

Create a Generation of Problem Solvers

eie.org

© Museum of Science, Boston

Follow Along and Share Your Experience

@museumofscience @eie_org

#CSEdWeek #EiEcomputes

Welcome

#CSEdWeek Robot Game: Programming Your Family

Audience: Parents

© Museum of Science, Boston

Where are you located?

eie.org

© Museum of Science, Boston

=11=

What is the Museum of Science, Boston?

mos.org

Professional Development

EffE

DO try this at home!

We've made it easy for you to implement this STEM resource at home!

As we go through the activity, keep in mind that it is designed to be either

- read by learners on their own or
- presented as a webinar to learners.

This slide presentation and the materials for this activity are available online. Stay tuned for the web address.

eie.org

Goals:

During this webinar, parents, educators, and influential adults will:

- experience an "unplugged" computer science activity as a learner
- gain guidance to facilitate the Robot Game at home

Goals:

During this activity, learners will:

- apply computational thinking while creating algorithms to move a robot from start to finish.
- have fun as they practice decomposition and debugging.

What is a Robot?

Robots are machines that can be programmed to carry out tasks on their own.

© Museum of Science, Boston

Robots Are Everywhere! Scientists and engineers around the world develop robots to help solve different problems.

Robots are able do jobs that are dangerous or boring for humans such as

- lifting heavy loads,
- handling toxic substances, and

• performing repetitive tasks.

eie.org

How does a robot know Robots are what to do? computers. They need to follow instructions

the same way a computer does.

How does a person tell a computer what to do?

People create algorithms to tell computers what to do.

...what is an **algorithm**?

© Museum of Science, Boston <u>CIC.Org</u>

"Code Words"

Algorithm	a set of step-by-step instructions to complete a task
Program	an algorithm expressed in a way that a computer understands
Code	instructions in a computer program

Tip: The word "code" is singular in computer science.

Now we are going to do an activity where we act like robots.

This means you will need to follow instructions in the same way a computer would.

You will also write algorithms for robots to follow.

eie.org/csweek2020

The Robot Game

GOAL

Program
the robot to
get from
START to
END.

eie.org

EiE

© Museum of Science, Boston

Algorithm Sheet

Record each step by circling code symbols

MATH CONNECTION

Let's review the shapes around the map. What shapes can you name? How many sides do the shapes have? How many angles do the shapes have?

Half-circle

۲

Triangle

. . .

EiE

٢

•••

EiE

Square

EiE

7

END WALL START

EIE © Museum of Science, Boston

٢

Computers do exactly what they are told to do nothing more and nothing less!

© Museum of Science, Boston

debug To find and fix errors (bugs) in programs or algorithms

Rules for the Programmer

1. Write on the Algorithm Sheet. Record each step by circling one code symbol per row on the the Robot Algorithm Sheet.

2. Read the code instructions when using:

	START
Step 2:	
Step 3:	
Step 4:	
Step 5:	
Step 6:	
Step 7:	

the Mini Map to the person moving Robot playing piece

OR

the Floor Grid to the person playing the Robot.

Rules for the Robot

 On the Mini Map: Move the robot playing piece around the Mini Map according to the instructions on the Algorithm Sheet.

 On the Floor Grid: Wear the robot costume. Move around the grid like a robot, doing exactly what the Programmer says to do. Stay on the map. You may not move diagonally.

eie.org

© Museum of Science, Boston

EiE

eie.org/csweek2020

EiE © Museum of Science, Boston

eie.org/csweek2020

eie.org/csweek2020

eie.org

© Museum of Science, Boston

iE © Museum of Science, Boston

eie.org/csweek2020

Program Your Robot

eie.org

Program Your Robot

eie.org

© Museum of Science, Boston

Create an algorithm for this new map.

eie.org

© Museum of Science, Boston

Test your algorithm.

eie.org

© Museum of Science, Boston

Now It's Your Turn

Set up instructions

- 1. Create a life-sized Floor Grid. Use masking tape, floor tiles, or chalk to set up grid as shown on the Mini Map.
- 2. Assign Robot and Programmer roles. Have fun making robot crowns!
- **3. Create robot algorithms.** Use the Mini Map, robot playing piece, and the Algorithm Sheet to create an algorithm that directs the robot from start to end.
- 4. Test the algorithm. Test the algorithm while wearing the robot crown on the life size map.
- 5. Improve it. Try to create an algorithm with fewer steps.

Extension Ideas

Change the criteria and constraints:

- Get to the End using the shortest algorithm
- Get to the End using the longest algorithm
- Get to the End using only two directional changes

Change the scenario:

- Create an algorithm to put away a toy
- Create an algorithm for your favorite dance
- Create an algorithm to walk to a chair

Ready for Resources?

eie.org/csweek2020

Coming Soon

New! Engineering and Computer Science Curricula

EiE is releasing new integrated engineering and computer science units!

Engineering and Computer Science Essentials

Available now!

Grade 2 Unit Bundle

Engineering Unit: Designing Hand Pollinators

Computer Science Unit: Creating Animations

Grade 3 Unit Bundle Engineering Unit: Designing Maglev Systems

Computer Science Unit: Building Automated Systems

eie.org/csweek2020

Additional Info or Questions?

www.eie.org eiepd@mos.org

eie.org/csweek2020

@museumofscience @eie_org

> #CSEdWeek #EiEcomputes

> > @eiemos

Thank You!