
Illuminate: Identify Insider Attacks
in Your Source Code

Can a determined attacker plan an insider attack in your source code?

Insider Attack in Source Code
Software supply chain compromise is trending after the public disclosure of the SUNBURST backdoor in

early December of 2020. The attack trojanized SolarWinds Orion business software updates. SolarWinds has

300,000 customers which includes every branch of the US military and four-fifths of the Fortune 500. It is believed

that external actors infiltrated the source code management system of SolarWinds and added malicious code

evading all the checks and balances in the software development process. More details on the attack can be found

here.

Organizations that write source code are figuring out how to avoid similar insider attacks. The Solarwinds attack

shows the importance of analyzing source code for insider attacks and backdoors in addition to OWASP

vulnerabilities.

Why ShiftLeft

Detecting insider attacks and backdoors in source code is non-trivial. In the case of SUNBURST, it is estimated

to have happened over multiple months with small incremental changes. ShiftLeft's code analysis solution utilizes

complete data flow and advanced control flow analysis to uncover such complex backdoors.

Service Overview

Perform initial analysis of
the code base to prioritize and
define scope. Remove any
information that is not relevant
to classification including
libraries and dependencies
not relevant to the analysis

Create the Code Property
Graph, a data structure jointly
representing syntax tree (what is
defined), control flow(conditions
in the code), and data flow (how
an attacker can influence “what is
defined” and “conditions in the
code” to trigger an exploit)

Step-1: Step-2: Step-3:
Identify sources (APIs),
sinks (e.g., database calls,
network calls, etc.), and
transforms (e.g., validation
and authorization
checks)

Step-4:
Run algorithms on
the CPG to identify insider
attacks and logic flaws

http://www.shiftleft.io
https://blog.shiftleft.io/visual-notes-solarwinds-supply-chain-compromise-using-sunburst-backdoor-detected-by-fireeye-561e097fff3c

Markers - Use of dynamic invocation, suspicious control flows, code in dormant state based on conditional

scheduling, and obfuscated literals

Behavior - Usage of concealed system commands to gain knowledge of the target (e.g., ping, netstat, etc.)

Errors - sinkhole exceptions for application failures to evade detection

Overcome attacker’s obfuscation measures

Uncover suspicious commands/functions

Detect and track complex control flows used by attackers to hide their intention

Some potential indicators in algorithms used for analysis:

ShiftLeft algorithms use complex techniques to:

Definitively know whether an insider attack

has occurred in your source code. Receive

remediation steps

Identify the potentially exploitable areas for

“insider attack”. Receive recommendations

on reducing future risk

What to look for and where on an ongoing

basis depending on the unique architecture

of your application (e.g., coding practices,

library usage, etc.)

Benefits

Summary report for your executive and

senior-level management, identifying any

insider attacks, remediation advice, and

overall risk of the code base.

Technical report of insider attacks found

and remediation advice

Set of rules for ShiftLeft NG-SAST for all

findings so that these rules are run with

every code analysis (if you choose to deploy

ShiftLeft code analysis, this process will

also be started)

Strategic recommendations for longer-term

improvement

What you get

http://www.shiftleft.io

