ProxiMeta Hi-C Kit Protocol

For crude-sample proximity ligation library prep from Microbe samples, for Illumina® sequencing.

This document applies to ProxiMeta Hi-C Kit KT5040.

Please review this protocol thoroughly before you start processing our samples. If you have any questions, please contact us at support@phasegenomics.com or visit our FAQs.
Table of Contents

Introduction ... 3
 References .. 5
Kit Specifications .. 6
 Kit Contents ... 6
 Shipping, Storage, and Handling 7
 Safety Information ... 7
Other Reagents, Equipment and Consumables Required 8
 Reagents .. 8
 Reagents for Low abundance Soil Preparation (Appendix B-1) 8
 Equipment and Consumables ... 8
Sample Types and Preparation .. 9
Workflow Overview .. 10
Quick Protocol .. 11
Detailed Protocol .. 17
 Crosslinking (Red) ... 17
 Cell Lysis (Orange) .. 18
 Fragmentation (Yellow) ... 20
 Proximity Ligation (Clear) .. 21
 Reverse Crosslinks (Clear) .. 21
 Purify DNA (Green) .. 22
 Streptavidin Bead Binding (Blue) 23
 Library Preparation (Purple) 25
 On-bead Library Amplification (Purple) 27
 Library Clean-up and Double-sided Size Selection (Green) . 28
 Library QC (recommended) .. 30
 Sequencing ... 30
 Analysis .. 31
Appendix A-1 ... 32
 Basic Soil Protocol .. 32
Appendix A-2 ... 33
 Differential Centrifugation of Soil or Sludge Samples 33
Index Sequences .. 35
Revision History ... 37
Notices ... 38
Introduction

Proximity ligation or Hi-C is one of a number of “chromosome conformation capture” (3C) methods, originally designed to study the spatial organization of chromatin. Hi-C employs cost-effective, high-throughput, short-read sequencing to identify the nucleotide sequences of genomic loci that are in close proximity in three-dimensional space, but may be megabases apart in the linear genome sequence. This powerful methodology has enabled significant improvements in genome assembly of humans and other species, as well as structural variant and epigenetic analysis. In addition, it has unlocked many applications in metagenomics and microbiology.

Phase Genomics’ ProxiMeta Platform employs Hi-C to measure the physical proximity between DNA sequences in the same cell. This Proximo Hi-C kit is designed for the preparation of eight dual-indexed Hi-C libraries from whole-cell microbial samples. The entire protocol, from sample to sequencing-ready library for Illumina paired-end sequencing can be completed in 1.5 to 3 days.

This kit is suitable for all types of whole-cell microbial inputs. Any microbial sample type (from soil to feces) may be used, but extracted DNA is not a suitable input. Please refer to the Sample Types and Preparation section to determine if your type of microbial sample requires additional preparation or reagents.

The Proximo Genome Scaffolding computational tool combines Hi-C sequencing data with draft short- or long-read assemblies assign contigs to scaffolds, arranges contigs in linear order, and then orients contigs in such a way as to maximize the likelihood of having generated the observed Hi-C data. Contact us at support@phasegenomics.com to find out how to use Proximo and FALCON-Phase™ to produce high-quality, chromosome-scale, haplotype-resolved “gold” or “platinum” reference genomes.

The ProxiMeta Platform (library preparation and analysis) is illustrated in Figure 1 on the next page.
ProxiMeta™ Hi-C Kit Protocol v4.0

Figure 1. How the ProxiMeta Platform works

1. DNA is crosslinked in vivo to fix DNA sequences present inside the same cell. Crosslinking traps sequence interactions across the entire genome and between different chromosomes and plasmids.

2. Crosslinked DNA is fragmented with endonucleases.

3. Fragmented loci are then biotinylated and proximity ligated, creating chimeric junctions between adjacent sequences. Any two sequences that create a junction must have originated within the same cell.

4. Biotinylated junctions are purified and subjected to paired-end sequencing.

5. Proximity ligation reads are mapped against shotgun sequencing data to inform clustering and genome assembly.

6. Sequences of the proximity junctions are used to cluster genome, plasmid, and viral DNA by cellular origin. The computational platform assembles genomes, deconvolutes strains and assigns plasmids/phage to their hosts.

