
If you’ve ever had to search, parse, or edit blocks of text programmatically, chances are you’re familiar 
with regular expressions. This eBook will cover exactly what Regular Expressions are, what they’re 
used for, benefits, and some examples.

Regular Expressions in Grep

LOGDNA EBOOK



WHAT ARE REGULAR EXPRESSIONS?

Regex is a special text string/language used for describing search patterns and matching strings 
in text. Its flexible and powerful syntax lets you create detailed search patterns, from simple words 
and phrases to complex constructs like e-mail addresses and phone numbers. It’s much more 
powerful than a simple string comparison, and is almost universally supported across programming 
languages, frameworks, and text editors.

Linux comes with GNU grep command which supports regex. Grep stands for “global regular 
expression print”. Grep is used to find what you’re looking for, stored anywhere in the file system 
matching a specified pattern. 

Simple Grep Examples

 
grep ‘word’ file1 file2 file3

grep ‘username’ /etc/passwd

You can use regex to specify a string of characters or pattern for grep to match instead of words.



3LOGD N A EBOOK: REGUL A R E X P RE S SIONS IN GREP

Benefits of Regex
Regexes are much more flexible than traditional text 
searches. They can detect almost any pattern of 
letters, numbers, symbols, special characters, and even 
metacharacters. Where traditional searches look for 
exact matches, regexes can match patterns of varying 
length. This makes them useful for finding constructs 
such as email addresses, IP addresses, URLs, and 
phone numbers.

Regexes are also concise. A single regex string can 
contain multiple search terms, perform multiple 
operations, and return multiple matches. This makes 
them very easy to implement, reuse, and modify.

BENEFITS OF REGEX

Limitations of Regex
Regex has a steep learning curve. Even basic regular 
expressions are difficult to break down into their base 
operations. Compared to verbose languages like Python, 
understanding a regex requires a detailed understanding 
of the language. This can make expressions difficult 
to troubleshoot, especially for beginners. This is best 
expressed in the famous quote by Jamie Zawinski:

“Some people, when confronted with a problem, think 
‘I know, I’ll use regular expressions.’ Now they have two 
problems.“

Heavy text processing can also be slow, depending on the 
complexity of the expression and the amount of text to 
search. There are ways to improve performance, such as 
using compiled expressions (the default in languages like 
Python), but it ultimately comes down to the efficiency of 
the expression.

https://en.wikipedia.org/wiki/Metacharacter
http://regex.info/blog/2006-09-15/247
https://docs.python.org/3/howto/regex.html#compiling-regular-expressions


4LOGD N A EBOOK: REGUL A R E X P RE S SIONS IN GREP

Regex has a number of use cases, including: 

Searching
Regex is designed for searching. Traditional search 
methods might only let you search for a specific string, 
but regex offers much more flexibility and control over 
how searches are performed. 

Example:

Imagine you have a text document (such as a log file) 
and you want to find all instances of an email address 
appearing within the document. How would you go 
about this? You could start by searching for the “@” 
character, or for “.com”, but what if the document also 

includes Twitter handles or website URLs? What about 
email addresses that end in “.edu”, or “.net”? You would 
likely need to run multiple searches at a time and use 
complex string manipulation rules to extract out each 
potential match.

Alternatively, you could create a single regex expression 
that searches specifically for email addresses. One 
method is to use the following expression:

 

[a-zA-Z0-9-.!#$%&’*+\/=?^_̀ {|}~]+@[a-zA-Z0-9-]+\.

[a-zA-Z0-9]{2,3}

HOW IS REGEX USED? 
USE CASES AND EXAMPLES:



5LOGD N A EBOOK: REGUL A R E X P RE S SIONS IN GREP

Let’s break down this expression:

[a-zA-Z0-9-.!#$%&’*+\/=?^_̀ {|}~]+	

@

[a-zA-Z0-9-]+

\.

[a-zA-Z0-9]{2,3}

Match any number of letters, numbers, or special characters listed.

Match the “@” symbol.

Match any number of letters, numbers, or hyphen characters.

Match a period.

Match any two or three letter word containing letters or numbers.

With this expression, we can return all instances of 
“user@example.com”, “user.name@123company.co“, 
or even “super_user+$10k@dash-co.net”, but not “@
example” or “http://example.com“.

    

User Input Validation
Regex is often used as an input validation tool. Imagine 
you have a website where users can sign up by providing 
their email address. Before the registration can be 
completed, the user’s email address must be verified. 
With regex, we can perform a simple validation test that 
checks the formatting of the user’s address before we 
allow them to register. We can even use JavaScript to 
perform this test and notify the user in real time, while 
using the same expression used in the previous example.

String Replacement and Masking

We discussed how regex can be used to find patterns of 
text within larger documents. But what if you wanted to 
replace, mask, or delete certain text?

Example:

Consider a payment processing service that occasionally 

logs sensitive data such as credit card numbers and 
bank account details. To protect their users’ privacy, 
the service should automatically scrub this data before 
sending its logs to a centralization service. But how do 
we detect and erase this data after the log has already 
been written?

With regex, we can create expressions to detect 
numbers matching the formats used by credit card 
vendors. We can then use a method like Python’s 
re.sub() to substitute each instance with another 
value.

Using Regex in LogDNA’s 
Stream Editor
Log messages don’t always appear perfectly formatted. 
This is why the LogDNA web app includes a stream editor 
feature that lets you change the formatting of your log 
data in real-time. You can use a regular expression as 
your search term, as well as toggle case sensitivity and 
global searching. This works similar to the sed command, 
while also formatting live log data.

Example:

Imagine you have an application that writes multiline 

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions
https://docs.python.org/3/library/re.html#re.sub


6LOGD N A EBOOK: REGUL A R E X P RE S SIONS IN GREP

logs to syslog. To avoid generating multiple syslog events 
from a single application event, the syslog service 
automatically escapes newline characters. This ensures 
each event only writes a single syslog message, but this 
makes the log stream appear cluttered and difficult to 
read. With LogDNA, we can use the search and replace 
feature to find and replace all instances of the escaped 
newline character with an actual newline character:

The “i” button toggles case sensitivity for the regular 
expression, while the “g” button toggles global or local 
matching. If global matching is disabled, only the first 
match in the stream is replaced. Clicking on the check 
mark performs the replace, and clicking on the “x” reverts 
it. Now, any current and new syslog messages will be 
displayed over multiple lines while leaving the actual log 
data untouched.

Conclusion
Despite being almost thirty years old, regex is still 
unfamiliar and esoteric territory for many developers. 
However, its flexibility and ubiquity make it a valuable 
addition to any developer’s toolkit. If you want to 
learn more about regex or practice creating different 
expressions, sites like RegExr and regex101 provide 
interactive editors. Regular-Expressions.info 
also provides detailed tutorials, examples, and quick 
start guides.

About LogDNA
LogDNA is a centralized log management solution that 
helps modern engineering teams be more productive 
in a DevOps-oriented world. It enables frictionless 
consumption and actionability of log data so 
developers can monitor, debug, and troubleshoot their 
systems with ease.

http://logdna.com
https://regexr.com/
https://regex101.com/
https://www.regular-expressions.info/


Thank You
Sales Contact: 
Support Contact: 
Media Inquiries:

outreach@logdna.com 
support@logdna.com 
press@logdna.com

mailto:outreach%40logdna.com%20?subject=
mailto:support%40logdna.com?subject=
mailto:press%40logdna.com?subject=

