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R has always had a rich set of modeling tools that it
inherited from S. For example, the formula interface has
made it simple to specify potentially complex model
structures.

R has cutting edge models. Many researchers in various
domains use R as their primary computing environment
and their work o�en results in R packages.

It is easy to port or link to other applications. R doesn't try
to be everything to everyone. If you prefer models
implemented in C, C++, tensorflow, keras, python,
stan, or Weka, you can access these applications without
leaving R.

However, there is a huge consistency problem. For
example:

There are two primary methods for specifying what
terms are in a model. Not all models have both.
99% of model functions automatically generate
dummy variables.
Sparse matrices can be used (unless the can't).
Many package developers don't know much about
the language and omit OOP and other core R
components.

Two examples follow...

Modeling in R
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Between-Package Inconsistency
Syntax for computing predicted class probabilities:

Function Package Code

lda MASS predict(obj)

glm stats predict(obj, type = "response")

gbm gbm predict(obj, type = "response", n.trees)

mda mda predict(obj, type = "posterior")

rpart rpart predict(obj, type = "prob")

Weka RWeka predict(obj, type = "probability")

logitboost LogitBoost predict(obj, type = "raw", nIter)

pamr.train pamr pamr.predict(obj, type = "posterior")
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Within-Package Inconsistency: glmnet Predictions
The glmnet model can be used to fit regularized generalized linear models with a mixture of L1 and L2 penalties.

We'll look at what happens when we get predictions for a regression model (i.e. numeric Y) as well as classification
models where Y has two or three categorical values.

The models shown below contain solutions for three regularization values (  ).

The predict method gives the results for all three at once (👍).

λ
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Numeric glmnet Predictions
Predicting a numeric outcome for two new data points:

new_x

##             x1     x2     x3     x4
## sample_1 1.649 -0.483 -0.294 -0.815
## sample_2 0.656 -0.420  0.880  0.109

predict(reg_mod, newx = new_x)

##            s0   s1 s2
## sample_1 9.95 9.95 10
## sample_2 9.95 9.95 10

A matrix result and we will assume that the  values are in the same order as what we gave to the model fit function.λ
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glmnet Class Predictions
Predicting an outcome with two classes:

predict(two_class_mod, newx = new_x, type = "class")

##          s0  s1  s2 
## sample_1 "a" "b" "b"
## sample_2 "a" "b" "b"

Not factors! That's di�erent from what is required for the y argument. From ?glmnet:

For family="binomial" [y] should be either a factor with two levels, or a two-column matrix of counts or
proportions

I'm guessing that this is because they want to keep the result a matrix (to be consistent).
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glmnet Class Probabilities (Two Classes)
predict(two_class_mod, newx = new_x, type = "response")

##           s0  s1    s2
## sample_1 0.5 0.5 0.506
## sample_2 0.5 0.5 0.526

Okay, we get a matrix of the probability for the second level of the outcome factor.

To make this fit into most code, we can manually calculate the other probability. No biggie!
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predict(three_class_mod, newx = new_x, 
        type = "response")

## , , s0
## 
##              a     b     c
## sample_1 0.333 0.333 0.333
## sample_2 0.333 0.333 0.333
## 
## , , s1
## 
##              a     b     c
## sample_1 0.333 0.333 0.333
## sample_2 0.333 0.333 0.333
## 
## , , s2
## 
##              a     b     c
## sample_1 0.373 0.244 0.383
## sample_2 0.327 0.339 0.334

😳

No more matrix results. 3D array and we get all of the
probabilities back this time.

Am I working for glmnet or is it is working for me?

Maybe a structure like this would work better:

## # A tibble: 6 x 4
##       a     b     c lambda
##   <dbl> <dbl> <dbl>  <dbl>
## 1 0.333 0.333 0.333   1   
## 2 0.333 0.333 0.333   1   
## 3 0.333 0.333 0.333   0.1 
## 4 0.333 0.333 0.333   0.1 
## 5 0.373 0.244 0.383   0.01
## 6 0.327 0.339 0.334   0.01

glmnet Class Probabilities (Three Classes)
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What We Need
Unless you are doing a simple one-o� data analysis, the lack of consistency between, and sometimes within, R packages
can be very frustrating.

If we could agree on a set of common conventions for interfaces, return values, and other components, everyone's life
would be easier.

Once we agree on conventions, two challenges are:

As of October 2020, there are over 16K R packages on CRAN. How do we "harmonize" these without breaking
everything?