Illustration by Tolpa Studios
References

ProxiMeta™ Hi-C Kit Protocol v4.0

Kit Specifications

Kit Contents

<table>
<thead>
<tr>
<th>Cap/Label Color</th>
<th>Reference Code</th>
<th>Top Label</th>
<th>Tube Label</th>
<th>Volume per tube</th>
<th>No. of Tubes</th>
<th>Storage Temperature (°C)</th>
<th>Used in Step</th>
<th>Before Starting</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>KS0002</td>
<td>Crosslink Solution</td>
<td>Crosslinking Solution</td>
<td>10 mL</td>
<td>1</td>
<td>-25 to +8°C</td>
<td>1.1</td>
<td>Thaw and warm to RT</td>
</tr>
<tr>
<td></td>
<td>KS0003</td>
<td>Quench Solution</td>
<td>Quenching Solution</td>
<td>1 mL</td>
<td>1</td>
<td>-25 to +25°C</td>
<td>1.3</td>
<td>Thaw and warm to RT</td>
</tr>
<tr>
<td></td>
<td>KB0037</td>
<td>Lysis Buffer 1</td>
<td>Lysis Buffer 1</td>
<td>6 mL</td>
<td>1</td>
<td>-25 to +25°C</td>
<td>21.2, 22</td>
<td>Thaw and warm to RT</td>
</tr>
<tr>
<td></td>
<td>KB0003</td>
<td>Lysis Buffer 2</td>
<td>Lysis Buffer 2</td>
<td>1 mL</td>
<td>1</td>
<td>-25 to +25°C</td>
<td>2.7</td>
<td>Thaw and warm to RT</td>
</tr>
<tr>
<td></td>
<td>KC0001</td>
<td>Lysis Tube</td>
<td>Lysis Tube</td>
<td>500 µL</td>
<td>8</td>
<td>-25 to +25°C</td>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>KB0050</td>
<td>Fragment Buffer</td>
<td>Fragmentation Buffer</td>
<td>12 mL</td>
<td>1</td>
<td>-25 to -15°C</td>
<td>3.1</td>
<td>Thaw on ice</td>
</tr>
<tr>
<td></td>
<td>KE0022</td>
<td>Fragment Enzyme</td>
<td>Fragmentation Enzyme</td>
<td>90 µL</td>
<td>1</td>
<td>-25 to -15°C</td>
<td>3.2</td>
<td>Thaw on ice</td>
</tr>
<tr>
<td></td>
<td>KB0053</td>
<td>Ligation Buffer</td>
<td>10X Ligation Buffer</td>
<td>80 µL</td>
<td>1</td>
<td>-25 to -15°C</td>
<td>4.2</td>
<td>Thaw on ice</td>
</tr>
<tr>
<td></td>
<td>KE0028</td>
<td>Ligation Enzyme</td>
<td>Ligation Enzyme</td>
<td>40 µL</td>
<td>1</td>
<td>-25 to -15°C</td>
<td>4.3</td>
<td>Thaw and warm to RT</td>
</tr>
<tr>
<td></td>
<td>KE0017</td>
<td>RX Enzyme</td>
<td>RX Enzyme</td>
<td>40 µL</td>
<td>1</td>
<td>-25 to -15°C</td>
<td>5.1</td>
<td>Thaw on ice</td>
</tr>
<tr>
<td></td>
<td>KB0028</td>
<td>Elution Buffer</td>
<td>Elution Buffer</td>
<td>11 mL</td>
<td>1</td>
<td>-25 to +25°C</td>
<td>6.7, 10.10</td>
<td>Thaw and warm to RT</td>
</tr>
<tr>
<td></td>
<td>KR0011</td>
<td>Recovery Beads</td>
<td>Recovery Beads</td>
<td>12 mL</td>
<td>2</td>
<td>+2 to +8°C</td>
<td>2.9, 6.2, 10.3, 10.6</td>
<td>Thaw and warm to RT</td>
</tr>
<tr>
<td></td>
<td>KB0040/ custom</td>
<td>Recovery Wash Buffer</td>
<td>Recovery Wash Buffer</td>
<td>2 mL/16 mL</td>
<td>1</td>
<td>+2 to +8°C</td>
<td>6.4, 6.5, 10.9</td>
<td>Warm to RT. Add 95%-100% Ethanol according to the instructions on the bottle.2</td>
</tr>
<tr>
<td></td>
<td>KR0005</td>
<td>Strept Beads</td>
<td>Streptavidin Beads</td>
<td>160 µL</td>
<td>1</td>
<td>+2 to +8°C</td>
<td>7.1</td>
<td>Thaw and warm to RT</td>
</tr>
<tr>
<td></td>
<td>KB0025</td>
<td>Bead Bind</td>
<td>Bead Binding Buffer</td>
<td>800 µL</td>
<td>1</td>
<td>-25 to +25°C</td>
<td>7.4</td>
<td>Thaw and warm to RT</td>
</tr>
<tr>
<td></td>
<td>KB0047/ KB0023</td>
<td>Wash Buffer 1</td>
<td>Wash Buffer 1</td>
<td>7 mL</td>
<td>1</td>
<td>-25 to +25°C</td>
<td>7.2, 7.3, 7.9, 8.15</td>
<td>Thaw and warm to RT</td>
</tr>
<tr>
<td></td>
<td>KB0048/ KB0024</td>
<td>Wash Buffer 2</td>
<td>Wash Buffer 2</td>
<td>7 mL</td>
<td>1</td>
<td>-25 to +25°C</td>
<td>7.7, 7.9, 8.13, 8.15</td>
<td>Thaw and warm to RT</td>
</tr>
<tr>
<td></td>
<td>KB0045</td>
<td>FERAT Buffer</td>
<td>Frag, Repair & A-Tail Buffer</td>
<td>32 µL</td>
<td>1</td>
<td>-25 to -15°C</td>
<td>8.5</td>
<td>Thaw on ice</td>
</tr>
<tr>
<td></td>
<td>KE0031</td>
<td>FERAT Enzyme</td>
<td>Frag, Repair, & A-Tail Enzyme</td>
<td>48 µL</td>
<td>1</td>
<td>-25 to -15°C</td>
<td>8.6</td>
<td>Thaw on ice</td>
</tr>
<tr>
<td></td>
<td>KS0013</td>
<td>Universal Adapter</td>
<td>Universal Adapter</td>
<td>40 µL</td>
<td>1</td>
<td>-25 to -15°C</td>
<td>8.8</td>
<td>Thaw on ice</td>
</tr>
<tr>
<td></td>
<td>KE0034</td>
<td>Adapter Ligation Mix</td>
<td>Adapter Ligation Mix</td>
<td>160 µL</td>
<td>1</td>
<td>-25 to -15°C</td>
<td>8.8</td>
<td>Thaw on ice</td>
</tr>
<tr>
<td></td>
<td>KE0037</td>
<td>Hot Start Mix</td>
<td>Hot Start PCR Mix</td>
<td>200 µL</td>
<td>1</td>
<td>-25 to -15°C</td>
<td>9.2</td>
<td>Thaw on ice</td>
</tr>
<tr>
<td></td>
<td>KP0000N</td>
<td>Index</td>
<td>Index Mix</td>
<td>5 µL each</td>
<td>8</td>
<td>-25 to -15°C</td>
<td>9.3</td>
<td>Thaw on ice</td>
</tr>
<tr>
<td></td>
<td>KB0017</td>
<td>10X CRB</td>
<td>10X CRB</td>
<td>16 mL</td>
<td>2</td>
<td>-25 to -15°C</td>
<td>16, 26, 21.1, 34, 35</td>
<td>Dilute to 1X before use³</td>
</tr>
</tbody>
</table>

1. May be warmed to 37°C to dissolve any precipitate that is present after freezing and thawing, however complete dissolution of precipitate is not necessary for reagent use.
2. Prepared Recovery Wash Buffer may be stored at +2 to +8°C for up to 6 months
3. Reference code varies depending on your unique index mixes
4. 1X CRB is stable when stored at room temperature for up to 1 year
Shipping, Storage, and Handling

ProxiMeta Hi-C Kits are shipped on cold packs. Upon receipt, remove the inner container with the Recovery Beads and Streptavidin Beads, and store this at +2 to +8°C. Store the remainder of the kit between -25 and -15°C. When stored under these conditions, and handled appropriately, all kit components will retain full activity until the expiration date indicated on the kit label.

Always ensure that all components are fully thawed and thoroughly mixed prior to use. Keep all enzymes and Adapter Ligation Mix on ice at all times during use.

Safety Information

When working with chemicals, always wear personal protective gear, such as a lab coat, disposable gloves, and safety glasses. For more information, consult the appropriate safety data sheets (SDS).

These are available online at https://phasegenomics.com/product-literature/
Other Reagents, Equipment and Consumables Required

Reagents

The following molecular-biology grade reagents are required to complete this protocol. Ensure that reagents are free of DNA, RNA and nuclease.

- 95 - 100% ethanol
- Molecular biology-grade water

Reagents for Low abundance Soil Preparation (Appendix B-1)

- OptiPrep™ (Or similar 60% iodixanol solution)
- Formaldehyde
- Glycine

Equipment and Consumables

The following general laboratory equipment and consumables are needed for this protocol.

- Calibrated 2 – 10μL pipette and filtered tips
- Calibrated 10 – 100μL pipette and filtered tips
- Calibrated 200 – 1000μL pipette and filtered tips
- 1.5 or 2mL microcentrifuge tubes
- 0.2mL PCR tubes
- Magnetic tube rack/magnet for 2 mL microcentrifuge tubes or 0.2 mL PCR tubes (depending on tube type used in step 2.7).
- Microcentrifuge capable of ≥6,000 x g
- Thermocycler
- Vortex mixer
- Qubit™ Fluorometer and Qubit dsDNA DNA HS Assay Kit (Thermo Fisher Scientific), or similar fluorometric assay for the quantification of double-stranded DNA
Sample Types and Preparation

This protocol is suitable for a wide range of microbial inputs, from soil to fecal samples.

