

Structural Analysis of major Formula Student racecar components at TU Wien Racing: Drivetrain, Wishbone, Sandwich Structure

Altair Student Webinar Series

Speaker Profile

- Studying Mechanical Engineering, Vienna University of Technology
- 2018 2021: Design Engineer at Watt Drive Antriebstechnik
- 2018 today: Member of TU Wien Racing
 - Chassis & Composite Department
 - Implicit and Explicit Simulations
 - Optistruct, Radioss and Inspire
 - Current project: Crashsimulation

Philipp Link

Member of Composites – TU Wien Racing

E-Mail: philipp.link@racing.tuwien.ac.at LinkedIn: linkedin.com/in/philipp-link-5ba81619a

TU Wien Racing

From tubular steel frame to carbon monocoque

90 Team members

ELECTRIC POWER For more than seven years we have been developing electric vehicles THE FUTURE From all-wheel drive to driverless, we never get bored. Guaranteed!

EDGE Mk I

Philosophy

Altair Software

VIENNA FORMULA TEAM

Optistruct

Drivetrain assembly analysis

- Using Altair Hyperworks meshing tools for solid mesh generation and mesh optimization
- Contact analysis setup
- Non-linear pretension analysis and using sub-load cases

=____

Altair Student Webinar Series

Speaker Profile

Studying mechanical engineering at Vienna University of Technology

- 2018-2019: Team member at TUW Racing
- 2019-2020: Chief Technology Officer
- 2020-today: Head of electric machines, Member of Suspension

Development of Motor, Drivetrain and Wheel assembly

Rudolph Ring ember of Suspension – Head of electric machines TUW Racing

What for?

Computation of stress and displacement during different loadcases enables:

- Stiffness evaluation (Camber/Toe gain etc.)
- Opportunities for weight reduction
- Displacement of gearing components directly affects gear meshing, reducing efficiency and lifetime
- Other

CAD Model Overview

Tire forces applied at contact patch Fy: +2000N, Fz: +1000N

CAD Model Overview

- Contact angle of the angular contact bearings will be represented in the FE-model using RBE2-elements
- Tangential and radial force components, applied to the pinshafts
- Rim and tire will not be modelled, force will be applied at contact patch center over RBE3-elements
- Constraints at the contact angle center points and contact patch center, fully constraining the model

CAD Model Simplification

For better mesh quality and avoiding small mesh sizes, the initial model is simplified in non-critical areas, removing fillets, chamfers and other geometry

Meshing overview

- 2D support meshes (Blue) were used for mesh refinement around critical geometry and generally better mesh control when using 3D-tetrameshes
- Using hexa-elements wherever possible for simpler geometry (solid mappable geometry, rotational symmetric etc.)
- Usual rules for discretisation apply

Solid Mesh optimization tool

File Edit View HyperMesh Assembly Geometry Mesh Elements Morph Connectors Model Valida	Analyze Design Space Optimize Design Explorer Post Certification Report Aerospace Custom 🔶	
🗞 🕵 🞄 🕼 🎯 🌮 🗦 🦻	s 🐝 🎉 📕 👭 📕 🖬 🕼 🖉 😿 🜹	
Files Measure Move Masses Springs Gaps Normals Auto Qua	/ Edit Elements Replicate Refine Coarsen Detach Imprint/Extend Fuse Hole/Gap Fill Map Box Trim Thickness	
Home 0D 🔻	Edit 💌	
Home OD * Mode See Entr. Solv Utal Mask. Search Config (D'Enabled * Mach Config (D'E	First Second order elements Industry Tertra: Second order elements Imput selection: Imput selection: Tertra: Tertra: Aspect ratio Imput selection: Tertra: Tertra: Aspect ratio Imput selection: Yearn selection: Imput selection: Yearn ratio: Imput selection: Yearn ratio:	
	Fix Reject Close	
Name Value		

Used quality metrics

- Aspect ratio < 3
- Jacobian > 0.6
- Tetra collapse > 0.15

• Skew < 60°

Contact definition workflow

Contact definition workflow

 Human-readable element-set naming convention greatly improves overview, especially on more complex models with higher number of element sets and contacts

oarch	Sots				
	Name	ID 💽	Include	Туре	
6	contact_set_hub/carrier	1	C	0 Elements	
i.	contact_set_hub/pinshaft	2	C	0 Elements	
Ē.	contact_set_hub/hollow_pin	3	C	0 Elements	
6	contact_set_carrier/hub	4	C	0 Elements	
6	contact_set_carrier/pinshaft	5	C	0 Elements	
Ь	contact_set_carrier/hollow_pin	6	C	0 Elements	
6	contact_set_pinshaft/carrier	7	C	0 Elements	
6	contact_set_pinshaft/hub	8	C	0 Elements	
6	contact_set_hollow_pin/hub	9	C	0 Elements	
h	contact_set_hollow_pin/carrier	10	C	0 Elements	

