1	ltem 38	Bad	Bad	
4	4	Appraiser 1	1	ltem 7	Bad 🔸	Bad	
5	5	Appraiser 1	1	ltem 32	Good	Good	
6	6	Appraiser 1	1	ltem 48	Bad	Bad	
7	7	Appraiser 1	1	ltem 42	Bad	Bad	
8	8	Appraiser 1	1	ltem 8	Bad	Bad	
9	9	Appraiser 1	1	ltem 35	Bad	Bad	
10	10	Appraiser 1	1	ltem 4	Bad	Bad	
11	11	Appraiser 1	1	ltem 19	Bad	Good	
12	12	Appraiser 1	1	ltem 16	Bad	Bad	
13	13	Appraiser 1	1	ltem 6	Bad	Bad	
14	14	Appraiser 1	1	ltem 23	Bad	Bad	
15	15	Appraiser 1	1	ltem 33	Bad	Bad	
16	16	Appraiser 1	1	ltem 18	Good	Good	
17	17	Appraiser 1	1	ltem 37	Good	Good	
18	18	Appraiser 1	1	ltem 25	Good	Good	

Attribute Agreement Analysis for Results

Within Appraisers

Assessment Agreement

Appraiser	# Inspected	# Matched	Percent	95% CI
Appraiser 1	50	44	88,00	(75,69; 95,47)
Appraiser 2	50	36	72,00	(57,51; 83,77)
Appraiser 3	50	29	58,00	(43,21; 71,81)

Matched: Appraiser agrees with him/herself across trials.

Fleiss' Kappa Statistics

Appraiser	Response	Карра	SE Kappa	Z	P(vs > 0)
Appraiser 1	Good	0,839886	0,0816497	10,2865	0,0000
	Bad	0,839886	0,0816497	10,2865	0,0000
Appraiser 2	Good	0,615103	0,0816497	7,5334	0,0000
	Bad	0,615103	0,0816497	7,5334	0,0000
Appraiser 3	Good	0,305556	0,0816497	3,7423	0,0001
	Bad	0,305556	0,0816497	3,7423	0,0001

Visual Inspection

Each Appraiser vs Standard

Assessment Agreement

Appraiser	# Inspected	# Matched	Percent	95% CI
Appraiser 1	50	43	86,00	(73,26; 94,18)
Appraiser 2	50	35	70,00	(55,39; 82,14)
Appraiser 3	50	27	54,00	(39,32; 68,19)

Matched: Appraiser's assessment across trials agrees with the known standard.

Assessment Disagreement

Appraiser	# Bad / Good	Percent	# Good / Bad	Percent	# Mixed	Percent
Appraiser 1	0	0,00	1	4,00	6	12,00
Appraiser 2	1	4,00	0	0,00	14	28,00
Appraiser 3	0	0,00	2	8,00	21	42,00

Bad / Good: Assessments across trials = Bad / standard = Good.

Good / Bad: Assessments across trials = Good / standard = Bad.

Mixed: Assessments across trials are not identical.

Fleiss' Kappa Statistics

Appraiser	Response	Карра	SE Kappa	Z	P(vs > 0)
Appraiser 1	Good	0,866549	0,0816497	10,6130	0,0000
	Bad	0,866549	0,0816497	10,6130	0,0000
Appraiser 2	Good	0,771136	0,0816497	9,4445	0,0000
	Bad	0,771136	0,0816497	9,4445	0,0000
Appraiser 3	Good	0,480766	0,0816497	5,8882	0,0000
	Bad	0,480766	0,0816497	5,8882	0,0000

Between Appraisers

Assessment Agreement

# Inspected	# Matched	Percent	95% CI
50	13	26,00	(14,63; 40,34)

Matched: All appraisers' assessments agree with each other.

Fleiss' Kappa Statistics

Response	Карра	SE Kappa	Z	P(vs > 0)
Good	0,524341	0,0235702	22,2459	0,0000
Bad	0,524341	0,0235702	22,2459	0,0000

Gage Repeatability & Reproducibility

Gage R&R

Variance Components

		%Contribution
Source	VarComp	(of VarComp)
Total Gage R&R	0,128	0,06
Repeatability	0,128	0,06
Reproducibility	0,000	0,00
Operators	0,000	0,00
Part-To-Part	229,770	99,94
Total Variation	229,898	100,00

Gage Evaluation

		Study Var	%Study Var
Source	StdDev (SD)	(6 × SD)	(%SV)
Total Gage R&R	0,3581	2,1488	2,36
Repeatability	0,3581	2,1488	2,36
Reproducibility	0,0000	0,0000	0,00
Operators	0,0000	0,0000	0,00
Part-To-Part	15,1582	90,9490	99,97
Total Variation	15,1624	90,9743	100,00

Number of Distinct Categories = 59

Is the optimized process performing better?

- Know your sampling theory
- Validate your data before you use them for anything MSA
- Make sure your process is in control before improvements BPM
- Measure your baseline/capability so you know if you are improving – Cpk/Ppk
- The mean is meaningless
- Involve leaders/managers
- Be preventive instead of reactive

"If you don't measure, you don't know if you are improving"

Betina Vedel