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Protocol Notes</th>
<th>Suggested Input</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microbial Cell Pellet</td>
<td></td>
<td>1 - 20 million cells</td>
</tr>
<tr>
<td>Fecal Sample</td>
<td></td>
<td>50 - 100 uL</td>
</tr>
<tr>
<td>Soil</td>
<td>Crosslinking, see appendix A-1 and A-2</td>
<td>Variable</td>
</tr>
<tr>
<td>Other (including low input)</td>
<td>contact support@phasegenomics.com</td>
<td>variable</td>
</tr>
</tbody>
</table>
Workflow Overview

Protocol Notes and Recommended QC

Do not perform any additional mechanical or motorized lysis. Mechanical or motorized homogenizers overly disrupt the sample and severely reduce yields for the final Hi-C library.

The sample should be incubated for at least 1 hr, however extending the incubation time up to 16 hr does not negatively affect library yield or quality.

Quantify streptavidin-bound DNA using Qubit dsDNA HS to determine the Universal Adapter dilution and number of PCR cycles.

Quantify library with Qubit dsDNA HS. Electrophoretic profile of library to assess fragment distribution. Small amount of sequencing to assess number and quality of Hi-C contacts.

Listed times are estimates, including incubations and time at-bench. The listed times assume familiarity with basic molecular biology techniques.
Quick Protocol

This section provides a quick-step guide for experienced users. If this is your first time using the Proximo Hi-C Kit (Microbe), please refer to the detailed protocol on p. 17.

<table>
<thead>
<tr>
<th>Step</th>
<th>Protocol</th>
<th>Incubations and notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Crosslinking (Red)</td>
<td>■ Transfer sample to a 2 mL microcentrifuge tube and add 1 mL of Crosslinking Solution.</td>
<td>Incubate at room temperature for 15 min while rotating.</td>
</tr>
<tr>
<td></td>
<td>■ Add 100 µL of Quenching Solution.</td>
<td>Incubate for room temperature for 20 min while rotating.</td>
</tr>
</tbody>
</table>
| | ■ Centrifuge at 17,000 x g for 5 min to pellet all sample material.
 ■ Remove and discard the supernatant.
 ■ Wash the pellet with 1 mL of 1X CRB.
 ■ Centrifuge at 17,000 x g for 5 min.
 ■ Carefully remove and discard the supernatant. | |
| **2. Lysis (Orange)** | ■ Resuspend cells in 700 µL of Lysis Buffer 1 and transfer to Lysis Tube. | Vortex for at room temperature for 20 min, using a bead-beater attachment if available. |
| | ■ Centrifuge for 10 sec in benchtop centrifuge. | The chromatin is in the supernatant. |
| | ■ Transfer the supernatant to a clean microcentrifuge tube. | The chromatin is now in the pellet. |
| | ■ Centrifuge the supernatant at 17,000 x g for 5 min.
 ■ Discard the supernatant.
 ■ Resuspend the pellet in 500 µL of 1X CRB.
 ■ Centrifuge at 17,000 x g for 5 min.
 ■ Carefully remove and discard the supernatant.
 ■ Resuspend the pellet in 100 µL of Lysis Buffer 2. | SAFE STOPPING POINT: Pellet may be stored at -25˚C to -15˚C for up to 1 month. |
| | ■ Add 100 µL Recovery Beads to sample. | Incubate at room temperature for 10 min. |
| | ■ Wash the beads:
 ▶ Place the sample tube on a magnetic rack
 ▶ Once the solution has cleared, remove and discard the supernatant without disrupting the beads
 ▶ Remove the tube from the magnetic rack and gently resuspend the beads in 200 µL 1X CRB. | SAFE STOPPING POINT: Store sample at +2 to +8˚C overnight. |
<table>
<thead>
<tr>
<th>Step</th>
<th>Protocol</th>
<th>Incubations and notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Fragmentation</td>
<td>- Add 139 µL of Fragmentation Buffer to sample.</td>
<td></td>
</tr>
<tr>
<td>(Yellow)</td>
<td>- Add 11 µL of Fragmentation Enzyme.</td>
<td>Incubate at 37˚C for 1 hr.</td>
</tr>
<tr>
<td></td>
<td>- Wash the beads:</td>
<td>SAFE STOPPING POINT: Store bead-bound sample in 1X CRB at +2 to +8˚C overnight.</td>
</tr>
<tr>
<td></td>
<td>- Place the sample tube on a magnetic rack</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Once the solution has cleared, remove and discard the supernatant without disrupting the beads</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Remove the tube from the magnetic rack and gently resuspend the beads in 200 µL 1X CRB.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Repeat the bead wash steps for a total of 2 washes with 1X CRB.</td>
<td></td>
</tr>
<tr>
<td>4. Proximity</td>
<td>- Remove 1X CRB from beads.</td>
<td>SAFE STOPPING POINT: Store sample at +2 to +8˚C overnight.</td>
</tr>
<tr>
<td>Ligation (Clear)</td>
<td>- Add 85 µL molecular biology-grade water.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Add 10 µL of 10X Ligation Buffer.</td>
<td>Incubate at 20˚C for 4 hr, followed by 65˚C for 10 min</td>
</tr>
<tr>
<td></td>
<td>- Add 5 µL of Ligation Enzyme.</td>
<td></td>
</tr>
<tr>
<td>5. Reverse</td>
<td>- Add 5 µL of RX Enzyme.</td>
<td>SAFE STOPPING POINT: Store sample at +2 to +8˚C overnight.</td>
</tr>
<tr>
<td>Crosslinks (Clear)</td>
<td></td>
<td>Incubate at 65˚C for 1 - 18 hr</td>
</tr>
<tr>
<td>Step</td>
<td>Protocol</td>
<td>Incubations and notes</td>
</tr>
<tr>
<td>------</td>
<td>----------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>6. Purify DNA (Green)</td>
<td>■ Add 100 µL of Recovery Beads to the sample tube.</td>
<td>Incubate at room temp for 10 min.</td>
</tr>
</tbody>
</table>
| | ■ Rinse the beads:
 ▶ Place the sample tube on a magnetic rack.
 ▶ Once the solution has cleared, remove and discard the supernatant without disrupting the beads.
 ▶ Keeping the beads on the magnet, gently rinse the beads with 200 µL of **Recovery Wash Buffer** without disrupting the beads, leaving the buffer on the beads for 30 sec - 1 min between washes.
 ■ Repeat the bead wash steps for a total of 2 washes with **Recovery Wash Buffer**.
 ■ Remove **Recovery Wash Buffer** and air dry the beads. | To air dry, leave tubes with caps open on the magnet at room temperature for 5 - 15 min. |
| | ■ Resuspend the beads in 100 µL of **Elution Buffer**. | Incubate at room temperature for 5 min. |
| | ■ Place the sample tube on a magnetic tube rack or magnet.
 ■ Once the solution has cleared, recover the **DNA-containing supernatant** and transfer to a fresh tube. | |
ProxiMeta™ Hi-C Kit Protocol v4.0

