<table>
<thead>
<tr>
<th>Grade</th>
<th>Unit / (Setting) / Engineering Field</th>
<th>Performance Expectations</th>
<th>Science and Engineering Practices (SEP)</th>
<th>Disciplinary Core Ideas (DCI)</th>
<th>Cross-Cutting Concepts (CCC)</th>
</tr>
</thead>
</table>
| 1 | Designing Lighting Systems (Egypt) | 1-PS4-2 1-PS4-3 K-2-ETS1-1 K-2-ETS1-2 K-2-ETS1-3 | • Asking Questions and Defining Problems
 • Planning and Carrying Out Investigations
 • Developing and Using Models
 • Analyzing and Interpreting Data
 • Constructing Explanations and Designing Solutions | • PS4.B: Electromagnetic Radiation
 • ETS1.A: Defining Engineering Problems
 • ETS1.B: Developing Possible Solutions
 • ETS1.C: Optimizing the Design Solution | • Cause and Effect
 • Structure and Function
 • Influence of Engineering, Technology, and Science, on Society and the Natural World |
| 2 | Designing Hand Pollinators (Dominican Republic) Agricultural Engineering | 2-LS2-2 2-PS1-1 2-PS1-2 K-2-ETS1-1 K-2-ETS1-2 K-2-ETS1-3 | • Developing and Using Models
 • Planning and Carrying Out Investigations
 • Analyzing and Interpreting Data
 • Asking Questions and Defining Problems | • LS2.A: Interdependent Relationships in Ecosystems
 • PS1.A: Structure and Properties of Matter
 • ETS1.A: Defining Engineering Problems
 • ETS1.B: Developing Possible Solutions
 • ETS1.C: Optimizing the Design Solution | • Structure and Function
 • Patterns
 • Cause and Effect
 • Influence of Engineering, Technology, and Science, on Society and the Natural World |
| 3 | Designing Maglev Systems (Tokyo) | 3-PS2-3 3-PS2-4 3-5-ETS1-1 3-5-ETS1-2 3-5-ETS1-3 | • Asking Questions and Defining Problems
 • Constructing Explanations and Designing Solutions
 • Planning and Carrying Out Investigations | • PS2.B: Types of Interactions
 • ETS1.A: Defining Engineering Problems
 • ETS1.B: Developing Possible Solutions
 • ETS1.C: Optimizing the Design Solution | • Cause and Effect
 • Interdependence of Science, Engineering, and Technology
 • Influence of Engineering, Technology, and Science, on Society and the Natural World |
| 4 | Designing Solar Ovens (Botswana) | 4-ESS3-1 4-PS3-2 4-PS3-4 3-5-ETS1-1 3-5-ETS1-2 3-5-ETS1-3 | • Obtaining, Evaluating, and Communicating Information
 • Asking Questions and Defining Problems
 • Constructing Explanations and Designing Solutions
 • Planning and Carrying Out Investigations
 • Using Mathematics and Computational Thinking | • ESS3.A: Natural Resources
 • PS3.A: Definitions of Energy
 • PS3.B: Conservation of Energy and Energy Transfer
 • ETS1.A: Defining Engineering Problems
 • ETS1.B: Developing Possible Solutions
 • ETS1.C: Optimizing the Design Solution | • Energy and Matter
 • Influence of Engineering, Technology, and Science, on Society and the Natural World
 • Science is a Human Endeavor |
<table>
<thead>
<tr>
<th>Grade</th>
<th>Unit / (Setting) / Engineering Field</th>
<th>Performance Expectations</th>
<th>Science and Engineering Practices (SEP)</th>
<th>Disciplinary Core Ideas (DCI)</th>
<th>Cross-Cutting Concepts (CCC)</th>
</tr>
</thead>
</table>
| 5 | Cleaning an Oil Spill (Lower Elwha Klallam Tribe, Washington State) Environmental Engineering | 5-ESS2-1 5-ESS2-2 5-ESS3-1 5-LS1-1 5-LS2-1 3-5-ETS1-1 3-5-ETS1-2 3-5-ETS1-3 | • Asking Questions and Defining Problems
• Constructing Explanations and Designing Solutions
• Planning and Carrying Out Investigations | • ESS2.A: Earth Materials and Systems
• ESS3.C: Human Impacts on Earth Systems
• LS2.A: Interdependent Relationships in Ecosystems
• LS2.B: Cycles of Matter and Energy Transfer in Ecosystems
• ETS1.A: Defining Engineering Problems
• ETS1.B: Developing Possible Solutions
• ETS1.C: Optimizing the Design Solution | • Systems and System Models
• Influence of Engineering, Technology, and Science, on Society and the Natural World |