How can we guide new R users (or people unfamiliar with R) in making good choices in their modeling packages?

These prospective and retrospective problems will be addressed in a minute.
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The tidyverse is an opinionated collection of R packages
designed for data science. All packages share an
underlying design philosophy, grammar, and data
structures.

The principles of the tidyverse:

1. Reuse existing data structures.
2. Compose simple functions with the pipe.
3. Embrace functional programming.
4. Design for humans.

This results in more specific conventions around
interfaces, function naming, etc. For example:

## [1] "glue_col"       "glue_collapse" 
## [3] "glue_data"      "glue_data_col" 
## [5] "glue_data_safe" "glue_data_sql" 
## [7] "glue_safe"      "glue_sql"

There is also the notion of tidy data:

1. Each variable forms a column.
2. Each observation forms a row.
3. Each type of observational unit forms a table.

Based on these ideas, we can create modeling packages
that have predictable results and are a pleasure to use.

The Tidyverse
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http://www.tidyverse.org/
http://vita.had.co.nz/papers/tidy-data.pdf


Tidymodels
tidymodels is a collection of modeling packages that live in the tidyverse and are designed in the same way.

My goals for tidymodels are:

1. Encourage empirical validation and good methodology.

2. Smooth out diverse interfaces.

3. Build highly reusable infrastructure.

4. Enable a wider variety of methodologies.

The tidymodels packages address the retrospective and prospective issues. We are also developing a set of principles
and templates to make prospective (new R packages) easy to create.
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tidymodels.org

Tidy Modeling with R (tmwr.org)
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https://www.tidymodels.org/
https://www.tmwr.org/


Selected Modeling Packages
broom takes the messy output of built-in functions in R, such as lm, nls, or t.test, and turns them into tidy data
frames.

recipes is a general data preprocessor with a modern interface. It can create model matrices that incorporate
feature engineering, imputation, and other tools.

rsample has infrastructure for resampling data so that models can be assessed and empirically validated.

parsnip gives us a unified modeling interface.

tune has functions for grid search and sequential optimization of model parameters.
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https://broom.tidymodels.org/
https://recipes.tidymodels.org/
https://rsample.tidymodels.org/
https://parsnip.tidymodels.org/
https://tune.tidymodels.org/


Loading the Meta-Package
library(tidymodels)

## ── Attaching packages ──────────────────────────────── tidymodels 0.1.1 ──

## ✓ broom     0.7.0           ✓ recipes   0.1.13.9001
## ✓ dials     0.0.9.9000      ✓ rsample   0.0.8      
## ✓ dplyr     1.0.2           ✓ tibble    3.0.3      
## ✓ ggplot2   3.3.2           ✓ tidyr     1.1.2      
## ✓ infer     0.5.2           ✓ tune      0.1.1.9000 
## ✓ modeldata 0.0.2           ✓ workflows 0.2.1.9000 
## ✓ parsnip   0.1.3.9000      ✓ yardstick 0.0.7      
## ✓ purrr     0.3.4

## ── Conflicts ─────────────────────────────────── tidymodels_conflicts() ──
## x dplyr::collapse() masks glue::collapse()
## x purrr::discard()  masks scales::discard()
## x tidyr::expand()   masks Matrix::expand()
## x dplyr::filter()   masks stats::filter()
## x dplyr::lag()      masks stats::lag()
## x tidyr::pack()     masks Matrix::pack()
## x recipes::step()   masks stats::step()
## x tidyr::unpack()   masks Matrix::unpack()

Let's start by predicting the ridership of the Chicago "L" trains.

We have data over 5,698 days between 2001 and 2016 in data(Chicago, package = "modeldata").

What are our predictors? Date, weather data, home game schedules, 14-day lags at other stations.
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https://bookdown.org/max/FES/chicago-intro.html