<table>
<thead>
<tr>
<th>Step</th>
<th>Protocol</th>
<th>Incubations and notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>7. Streptavidin Bead Binding (Blue)</td>
<td>Prepare the Beads
■ Transfer 20 µL of Streptavidin Beads into a new 2 mL microcentrifuge tube (or 0.2 mL PCR tube).
■ Place the tube on a magnetic tube rack or magnet for at least 30 sec.
■ Once the solution has cleared, remove and discard the supernatant without disrupting the beads.
■ Wash the beads:
▶ Place the sample tube on a magnetic rack
▶ Once the solution has cleared, remove and discard the supernatant without disrupting the beads
▶ Remove the tube from the magnetic rack and gently resuspend the beads in 200 µL Wash Buffer 1.
■ Repeat the bead wash steps for a total of 2 washes with Wash Buffer 1.
■ Resuspend beads in 100 µL of Bead Binding Buffer.</td>
<td>Incubate at room temperature for 10 min.</td>
</tr>
<tr>
<td></td>
<td>Bind the Sample to the Beads.
■ Transfer 100 µL of purified DNA from step 6 to the washed Streptavidin Beads.
■ Wash the beads:
▶ Place the sample tube on a magnetic rack
▶ Once the solution has cleared, remove and discard the supernatant without disrupting the beads
▶ Remove the tube from the magnetic rack and gently resuspend the beads in 200 µL Wash Buffer 2.
■ Repeat the bead wash steps for a total of 2 washes with Wash Buffer 2.
■ Repeat the bead wash steps once with Wash Buffer 1.
■ Resuspend the beads in 200 µL of molecular biology-grade water.
■ Measure the concentration of DNA (while still bound to the streptavidin beads) using a Qubit™ dsDNA HS Assay Kit or similar fluorometric assay.</td>
<td></td>
</tr>
<tr>
<td>Step</td>
<td>Protocol</td>
<td>Incubations and notes</td>
</tr>
<tr>
<td>------</td>
<td>----------</td>
<td>-----------------------</td>
</tr>
</tbody>
</table>
| 8. Library Preparation (Purple) | ▪ Transfer no more than 500 ng of DNA-containing Streptavidin Beads to a fresh microcentrifuge tube.
▪ Place the sample tube on a magnetic tube rack or magnet.
▪ Once the solution has cleared, remove and discard the supernatant without disrupting the beads.
▪ Place tube on pre-cooled thermocycler.

▪ To beads add:
 ▶ 40 µL of Molecular biology-grade water
 ▶ Cool to 4˚C, then add:
 ▶ 4 µL of Frag, Repair, & A-Tail Buffer
 ▶ 6 µL of Frag, Repair, & A-Tail Enzyme

▪ To sample add:
 ▶ 5 µL of Universal Adapter (diluted if necessary)
 ▶ 20 µL Adapter Ligation Mix

Pre-cool thermocycler to 4˚C.
Fragment, end-repair, and A-tail using thermocycler program listed in Step 8.8.
Dilute Universal Adapter according to the table listed in Step 8.9.
Incubate at 20˚C for 15 min, no heated lid. |
| 9. On-bead Amplification (Purple) | To beads add:
▪ 20 µL of molecular biology-grade water
▪ 25 µL Hot Start PCR Mix
▪ 5 µL of one PCR Primer Mix

Amplify with PCR protocol given in Step 9.4 of the detailed protocol. |
10. Library Clean-up (Clean-up)

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Incubations and notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Place the sample tube on a magnetic tube rack or magnet and allow solution to clear. Transfer 50 µL of the library-containing supernatant to a new tube.</td>
<td></td>
</tr>
<tr>
<td>Add 55 µL of Recovery Beads.</td>
<td>Incubate at room temperature for 10 min.</td>
</tr>
<tr>
<td>Place the sample tube on a magnetic tube rack or magnet.</td>
<td>Your library is in the supernatant. Do not discard.</td>
</tr>
<tr>
<td>Transfer the supernatant (105 µL) to a new tube containing 17.5 µL of Recovery Beads.</td>
<td>Incubate at room temperature for 10 min.</td>
</tr>
</tbody>
</table>
| Rinse the beads:
 - Place the sample tube on a magnetic rack.
 - Once the solution has cleared, remove the supernatant without disrupting the beads.
 - Keeping the beads on the magnet, gently rinse the beads with 200 µL of **Recovery Wash Buffer** without disrupting the beads, leaving the buffer on the beads for 30 sec - 1 min between washes.
 - Repeat the bead rinse steps for a total of 2 washes with **Recovery Wash Buffer**
 - Air dry the beads. | **Leave tubes with caps open on the magnet at room temperature for 10 - 15 min.** |
| Resuspend the beads in 30 µL of **Elution Buffer**. | **Incubate at room temperature for 5 min.** |
| Place the sample tube on a magnetic tube rack or magnet.
 - Once the solution has cleared, recover the **Proximo Hi-C library-containing-supernatant** and transfer to a fresh microcentrifuge tube. | **See Step 11 in detailed Protocol for recommended QC to determine if your library is sufficient.** |
Detailed Protocol

1. Crosslinking (Red)

See Sample Types and Preparation for sample input and possible protocol modification recommendations based on sample type.

1.1 Resuspend sample in 1 mL of Crosslinking Solution.

1.2 Incubate at room temperature for 15 min with occasional mixing by inversion or rotation.

1.3 Add 100 µL of Quenching Solution.

1.4 Incubate at room temperature for 20 min with occasional mixing by inversion or rotation.

1.5 Centrifuge at 17,000 x g for 5 min to pellet all sample material. Remove and discard the supernatant.

1.6 Wash the pellet with 1 mL of 1X CRB (prepared as described on p.6) and centrifuge at 17,000 x g for 1 min to gently compact the cellular material. Carefully remove and discard the supernatant.

SAFE STOPPING POINT: Pellet can be stored at -15 to -25 ℃
2. Cell Lysis (Orange)

Pre-heat a heating block, water bath, or thermocycler to 65°C (for use in Step 2.8)

2.1 Vortex **Lysis Buffer 1** to resuspend any particulates that may have settled out.

2.2 Resuspend cells in 700 µL of **Lysis Buffer 1** and add to **Lysis Tube**.

2.3 Vortex at room temperature for 20 min using a bead-beater attachment if available.

 Other types of bead-beading shakers can be used. The appropriate duration and intensity will vary between instruments. Refer to manufacturer’s recommendations. However, do not perform any additional mechanical or motorized lysis. Mechanical or motorized homogenizers overly disrupt the sample and severely reduce yields of the final Hi-C library.

2.4 Centrifuge at 500 x g for 10 sec to collapse bubbles and pellet debris, then transfer the supernatant to a clean microcentrifuge tube. **The chromatin is in the supernatant.**

2.5 Centrifuge the supernatant from Step 2.4 at 17,000 x g for 5 min and discard the supernatant. **The chromatin is now in the pellet.**

2.6 Resuspend the pellet in 500 µL of **1X CRB** and centrifuge at 17,000 x g for 5 min. Discard the supernatant.

 SAFE STOPPING POINT: Sample pellet may be stored at -15 to -25°C for up to 1 month.

2.7 Resuspend the pellet in 100 µL of **Lysis Buffer 2** and transfer the sample to a PCR tube.

2.8 Incubate at 65°C for 15 min.

2.9 Briefly allow sample tube to cool. Thoroughly resuspend **Recovery Beads** and add 100 µL of beads to sample tube. mix well by vortexing gently or pipetting thoroughly.