• Example for naming convention:

contact_set[first part, selected elements]/[second part]

Searc	h Groups			Q. ¥
	Name	ID 💽	Include	
à	contact_pinshaft/	hub 1	0	
R	contact_pinshaft/	carrier 2	0	
Í.	contact_carrier/hu	ıb 3	0	
ñ.	contact_hollow_p	in/hub 4	0	
Ś	contact_holliw_pir	n/carrier 5	0	
				*
Nam	e	Value		
S	olver Keyword:	CONTACT		
N	ame:	contact_pinshaft	hub	
IC	D:	1		
C	olor:			
In	nclude:	[Master Model]		*
C	ard Image:	CONTACT	*	
U	ser Comments:	Hide In Menu/Ex	port	*
	roperty Option:	Property Type		*
	TYPE:	STICK		*
⊧ S	econdary Entity IDs:		(8) contact_set_pinshaft/	hub
⊧ M	lain Entity IDs:		(2) contact_set_hub/pins	haft
м	IORIENT:		~~	*
S	RCHDIS:			
- A	djust Option:	String Value		*
	ADJUST:			*
C	LEARANCE:			
D	ISCRET:			*
TI	RACK:			~
P	SURF:			
C	OHE:			

Contact definition workflow

Verifying contact group using "Isolate"

Pretension definition workflow

* 1D-elements like CROD, CBAR, CBEAM are selectable. Element crosssection has to be defined in the according properties

Pretension definition workflow

Pretension definition workflow

Name Value SUBCASE Solver Keyword: Name: loadstep external ID: 2 [Master Model] Include w Hide In Menu/Export ¥ User Comments: Subcase Definition Non-linear static · Analysis type: 🔏 (3) constraints ▶ SPC: 👍 (2) load_external ▶ LOAD: ▶ NLPARM: (1) NLPARAM NLPARM(L Unspecified> Unspecified> SUPORT1 <Unspecified> DEFORM Unspecified> PRETENSI. Unspecified> MPC: (1) loadstep_pretension ▶ STATSUB (. (2) NLADAPT ▶ NLADAPT: (3) NLOUT ▶ NLOUT: CNTSTB: Unspecified> Unspecified> DLOAD: 🔏 <Unspecified> MOTNJG: /a <Unspecified> LOADJG: 🔏 <Unspecified> VISCO: Conspecified NSM: Unspecified> NLPRINT: Unspecified> NLENRG:

Under

"loadstep_external",

select SPC, LOAD,

and under STATSUB

select

"loadstep_pretens"

Altair Student Webinar Series

Speaker Profile

- Studying Mechanical Engineering, Vienna University of Technology
- 2018 2021: Design Engineer at Watt Drive Antriebstechnik
- 2018 today: Member of TU Wien Racing
 - Chassis & Composite Department
 - Implicit and Explicit Simulations
 - Optistruct, Radioss and Inspire
 - Current project: Crashsimulation

Philipp Link Member of Composites – TU Wien Racing

E-Mail: philipp.link@racing.tuwien.ac.at LinkedIn: linkedin.com/in/philipp-link-5ba81619a

Wishbone Linear Buckling Analysis

- Fully laminated CFRP wishbones
- Implicit analysis with optistruct

- Stability failure
- Combination of linear static and linear buckling loadsteps

Buckling Problem

- Initial simulation and prototyp wishbones
- Critical failure mode:
 - Compression
 - Buckling (Euler Case 2)

- New Prepreg Material
- New Ply Layup

Development of Simulation Modell

Loadsteps

- Linear Static Displacement, Stress, Strain
- Linear Buckling Theoretical buckling strength

MSGLVL:

MAXSET:

SHFSCL

NORM:

MAX

STATSUB(B.

METHOD (S.,

DEFORM:

SUBCASE OPTIO

LABEL:

STATSUB (P ...