What are our features?
chicago_rec <- recipe(ridership ~ ., data = Chicago)
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What are our features?
chicago_rec <- recipe(ridership ~ ., data = Chicago) %>% 
  step_date(date, features = c("dow", "month", "year"))
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What are our features?
chicago_rec <- recipe(ridership ~ ., data = Chicago) %>% 
  step_date(date, features = c("dow", "month", "year")) %>% 
  step_holiday(date)
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What are our features?
chicago_rec <- recipe(ridership ~ ., data = Chicago) %>% 
  step_date(date, features = c("dow", "month", "year")) %>% 
  step_holiday(date) %>% 
  step_rm(date)
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What are our features?
chicago_rec <- recipe(ridership ~ ., data = Chicago) %>% 
  step_date(date, features = c("dow", "month", "year")) %>% 
  step_holiday(date) %>% 
  step_rm(date) %>% 
  step_dummy(all_nominal())
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What are our features?
chicago_rec <- recipe(ridership ~ ., data = Chicago) %>% 
  step_date(date, features = c("dow", "month", "year")) %>% 
  step_holiday(date) %>% 
  step_rm(date) %>% 
  step_dummy(all_nominal()) %>% 
  step_normalize(all_predictors())
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What are our features?
chicago_rec <- recipe(ridership ~ ., data = Chicago) %>% 
  step_date(date, features = c("dow", "month", "year")) %>% 
  step_holiday(date) %>% 
  step_rm(date) %>% 
  step_dummy(all_nominal()) %>% 
  step_normalize(all_predictors()) 

#?  step_pca(one_of(stations), num_comp = 10)
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What are our features?
chicago_rec <- recipe(ridership ~ ., data = Chicago) %>% 
  step_date(date, features = c("dow", "month", "year")) %>% 
  step_holiday(date) %>% 
  step_rm(date) %>% 
  step_dummy(all_nominal()) %>% 
  step_normalize(all_predictors()) 

#?  step_umap(one_of(stations), outcome = vars(ridership), num_comp = 10)
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What are our features?
chicago_rec <- recipe(ridership ~ ., data = Chicago) %>% 
  step_date(date, features = c("dow", "month", "year")) %>% 
  step_holiday(date) %>% 
  step_rm(date) %>% 
  step_dummy(all_nominal()) %>% 
  step_normalize(all_predictors()) 

#?  step_ns(Harlem, deg_free = 5)
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What are our features?
chicago_rec <- recipe(ridership ~ ., data = Chicago) %>% 
  step_date(date, features = c("dow", "month", "year")) %>% 
  step_holiday(date) %>% 
  step_rm(date) %>% 
  step_dummy(all_nominal()) %>% 
  step_normalize(all_predictors()) 

#?  step_mutate(temp = (32 * temp − 32) * 5 / 9 )

Let's fit a linear regression model!

With parsnip, we first create an object that specifies the type of model and then the so�ware engine to do the fit.
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linear_mod <- linear_reg()

This says "Let's fit a model with a numeric outcome, and intercept, and
slopes for each predictor."

Other model types include nearest_neighbors(),
decision_tree(), rand_forest(), arima_reg(), and so on.

The set_engine() function gives the details on how it should be fit.

Linear regression specification
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linear_mod <- linear_reg() %>% set_engine("lm")

Let's fit it with...
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linear_mod <- linear_reg() %>% set_engine("keras")

Let's fit it with...
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linear_mod <- linear_reg() %>% set_engine("spark")

Let's fit it with...
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linear_mod <- linear_reg() %>% set_engine("stan")

Let's fit it with...

30 / 39



linear_mod <- linear_reg() %>% set_engine("glmnet")

Let's fit it with...
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linear_mod <- linear_reg(penalty = 0.1, mixture = 0.5) %>% 
  set_engine("glmnet")

Let's fit it with...
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A modeling workflow
We can optionally bundle the recipe and model together into a pipeline workflow:

glmnet_wflow <- 
  workflow() %>% 
  add_model(linear_mod) %>% 
  add_recipe(chicago_rec) # or add_formula() or add_variables()

Fitting and prediction are very easy:

glmnet_fit <- fit(glmnet_wflow, data = Chicago)
predict(glmnet_fit, Chicago %>% slice(1:7))

## # A tibble: 7 x 1
##   .pred
##   <dbl>
## 1 13.8 
## 2 15.0 
## 3 14.7 
## 4 14.6 
## 5 14.1 
## 6  2.36
## 7  1.73
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Model tuning
We probably don't have a good idea for what penalty and mixture should be?

We can mark them for tuning :

linear_mod <- 
  linear_reg(penalty = tune(), mixture = tune()) %>% 
  set_engine("glmnet")

glmnet_wflow <- 
  glmnet_wflow %>% 
  update_model(linear_mod)
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chicago_rs <- 
  sliding_period(
    Chicago,
    date,
    period = "month",
    lookback = 14 * 12,
    assess_stop = 1
  )
chicago_rs

