

GETTING STARTED WITH SIMSOLID

Joyce Tang – Application Engineer – September 2021

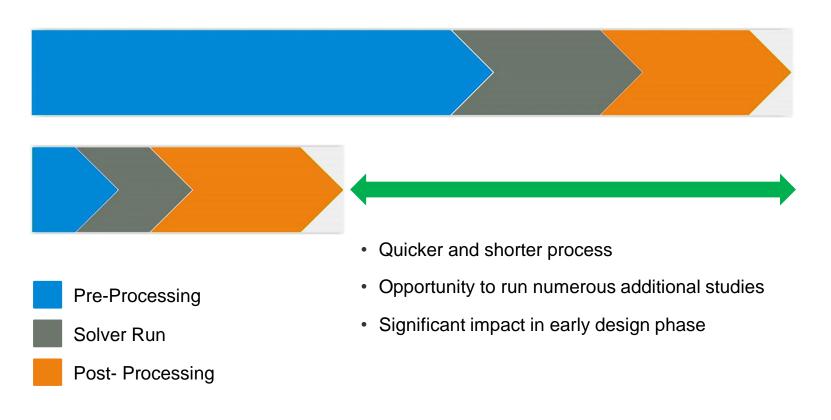
SimSolid

Agenda

Capabilities and Benefits

Demo of the Software

Q&A


Simulation Driven Design Using SimSolid

Altair SimSolid introduces a new technology
that operates on original, un-simplified CAD geometry directly,
and does not create a mesh

Results in seconds to minutes

SIMULATION DRIVEN DESIGN USING SIMSOLID

SIMULATION REVOLUTION WITH SIMSOLID

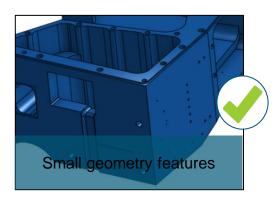
New Technology

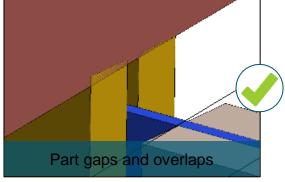
- Meshless
- Original CAD Geometry

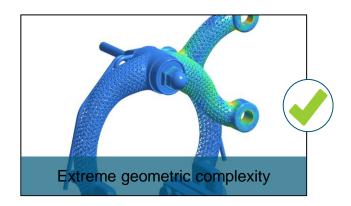
High Capacity

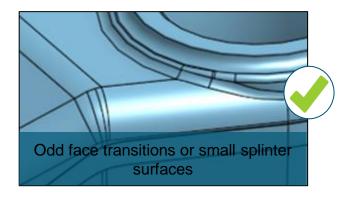
- Large Assemblies
- Complex Parts

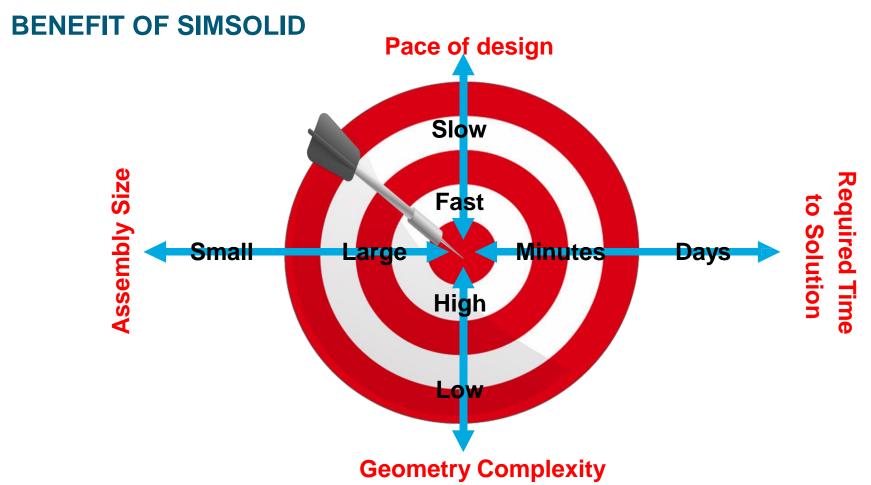

Accurate


- Multi-pass Adaptive Process
- Smart Functions


Fast


- Speed and Scalability
- Results in Minutes


SIMULATION REVOLUTION WITH SIMSOLID



SIMSOLID TECHNOLOGY STEPS

Modeling

- Process geometry
- Classify geometry
- Create connections
- Create analysis parameters

Solving

- Geometry evaluation
- Solution pass
- Error analysis
- Solution adaption

Results

- Create response mesh
- Evaluate quantities of interest to contour plot
- Display reactions
- Fast re-analysis
- Efficient coupled analysis