(1) EIGRL Buckling

la <Unspecified>

(Unspecified)

Wishbone Linear Buckling Analysis

CAD Modell:

- Wishbone
- Insert
- Balljoint

Composite Menu:

Strain Gauge:

Maximum force of 10.000N

Physical Testing:

- Detailed modelled in simulation
- Validation for simulation
- Calibration for strain gauges

Modelling

Overall:

- 2D shell elements
- 3D elements
 (Inserts & Stacked CFRP)
- Quads / Trias
- Second Order

CFRP Laminate:

- Mat 8
- PCOMPP
- Tsai-Wu

Inserts, Stacked, Testdevices:

- Mat 1 / Mat 9 Ort
- PSolid

Modelling

Simulation Results

Linear Static:

Composite Failure Index < 1

Investigation of buckling modes and Pcr Mode 5 (left), Mode 7 (right)

Validation

#	Simulation	Physical Testing			
Displacement (Load 10.000N) [mm]	0,739	0,801			
Stiffness [N/mm]	13.532	12.484			
Difference [%]	8,39				

Mode 2 (left), Mode 12 (right)

Local loss of stability

Local buckling modes

Global Buckling *Mode 1*

ASM Front Left Suspension

- Structural Analysis of ASM Front Suspension
 - Wishbone
 - **Steering Arm**
 - PullIrod
 - Upright

RBE2

Altair Student Webinar Series

Speaker Profile

- Studying Mechanical Engineering, Vienna University of Technology
- 2018 today: Member of TU Wien Racing
 - 2018 Member of Composites
 - 2018/19 Head of Chassis
 - Since 2019 Member of Chassis/Composites development
 - Current project: optimization of suspension pick up points

Martin MOLNÁR Member of Composites – TU Wien Racing

E-Mail: <u>martin.molnar@racing.tuwien.ac.at</u> LinkedIn: <u>www.linkedin.com/in/MartinMolnar3/</u>

Sandwich Structure – 3 Point Bending calculation – analyses – physical testing

- Formula Student rules, SES (Structural Equivalency Spreadsheet):
 - Structural integrity
 - Equivalency
 - Safety

Sandwich Structure – 3 Point Bending calculation – analyses – physical testing

Sandwich Structure – 3 Point Bending calculation – analyses – physical testing

- Simplifying for the initial simulation
- \rightarrow Sandwich structure modelled as PLY

Sandwich Structure – 3 Point Bending calculation – analyses – physical testing

• Data for the simulation:

Test setup:

• 275mmx500mm

- Data for the simulation:
 - Material data AGP 193 RC38: MAT8:

Ply Thickness: 0,19mm

E1	E2	G12	Nu12	RHO	Xt	Xc	Yt	Үс	S	GE	F12
[Mpa]	[Mpa]	[Mpa]	[1]	[kg/t]	[Mpa]	[Mpa]	[Mpa]	[Мра]	[Mpa]	[Mpa]	[Mpa]
66000	66000	4960	0,046	1,57e-07	769	844	1172	753	781	56	

Material data M21 E/34% UD134:

MAT8:

Ply Thickness: 0,13mm

E1	E2	G12	Nu12	RHO	Xt	Xc	Yt	Үс	S	GE	F12
[Mpa]	[Mpa]	[Mpa]	[1]	[kg/t]	[Mpa]	[Mpa]	[Mpa]	[Мра]	[Mpa]	[Mpa]	[Mpa]
178000	11800	5200	0,28	1,58e-07	3050	1500	56	200	95	56	

• Material data Al Honeycomb, 5056-3,6/0,025/14:

MAT8:

Core Thickness: 14mm

	E1 [Mpa]	E2 [Mpa]	G1Z [Mpa]	G2Z [Mpa]	G12 [Mpa]	Nu12 [1]	RHO [kg/t]	Xt [Mpa]	Xc [Mpa]	Yt [Mpa]	Үс [Мра]	S [Mpa]
	1	1	10	137	310,264	0,35	5,126e-11	1	1	1	1	1,2
ТЫШ/												

• Simulation/Tutorial:

Sandwich Structure – 3 Point Bending calculation – analyses – physical testing

Modelling the core specifically

Comparison of the different methods, physical testing and calculation:

#	Calculation	PLY Based	Modelled Core	Physical testing
Displacement [mm]	10,591	11,655	11,741	11,718
Stiffness [N/mm]	771,35	700,91	695,78	697,14
Difference to physical testing [%]	-10,641%	-0,541%	0,196%	=

🛆 ALTAIR

Thank you **ALTAIR** !

Q & A

- Drivetrain
- Contact Prop's
- Pretension definition

Wishbone

- EIGRL Card
- Buckling Modes

• Sandwich Structure

- Calculation
- PLY-Based Simulation
- Results