 *Chromatin binds irreversibly to **Recovery Beads**. The crosslinked DNA-protein complexes will remain bound to the beads until completion of Step 5: Reverse Crosslinks.*

2.10 Incubate at room temperature for 10 min.
2.11 Wash the beads:

- Place the sample tube in a magnetic rack or on a magnet.
- Once the solution has cleared, remove and discard the supernatant without disrupting the beads.
- Remove the tube from the magnet and gently resuspend the beads in 200 µL of 1X CRB.

If after several minutes your sample is not clearly adhering to the magnet, briefly centrifuge the sample to collect the bead-bound sample in the bottom of your tube and remove the supernatant, avoiding transfer of any particulate sample. Then resuspend the beads in 100 µL of 1X CRB. Repeat as needed until the beads better adhere to the magnet.

SAFE STOPPING POINT: Bead-bound sample may be stored in 1X CRB at +2 to +8 °C overnight.
3. **Fragmentation (Yellow)**

Pre-heat a heating block, water bath, or thermocycler to 37°C (for use in Step 3.3)

3.1 Add 139 µL of **Fragmentation Buffer** to the sample.

 If your bead-bound sample was stored in 1X CRB, remove the buffer before adding Fragmentation Buffer.

3.2 Add 11 µL of **Fragmentation Enzyme** to the sample and mix by vortexing gently or pipetting thoroughly.

3.3 Incubate the sample at 37°C for 1 hr.

3.4 Wash the beads:

 - Place the sample tube in a magnet.
 - Once the solution has cleared, remove the supernatant without disrupting the beads.
 - Remove the tube from the magnet and gently resuspend the beads in 200 µL of **1X CRB**.

3.5 Repeat the bead wash steps one more time with 200 µL of **1X CRB** per wash, for a total of two washes.

SAFE STOPPING POINT: Store bead-bound sample in **1X CRB** at +2 to +8°C overnight.
4. Proximity Ligation (Clear)

4.1 Add 85 µL of Molecular Biology-grade Water to the bead-bound sample.

If your bead-bound sample was stored in 1X CRB, remove and discard the buffer before adding Ligation Buffer.

4.2 Add 10 µL of 10X Ligation Buffer.

4.3 Add 5 µL of Ligation Enzyme and mix by vortexing gently or pipetting thoroughly.

4.4 Incubate the sample as follows:

<table>
<thead>
<tr>
<th>Step</th>
<th>Temperature (°C)</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ligation</td>
<td>25</td>
<td>4 hr</td>
</tr>
<tr>
<td>Enzyme inactivation</td>
<td>65</td>
<td>10 min</td>
</tr>
<tr>
<td>Final hold</td>
<td>4</td>
<td>Hold</td>
</tr>
</tbody>
</table>

SAFE STOPPING POINT: Store sample at +2 to +8°C overnight.

5. Reverse Crosslinks (Clear)

Heat thermocycler to 65°C (for use in Step 5.2).

5.1 Add 5 µL of RX Enzyme to the ligation reaction and mix well by vortexing or pipetting.

5.2 Incubate at 65°C for at least 1 hr (up to 16 hours).

The sample is no longer bound to the beads and has been released into solution.

SAFE STOPPING POINT: The reaction may be incubated at 65°C overnight, or stored at +2 to +8°C overnight after the 1 hr incubation at 65°C.
6. Purify DNA (Green)

Prepapre Recovery Wash Buffer by adding 8 mL of 95% ethanol to the 1.6 mL of provided Recovery Wash Buffer bottle and mix well.

6.1 Allow sample tube to cool to room temperature.

6.2 Thoroughly resuspend the Recovery Beads and add 100 µL of Recovery Beads to the sample tube and mix thoroughly by vortexing or pipetting.

6.3 Incubate at room temperature for 10 min.

6.4 Rinse the beads:

- Place the sample tube in a magnetic rack or on a magnet.
- Once the solution has cleared, remove and discard the supernatant without disrupting the beads.
- Keeping the beads on the magnet, gently rinse the beads with 200 µL of Recovery Wash Buffer without disrupting the beads, leaving the buffer on the beads for 30 sec to 1 min between washes.

6.5 Repeat the bead rinse steps for a total of 2 rinses with Recovery Wash Buffer.

6.6 Air dry the beads at room temperature for 5 - 15 min on the magnet with the cap open.

Over-drying is not problematic for Recovery Beads. Air dry the beads by leaving the tube on the magnet for 5 - 15 min with the cap open.

6.7 Remove the sample tube from the magnet and thoroughly resuspend the beads in 100 µL of Elution Buffer.

6.8 Incubate at room temperature for 5 minutes to elute the DNA.

6.9 Place the sample tube on a magnetic tube rack or magnet.

6.10 Once the solution has cleared, recover the DNA-containing-supernatant and transfer to a fresh tube. Discard the beads.

SAFE STOPPING POINT: Purified, proximity-ligated DNA may be stored at -25 to -15°C (indefinitely)
7. Streptavidin Bead Binding (Blue)

A. Prepare the Beads

7.1 Thoroughly resuspend the Streptavidin Beads and transfer 20 µL into a new microcentrifuge tube (or 0.2 mL PCR tube).

7.2 Wash the Beads:

- Place the sample tube in a magnetic rack or on a magnet.
- Once the solution has cleared, remove and discard the supernatant without disrupting the beads.
- Remove the tube from the magnet and gently resuspend the beads in 200 µL of Wash Buffer 1.

7.3 Repeat the bead wash steps one more time with 200 µL of Wash Buffer 1 for a total of two washes.

Do not yet combine the beads with the DNA recovered in Step 6.

7.4 Remove beads from the magnet and resuspend in 100 µL of Bead Binding Buffer.
B. **Bind the Sample to the Beads**

7.5 Transfer 100 µL of purified DNA (from Step 6) to the washed **Streptavidin Beads** (from Step 7.4) and mix by vortexing gently or pipetting thoroughly.

7.6 Incubate at room temperature for 10 min, mixing occasionally by gentle vortexing or inversion.

7.7 Wash the beads:

- Place the sample tube in a magnetic rack or on a magnet.
- Once the solution has cleared, remove and discard the supernatant without disrupting the beads.
- Remove the tube from the magnet and gently resuspend the beads in 200 µL of **Wash Buffer 2**.

7.8 Repeat the bead wash steps one more time with 200 µL of **Wash Buffer 2** for a total of two washes.

7.9 Repeat the bead wash steps one more time with 200 µL of **Wash Buffer 1**.

7.10 Repeat the bead wash steps one more time with 200 µL of **molecular biology-grade water**.

7.11 With your bead-bound sample suspended in 200 µL of water, measure the concentration of DNA (while still bound to the streptavidin beads) using a Qubit™ dsDNA HS Assay Kit or similar fluorometric assay.

It is essential that the beads are well resuspended in the molecular biology-grade water prior to quantification by fluorometry. Vortex the beads in the fluorometric assay tube immediately prior to measuring DNA concentration to ensure an accurate measurement.