Notable Features

Solutions

- Modal
- Linear Statics
- Nonlinear Statics
- Frequency Response
- Linear Transient
- Random Response
- Thermal
- Thermal-Stress
- Inertia Relief
- Bolt Pretension
- Linear Superposition
- Partial Dynamic Response
- SN and EN Fatigue
- Multi-Loadcases

Materials

- Isotropic
- Elastoplastic
- Rigid
- Fluid Bodies
- User Extensible
- Orthotropic
- SN/EN curves

Connections

- Auto-connections
- Bonded, Sliding and Separation with Friction
- Bolts
- Spot Welds
- Solid Seam Welds
- Virtual Connectors
- Adhesives
- Joints

Results

- Contours and Animations
- Displacements, Stresses/Strains,
- Velocity, Acceleration, ERP
- Frequencies and Mode Shapes
- XY Plots
- Modal Participation Factors
- Forces: Reaction, Contact, Bolts and Welds
- Min/Max Labels
- Safety Factors
- Bookmarks

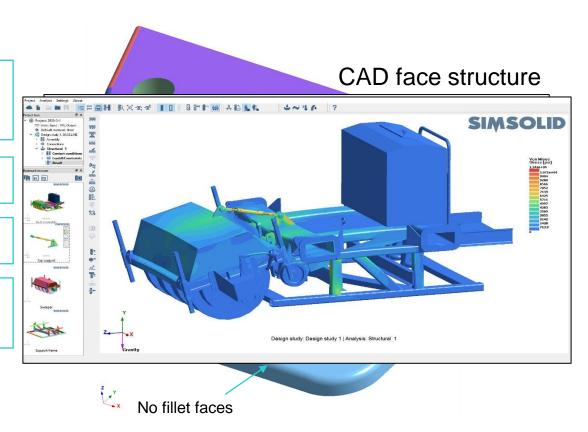
Customer Stories

Webinars, case studies, etc

SOFTWARE DEMONSTRATION

Recommendations

Import only solids

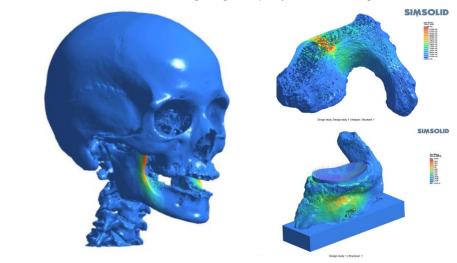

• No surfaces, No open solids

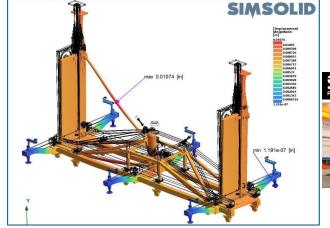
High Fidelity CAD Models

Use CAD Geometry as is

Large Assemblies are Fine

Do Not Merge them





Conclusion

Why SimSolid will be beneficial for your workflows

- Game changing rapid design iterations
- Seamless workflow and easy to use GUI
- ✓ Eliminates geometry simplification
- Analyses complex and large assemblies
- Get results in minutes on a standard PC

NAFEMS about SimSolid

SimSolid in the News

https://www.nafems.org/publications/resource_center/bm jan 20 1/

Benchmark	Description	Quantity	Target Solution	SimSolid	
				Results	Discrepancy
1	Pressure component	Von Mises stress	534MPa	532MPa	<1%
2	Coil spring	Spring rate	20.8N/mm	20.76N/mm	<1%
3	Skew plate	Maximum principal stress	0.82MPa	0.82MPa	<1%
4	Plate with hole	Maximum principal stress	314MPa	325.7MPa	3.7%
		Minimum principal stress	-114MPa	-117.9MPa	4.2%
5	U-shaped notch	Maximum principal stress	48.2MPa	47.6MPa	1.2%
6	Cantilevered plate	Mode 1	0.42Hz	0.42Hz	<1%
		Mode 2	1.02Hz	1.02Hz	<1%
		Mode 3	2.58Hz	2.56Hz	<1%
		Mode 4	3.29Hz	3.27Hz	<1%
		Mode 5	3.75Hz	3.72Hz	<1%
7	Cantilever under pure	Sxx	221MPa	221.7MPa	<1%
	bending	Uz	0.0247m	0.0247m	<1%
8	Cantilever realistic support	S _{VM}	356.5MPa	366.5MPa	2.8%

A summary of results for all benchmarks(NAFEMS)

Check for Other Media Testimonials:

https://www.digitalengineering247.com/article/altair-simsolid-walkthrough/simulate

https://www.develop3d.com/reviews/reviews/review-altair-simsolid-simulation-CAD-design-engineering

THANK YOU

altair.com

#ONLYFORWARD