## # Sliding period resampling 
## # A tibble: 19 x 2
##    splits            id     
##    <list>            <chr>  
##  1 <split [5.1K/28]> Slice01
##  2 <split [5.1K/31]> Slice02
##  3 <split [5.1K/30]> Slice03
##  4 <split [5.1K/31]> Slice04
##  5 <split [5.1K/30]> Slice05
##  6 <split [5.1K/31]> Slice06
##  7 <split [5.1K/31]> Slice07
##  8 <split [5.1K/30]> Slice08
##  9 <split [5.1K/31]> Slice09
## 10 <split [5.1K/30]> Slice10
## 11 <split [5.1K/31]> Slice11
## 12 <split [5.1K/31]> Slice12
## 13 <split [5.1K/29]> Slice13
## 14 <split [5.1K/31]> Slice14
## 15 <split [5.1K/30]> Slice15
## 16 <split [5.1K/31]> Slice16
## 17 <split [5.1K/30]> Slice17
## 18 <split [5.1K/31]> Slice18
## 19 <split [5.1K/28]> Slice19

Maybe a structure like this would work better:

library(doMC)
registerDoMC(cores = parallel::detectCores())

set.seed(29)
glmnet_tune <- 
  glmnet_wflow %>% 
  tune_grid(chicago_rs, grid = 10)

show_best(glmnet_tune, metric = "rmse")

## # A tibble: 5 x 8
##    penalty mixture .metric .estimator  mean     n std_err .config
##      <dbl>   <dbl> <chr>   <chr>      <dbl> <int>   <dbl> <chr>  
## 1 1.81e- 3   0.558 rmse    standard    2.05    19   0.197 Model06
## 2 2.29e- 7   0.821 rmse    standard    2.05    19   0.196 Model09
## 3 1.86e- 8   0.458 rmse    standard    2.05    19   0.196 Model05
## 4 8.97e- 9   0.944 rmse    standard    2.05    19   0.196 Model10
## 5 2.60e-10   0.633 rmse    standard    2.06    19   0.196 Model07

collect_metrics(glmnet_tune) %>% slice(1:10)

## # A tibble: 10 x 8
##         penalty mixture .metric .estimator  mean     n std_err .config
##           <dbl>   <dbl> <chr>   <chr>      <dbl> <int>   <dbl> <chr>  
##  1 0.0741         0.142 rmse    standard   2.16     19  0.205  Model01
##  2 0.0741         0.142 rsq     standard   0.909    19  0.0199 Model01
##  3 0.00000787     0.161 rmse    standard   2.07     19  0.193  Model02
##  4 0.00000787     0.161 rsq     standard   0.919    19  0.0189 Model02
##  5 0.0000116      0.266 rmse    standard   2.06     19  0.195  Model03
##  6 0.0000116      0.266 rsq     standard   0.919    19  0.0189 Model03
##  7 0.000720       0.336 rmse    standard   2.06     19  0.195  Model04
##  8 0.000720       0.336 rsq     standard   0.919    19  0.0189 Model04
##  9 0.0000000186   0.458 rmse    standard   2.05     19  0.196  Model05
## 10 0.0000000186   0.458 rsq     standard   0.919    19  0.0189 Model05

Resampling and grid search
We'll use time series resampling and grid search to optimize the model:
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Next steps
There are functions to plot the results, substitute the best parameters for the tune() placeholders, fit the final model,
measure the test set performance, etc etc.

These API's focus on harmonizing Existing packages.

(If we still have time) Let's talk about designing better packages.
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Principles of Modeling Packages
We have a set of guidelines for making good modeling packages. For example:

Separate the interface that the modeler uses from the code to do the computations. They serve two very di�erent purposes.

Have multiple interfaces (e.g. formula, x/y, etc).

The user-facing interface should use the most appropriate data structures for the data (as opposed to the computations). For
example, factor outcomes versus 0/1 indicators and data frames versus matrices.

type = "prob" for class probabilities 😄 .

Use S3 methods.

The predict method should give standardized, predictable results.

Rather than try to make methodologists into so�ware developers, have tools to help them create high quality modeling packages.
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https://tidymodels.github.io/model-implementation-principles/


Making better packages
We have methods for creating all of the S3 sca�olding for modeling packages.

You have some functions for creating a model fit; hardhat provides a package directory using best practices:

library(hardhat)

create_modeling_package("~/tmp/lantern", model = "torch_mlp")

There is a video demo that shows how to create a package in 9 steps.
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https://canal.uned.es/video/5dd25b9f5578f275e407dd88


Thanks
Thanks for the invitation to speak today!

Special thanks for the RStudio folks who contributed so much to tidymodels: Davis Vaughan, Julia Silge, Alison Hill, and
Desirée De Leon.
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