Beads will interfere with spectrophotometric quantitation of bound DNA. Use of fluorometric assay is a requirement.
8. **Library Preparation (Purple)**

Pre-cool a thermocycler to 4 °C (see Step 8.8).

8.1 Transfer no more than 500 ng of streptavidin-bound DNA to a fresh microcentrifuge tube.

8.2 Place the sample tube in a magnetic rack or on a magnet.

8.3 Once the solution has cleared, remove and discard the supernatant without disrupting the beads.

8.4 Resuspend the beads in 40 µL of molecular biology-grade water.

8.5 Place the sample in the pre-cooled thermocycler and then cool to 4 °C for at least 1 min.

8.6 Add 4 µL of **Frag, Repair, & A-Tail Buffer**.

8.7 Add 6 µL of **Frag, Repair, & A-Tail Enzyme** and mix by vortexing gently or pipetting thoroughly.

 Vortex for at least 5 sec or pipette at least 25 µL of the reaction up and down a minimum of 10 times to ensure proper mixing.

 Thorough mixing at this stage is extremely important! Improper mixing will result in a poorly fragmented library and will negatively affect your sequencable yield.

8.8 Proceed to fragmentation, end-repair, and A-tailing according to the following program:

<table>
<thead>
<tr>
<th>Step</th>
<th>Temperature (°C)</th>
<th>Time (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lid temperature</td>
<td>105</td>
<td></td>
</tr>
<tr>
<td>Pre-cooling</td>
<td>4</td>
<td>Hold</td>
</tr>
<tr>
<td>Fragmentation, end-repair, and A-tailing</td>
<td>30</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>65</td>
<td>30</td>
</tr>
<tr>
<td>Final hold</td>
<td>4</td>
<td>Hold</td>
</tr>
</tbody>
</table>
8.9 If the amount of library measured at step 7.11 was less than 10 ng, dilute the Universal Adapter (provided tube is 15 µM) as according to the table below. Either molecular biology-grade water or 10 mM Tris-HCl, pH 8.0 can be used for the dilution.

<table>
<thead>
<tr>
<th>Input Mass (ng)*</th>
<th>Adapter Concentration</th>
<th>Volume Water or Tris (µL)</th>
<th>Volume 15 µM Adapter (µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 10</td>
<td>15 µM</td>
<td>do not dilute</td>
<td></td>
</tr>
<tr>
<td>1 - 10</td>
<td>3 µM</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>< 1</td>
<td>0.3 µM</td>
<td>49</td>
<td>1</td>
</tr>
</tbody>
</table>

*Measured in Step 7.11

8.10 Add 5 µL of Universal Adapter (see step 8.9 for dilution instructions) to the sample and mix by vortexing gently or pipetting thoroughly.

8.11 Add 20 µL of Adapter Ligation Mix. Mix by pipetting thoroughly.
Do not vortex Adapter Ligation Mix.

8.12 Incubate the sample as follows:

<table>
<thead>
<tr>
<th>Step</th>
<th>Temperature (˚C)</th>
<th>Time (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lid temperature</td>
<td>off</td>
<td></td>
</tr>
<tr>
<td>Ligation</td>
<td>20</td>
<td>15</td>
</tr>
</tbody>
</table>

8.13 Wash the beads:

- Place the sample tube in a magnetic rack or on a magnet.
- Once the solution has cleared, remove and discard the supernatant without disrupting the beads.
- Remove the tube from the magnet and gently resuspend the beads in 200 µL of Wash Buffer 2.

8.14 Repeat the bead wash steps one more time with 200 µL of Wash Buffer 2 for a total of two washes.

8.15 Repeat the bead wash steps one more time with 200 µL of Wash Buffer 1.

8.16 Repeat the bead wash steps one more time with 200 µL of molecular biology-grade water.
9. **On-bead Library Amplification (Purple)**

9.1 Thoroughly resuspend the beads in 20 µL of molecular biology-grade water.

9.2 Add 5 µL one **PCR Primer Mix** and mix by vortexing gently or pipetting thoroughly.

Use a different primer for each sample. 2 primers with unique index sequences are provided with each kit. See [Index Sequences](#) for more information.

9.3 Add 25 µL of **Hot Start PCR Mix**.

9.4 Amplify the library in a thermocycler programmed as follows:

<table>
<thead>
<tr>
<th>Step</th>
<th>Temperature (°C)</th>
<th>Time (sec)</th>
<th>Cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial denaturation</td>
<td>98</td>
<td>45</td>
<td>1</td>
</tr>
<tr>
<td>Denaturation</td>
<td>98</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Annealing</td>
<td>60</td>
<td>30</td>
<td>12*</td>
</tr>
<tr>
<td>Extension</td>
<td>72</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Final extension</td>
<td>72</td>
<td>60</td>
<td>1</td>
</tr>
<tr>
<td>Hold</td>
<td>12</td>
<td>hold</td>
<td></td>
</tr>
</tbody>
</table>

*If less than 20 ng DNA was carried into Step 8 (Library preparation), increase the number of PCR cycles to 16

SAFE STOPPING POINT: PCR reaction can be held overnight at +2 to +8 °C, or stored at -25 to -15 °C (indefinitely)
10. Library Clean-up and Double-sided Size Selection (Green)

Use Recovery Wash Buffer Prepared at Step 6.

10.1 Place the sample tube on a magnetic tube rack or magnet.

10.2 Once the solution has cleared, transfer the library-containing supernatant to a new tube.

Streptavidin beads can be stored in 1X CRB for troubleshooting if needed. Otherwise they can be discarded.

10.3 Add 55 µL (1.1X volume) of thoroughly resuspended Recovery Beads to the tube containing the library (from Step 10.2).

Unwanted high molecular weight fragments will be binding to the beads.

10.4 Incubate at room temperature for 10 min.

10.5 Place the sample tube on a magnetic tube rack or magnet. Your library is in the supernatant. Do not discard.

10.6 After 2 min, or once the solution has cleared, transfer the supernatant (105 µL) to a new tube containing 17.5 µL of Recovery Beads.

The library is now binding to the beads, leaving unwanted small fragments in the supernatant.

10.7 Incubate at room temperature for 10 min.

10.8 Rinse the beads:

- Place the sample tube in a magnetic rack or on a magnet.
- Once the solution has cleared, remove and discard the supernatant without disrupting the beads.
- Keeping the beads on the magnet, gently rinse the beads with 200 µL of Recovery Wash Buffer without disrupting the beads, leaving the buffer on the beads for 30 sec - 1 min between washes.

10.9 Repeat the bead rinse steps for a total of two rinses with Recovery Wash Buffer. Air dry the beads at room temperature 10 - 15 min on the magnet with the cap open.

Over-drying is not problematic for Recovery Beads. Air dry the beads by leaving the tube on the magnet for 5 - 15 min with the cap open.
10.10 Remove the sample tube from the magnet and thoroughly resuspend the beads in 30 µL of Elution Buffer.

10.11 Incubate at room temperature for 5 min to elute the DNA.

10.12 Place the sample tube on a magnetic tube rack or magnet.

10.13 Once the solution has cleared, recover the Proximo Hi-C Library-containing supernatant and transfer to a fresh microcentrifuge tube. Discard the beads.
11. **Library QC (recommended)**

11.1 Measure the concentration of DNA using a Qubit™ dsDNA HS Assay Kit or similar fluorometric assay.

Yields over 0.5 ng/µL are a strong indication that library preparation has been successful. The library can be stored at -15 to -25 °C indefinitely.

11.2 Assess library fragment size using BioAnalyzer or similar instrument.

_Before performing a full sequencing run, it is highly recommended that you perform low-pass sequencing (approximately 1 million read pairs) to assess the quality of your Hi-C library. These data can be analyzed using our open-source Hi-C analysis tools (available from https://github.com/phasegenomics/hic_qc)._

12. **Sequencing**

Prox imagined Hi-C libraries are compatible with any Illumina® sequencer.

<table>
<thead>
<tr>
<th>Population Complexity</th>
<th>Hi-C Sequencing Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low-to-mid-complexity communities (e.g. fecal microbiomes)</td>
<td>> 50 million pairs (2 x 75 bp or longer)</td>
</tr>
<tr>
<td>High-complexity communities (e.g. rumen, sludge, wastewater)</td>
<td>> 50 million pairs (2 x 75 bp or longer)</td>
</tr>
</tbody>
</table>

For mixed-community experiments, producing a shotgun library from the same input sample is recommended (not included in this kit).

<table>
<thead>
<tr>
<th>Population Complexity</th>
<th>Shotgun Sequencing Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low-to-mid-complexity communities (e.g. fecal microbiomes)</td>
<td>> 100 million pairs (2 x 75 bp or longer)</td>
</tr>
<tr>
<td>High-complexity communities (e.g. rumen, sludge, wastewater)</td>
<td>> 200 million pairs (2 x 75 bp or longer)</td>
</tr>
</tbody>
</table>

Note: these are meant as guidelines for the amount of data required to scaffold genomes. The actual requirements will vary between genomes and are dependent on assembly quality.
13. Analysis

Take advantage of our expertise! Interested in additional computational analyses? Contact us to learn more about the services listed below:

ProxiMeta Metagenome Deconvolution Platform
Assemble high-quality genomes directly from the microbiome, or associate plasmids, phages and antimicrobial resistance genes (ARGs) with their hosts.

Proximo™ Genome Scaffolding
Chromosome-scale genome scaffolding for virtually any organism, no high-molecular weight DNA required.

Proximo SV
Identify large-scale structural variation and determine epigenetic changes using Hi-C data.

FALCON-Phase™
Integrate PacBio long-read assemblies with Hi-C data to generate phased, diploid genome assemblies and services.
Appendix A-1

This appendix describes modifications to the protocol for soil samples. If you are unsure about the optimal preparation for your sample, please reach out to support@phasegenomics.com.

Basic Soil Protocol

This protocol is designed for rich soil (i.e. top soil).

A1.1 Mix 5 mL of water per gram of sediment.

For rich soils use 1 - 2 g of soil.

A1.2 Vortex for 5 minutes.

A1.3 Centrifuge at 500 x g for 5 min to settle out heavy particles.

A1.4 Transfer the supernatant to a fresh microcentrifuge tube(s).

A1.5 Centrifuge the supernatant at 17,000 x g for 5 min.

A1.6 Remove and discard the supernatant.

A1.7 Proceed with pellet to step 1. Crosslinking.
Appendix A-2

This protocol is intended for soils with low levels of live organisms. For soils with abundant microbial life, follow the soil protocol included in Appendix A-1.

Differential Centrifugation of Soil or Sludge Samples

Additional reagents not included in the kit are required.

A2.1 Mix 5 mL of water per gram of sediment.

A2.2 Vortex for 5 minutes.

Recommended starting amount: 2 tubes of 25 mL water + 5 g sediment.

A2.3 Spin tubes at 1,000 \(x\) g for 10 min to settle out heavy particles.

A2.4 Transfer the supernatant to a new tube.

A2.5 Add Formaldehyde to a final concentration of 1% (v/v)

A2.6 Incubate at room temperature for 20 min with occasional mixing by inversion or rotation.

A2.7 Add glycine to a final concentration of 1% (w/v) to quench the reaction.

A2.8 Incubate at room temperature for 20 min with occasional mixing by inversion or rotation.

A2.9 Carefully layer 1 mL of supernatant on top of 1 mL of OptiPrep™ (or similar 60% iodixanol solution, not included).

Alternatively, you can layer larger volumes over the OptiPrep™ cushion if you have a centrifuge that can accommodate larger volumes.

It is also possible to sequentially load supers 1 mL at a time over the OptiPrep™ cushion.

A2.10 Centrifuge the layered supernatant and OptiPrep™ at 10,000 \(x\) g for 20 min to pellet.
A2.11 Transfer the supernatant, including cloudy interface, to a new tube and centrifuge at 17,000 x g for 5 min.

A2.12 Remove and discard the supernatant avoiding the pelleted cells.

A2.13 Proceed to 2. Cell Lysis with the pelleted cells.
Index Sequences

Your kit contains two sets of indexed primers, which are used to generate unique dual-indexed Illumina®-compatible libraries with different sequence combinations. If you plan to pool your Hi-C libraries with other libraries for sequencing, please follow standard guidelines for multiplexed sequencing on your specific Illumina® instrument.

Please contact us at support@phasegenomics.com if additional indices or assistance with multiplexed sequencing are needed.

<table>
<thead>
<tr>
<th>Index</th>
<th>i7 Equivalent Index</th>
<th>i5 Equivalent Index (For iSeq, NovaSeq, MiSeq, and HiSeq 2000/2500)</th>
<th>i5 Equivalent Index (For MiniSeq, NextSeq, and HiSeq 3000/4000)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>TCAAGATC</td>
<td>TGACGTAG</td>
<td>CTACGTCA</td>
</tr>
<tr>
<td>B1</td>
<td>GAGCGCCA</td>
<td>AACTCTCC</td>
<td>GGAGAGTT</td>
</tr>
<tr>
<td>D1</td>
<td>ACGACAGA</td>
<td>AGTCTGGT</td>
<td>ACCAGACT</td>
</tr>
<tr>
<td>E1</td>
<td>TAATGATG</td>
<td>GTATCGAA</td>
<td>TCGATAAC</td>
</tr>
<tr>
<td>F1</td>
<td>ACATTACC</td>
<td>AGTACAGG</td>
<td>CCTGACT</td>
</tr>
<tr>
<td>G1</td>
<td>CAGTCGAC</td>
<td>ACTAGCCT</td>
<td>AGGCTAGT</td>
</tr>
<tr>
<td>H1</td>
<td>TGTGTTTT</td>
<td>TCCTAGCA</td>
<td>TGCTAGGA</td>
</tr>
<tr>
<td>A2</td>
<td>CAAAGTTG</td>
<td>CGAGTTGC</td>
<td>GCAACTCG</td>
</tr>
<tr>
<td>B2</td>
<td>GCGCGGTG</td>
<td>ACCCGACC</td>
<td>GGTCGGGT</td>
</tr>
<tr>
<td>C2</td>
<td>AGTGTGTG</td>
<td>GAAATTTT</td>
<td>AAAATTTC</td>
</tr>
<tr>
<td>A3</td>
<td>TCAATCCG</td>
<td>ACTCGGA</td>
<td>TCGCGAT</td>
</tr>
<tr>
<td>B3</td>
<td>CGCTACAT</td>
<td>TAGTCTCG</td>
<td>CGAGACT</td>
</tr>
<tr>
<td>C3</td>
<td>GATCCACT</td>
<td>TGAGCTGT</td>
<td>ACAGCTCA</td>
</tr>
<tr>
<td>D3</td>
<td>ATCCACGA</td>
<td>AGTATGCC</td>
<td>GCATAC</td>
</tr>
<tr>
<td>E3</td>
<td>ACGATCAG</td>
<td>TGCTAGAG</td>
<td>CTCTAGCA</td>
</tr>
<tr>
<td>F3</td>
<td>GTCCTAAG</td>
<td>TACTGCTC</td>
<td>GACAGTA</td>
</tr>
<tr>
<td>G3</td>
<td>CAACTCCA</td>
<td>ACTCCTAC</td>
<td>GTAGGAT</td>
</tr>
<tr>
<td>H3</td>
<td>AAGCATCG</td>
<td>TACTCCAG</td>
<td>CGAGATA</td>
</tr>
<tr>
<td>I3</td>
<td>GAAGACTG</td>
<td>TCACCTAG</td>
<td>CTAGGTA</td>
</tr>
<tr>
<td>J3</td>
<td>GAACGGTT</td>
<td>GATCTTGC</td>
<td>GCAAGAT</td>
</tr>
<tr>
<td>K3</td>
<td>CTCTATCG</td>
<td>AAGCCTGA</td>
<td>TGAGCTT</td>
</tr>
<tr>
<td>L3</td>
<td>ATGCCCTAG</td>
<td>AGTACACG</td>
<td>CGTGACT</td>
</tr>
<tr>
<td>A4</td>
<td>CCACATTG</td>
<td>CGACACT</td>
<td>AAGTGCG</td>
</tr>
<tr>
<td>B4</td>
<td>ATGTGGAC</td>
<td>CTCACAAA</td>
<td>TTGGTGAG</td>
</tr>
<tr>
<td>C4</td>
<td>TGAGACGA</td>
<td>AACCAGAG</td>
<td>CTCTGGTT</td>
</tr>
<tr>
<td>Index</td>
<td>i7 Equivalent Index</td>
<td>i5 Equivalent Index (For iSeq, NovaSeq, MiSeq, and HiSeq 2000/2500)</td>
<td>i5 Equivalent Index (For MiniSeq, NextSeq, and HiSeq 3000/4000)</td>
</tr>
<tr>
<td>-------</td>
<td>---------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>D4</td>
<td>GGTTGGTA</td>
<td>GCGTATCA</td>
<td>TGATACGC</td>
</tr>
<tr>
<td>E4</td>
<td>CATCAACC</td>
<td>AATGACGC</td>
<td>CGGTCATT</td>
</tr>
<tr>
<td>F4</td>
<td>GCAATTCG</td>
<td>CCACAACA</td>
<td>TGGTGTGG</td>
</tr>
<tr>
<td>G4</td>
<td>ACCTCTTC</td>
<td>GTATTCCG</td>
<td>CGGAATAAC</td>
</tr>
<tr>
<td>H4</td>
<td>TTCACGGA</td>
<td>AGGTAGGA</td>
<td>TCCTACCT</td>
</tr>
<tr>
<td>I4</td>
<td>CTGGTCAT</td>
<td>ACGAGAAC</td>
<td>GTTCTCGT</td>
</tr>
<tr>
<td>J4</td>
<td>CCTATTGG</td>
<td>TGACAAACC</td>
<td>GGTTGTCA</td>
</tr>
<tr>
<td>K4</td>
<td>AAGACCGT</td>
<td>CTTAGGAC</td>
<td>GTCTAAG</td>
</tr>
<tr>
<td>L4</td>
<td>GGTTACA</td>
<td>CCGCTTAA</td>
<td>TTAAGCGG</td>
</tr>
</tbody>
</table>
Revision History

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Revision Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.0</td>
<td>2020-01</td>
<td>• released</td>
</tr>
</tbody>
</table>
| | 2020-02 | • tabulated incubation steps
• expanded index table |
| 4.0 | 2020-12 | • Library Preparation and On-bead Library Amplification steps protocol re-formulated
• Increased Ligation Buffer concentration for better stability in long-term storage
• Updated introduction
• Updated links and redirects
• Removed Bead Reagent addition in Streptavidin Bead Binding
• Decreased sample input requirements
• Added quick protocol for experienced users
• Modified Workflow Overview
• Adjusted index sequence IDs to match 96 well layout
• moved liquid nitrogen grinding from before the lysis step to before crosslinking
• added clarifying comments in crosslinking and lysis steps |
| | 2021-02 | • Added units to Ligation incubation table
• Moved note about removing CRB before ligation for clarity
• Expanded note about precipitate in Quenching Solution. |
Notices

This document and its contents are proprietary to Phase Genomics, Inc. and are intended solely for use by its customers in connection with the use of the product(s) described herein and for no other purpose. This document and its contents shall not be used or distributed for any other purpose and/or otherwise communicated, disclosed or reproduced in any way whatsoever without the prior written consent of Phase Genomics. The information is provided “as is” and Phase Genomics assumes no responsibility for any typographical, technical or other inaccuracies. The document is subject to change without notice.

The instructions in this document must be strictly and explicitly followed by qualified and properly trained personnel in order to ensure the proper and safe use of the product(s) described herein. Phase Genomics shall have no liability for any direct, indirect, consequential or incidental damages arising out of the use, the results of use or the inability to use this document or the product(s) described herein. Phase Genomics does not in any way guarantee or represent that you will obtain satisfactory results from using our product(s).

This document may contain references to third-party sources of information, hardware or software, products, or services and/or third-party web sites (collectively “Third-Party Information”). Phase Genomics does not control, and is not responsible for, any Third-Party Information. The inclusion of Third-Party Information in this document does not imply endorsement by Phase Genomics of the Third-Party Information or the third party in any way.

Phase Genomics is not responsible, nor will we be liable in any way, for your use of any equipment, consumables, reagents or software not supplied by Phase Genomics in connection with your use of Phase Genomics products.

Certain applications of this product are covered by patents issued to parties other than Phase Genomics, and applicable in certain countries. Purchase of this product does not include a license to perform any such applications. Phase Genomics does not convey any license under its patent, trademark, copyright, or common-law rights, nor similar rights of any third parties, by this document. The product(s) described in this document are provided for one-time use by the purchaser and may not be re-used, refurbished or resold.

Licensed under U.S. Patent no. US20130096009A1 and corresponding patents in other countries.

Phase Genomics products are For Research Use Only. Not for use in diagnostic procedures.

PROXIMO is a trademark of Phase Genomics, Incl. All other product names and trademarks are the property of their respective owners.
Manufactured by:

Phase Genomics, Inc.
1617 8th Ave N
Seattle, WA 98109 USA
+1-833-742-7436
support@phasegenomics.com
www.phasegenomics.com

© 2021 Phase Genomics, Inc. All rights reserved.