
From Software Development to „real“
Engineering with Software Analytics
Optimizing software production requires data-driven

end-to-end process analysis
Johannes Bohnet, Seerene GmbH

This paper introduces the concept of an optimal setup of for a software development
organization that produces software for embedded systems: the “Ideal Software Factory”.
The paper furthermore describes an analytics method to quantify and precisely observe
the software development process and helps to transform the organization into an ideal
software factory. The performance of the software factory is thereby assessed by analyt-
ics-driven KPIs that capture various performance dimensions such as efficiency, quality,
technical debt, time, and more. For the specific aspect of efficiency, a deep dive is given
that demonstrates how analytics can be applied in practice.

Introduction: The age of software factories

Software development, as a discipline, still lags years
behind traditional engineering disciplines; particularly
when it comes to software production involving large
teams. Such “software factories” are found in every
corporate across all industry domains including for
example financial services, logistics, telecommunication,
manufacturing, retail, or automotive. A software factory
may be part of the IT department and produces tailor-
made software systems to support the core business
processes of the organization. Or the software produc-
tion is the core business process of the organization it-
self. This is the case if the produced software is sold
to customers as software products or as embedded
systems. The concepts that we describe in this paper
are applicable to all kinds of software factories, inde-
pendently of the type of software produced, the tech-
nology stack behind the software, or the process meth-
odology (waterfall, agile, V-model, …). However, in terms
of language and examples we will focus on the embed-
ded systems domain. Companies in this sector originally
come from producing hardware and are now more and
more transforming into software companies. It is aston-
ishingly obvious for them to see how well they run their
“real”, hardware factories and how big their lack of trans-
parency is with respect to their software factories. And
with the missing transparency about the inner workings
of the factory comes the inability to lead it to higher exe-
cution excellence and maturity.

In this paper, we will elaborate on key ingredients to dras-
tically increase the efficiency of a software factory as well
as on analytics-based methods to continuously improve
the factory towards highest excellence in software pro-
duction.

Running a software factory means balancing
multiple dimensions

Someone being responsible for a software factory –let
us call her/him the factory owner– needs to observe how
the factory performs to be able to optimize it and increase
maturity. Measuring the performance of a software facto-
ry means gathering quantifiable KPIs for multiple dimen-
sions such as:

• Scope (output, delivered value)

• Budget (money spent)

• Time (speed of delivery)

• Quality (no defects)

• Efficiency (lean process without waste and time
loss)

• Technical Debt (maintainable, future-proof code)

• Ability to flexibly scale teams (no knowledge lock-ins)

The analytics method described in this paper, enables
factory owners to quantify the dimensions by means of
KPIs which can be understood both by the managers
“on top” of the factory as well as by the experts “with-
in” the factory. The core idea of the analytics approach

Figure 2: Illustration of a distilled version of tools and stakeholders participating in the software development process

is to leverage the fact that the development infrastruc-
ture tools in the factory leave technical data traces
(see Figure 1).

Figure 1: A software factory leaves data traces that can be processed
by analytics to reveal the inner processes within the factory and trans-
late it into management-understandable KPIs and insights.

This technical raw data is fused and algorithmically pro-
cessed into KPIs and –because the insights are derived
from low level data– it is additionally possible to drill
down and reveal the root cause of a problem.

In this paper, we cannot elaborate on the full set of analyt-
ics-driven KPIs that can and should be used to measure
the various performance dimensions. Instead, we focus
on one dimension, namely efficiency, and describe in de-
tail how analytics can help to improve. We pick efficien-
cy because it is on the one hand side the most import-
ant one when it comes to optimize the factory; it directly
correlates with saved money. On the other hand, it is the
most difficult one to measure because it requires to take
data probes along the entire software production pro-
cess, from requirements, over planning, coding, testing
to release handovers (see Figure 2). Luckily, end-to-end
software process mining is capable of reconstructing the
activity along the entire process.

Efficiency in software production

Efficiency refers to minimizing loss of time and money
during software development. The major cost driver in
software development is the money with which developer
time is bought – either by paying in-house developers or
by renting them from 3rd-party providers. Figure 3 illus-
trates that it would be nice if 100% of the developer time
could be used for creating innovation. However, in reality
there is “waste” in the process, loss factors that steal de-
veloper time so that only a fraction of the 100% can be
used for creating business value.

Examples of such loss factors are:

• Coding effort for defect fixing

• Coding effort in very complex code areas (paying
“interest” on existing “technical debt”)

• Coding effort for removing complexity (“technical
debt”)

• High onboarding overhead when a developer
with a knowledge monopoly leaves the team

All these effects can be measured and quantified with
software analytics if raw data from work item tracking
(e.g., Jira, IMS, …), code versioning (e.g., Git, MKS, Mercuri-
al, …) is brought together and analyzed. With such an ana-
lytics technique one can observe the effect of “developer
brain meets complex code”. Figure 4 illustrates how cod-
ing activities happen within the code and it introduces the
information visualization technique of so-called “software
maps”, whereby code is metaphorically depicted as a city.

In the field of producing embedded software, there is an
addition waste aspect that can create a lot of unnecessary
work for developers, which is: reinventing the wheel with
every new project. This aspect is somehow unique to em-
bedded software because –in contrast to a bank’s core
backend IT system for example– embedded software
is tailored to specific hardware constellations and the
production process can be considered as a real project
with beginning and end. Producing embedded software

Figure 3: Example of “process waste” that causes low efficiency and reduces developer time for value creation.

Figure 4: Coding activities within code, metaphorically depicted as a
city. Buildings represent code files and are organized as city districts
according to the modular structure of the system architecture.

means performing many customer- and hardware-specif-
ic projects based on the same underlying code base. Key
ingredients for efficient software production are therefore
reusable code components.

Reusable code components are a must-have for
efficient software factories

Software factories for embedded software conception-
ally operate on two layers (see Figure 5). One layer rep-
resents what a Chief Financial Officer would call “value
creation” and the other layer represents “value capturing”.
In the value creation layer, strategic investments are made
to build up and add value to “assets”, i.e., reusable code
components. In the value capturing layer, customer-spe-
cific software is derived from the code components and
the outcome is sold. A software factory that can run proj-
ects without coding effort, just by assembling ready-to-
use code components would be a highly efficient revenue
generating machine.

Figure 5: The financial concept of “value creation” and “value captur-
ing” applied to the production of embedded software.

Such an “Ideal Software Factory” is depicted in Figure
6. The production process is split –like in a “real”, hard-
ware-component producing factory– into two steps:

1. Value Creation: Project-independent ready-to-use
components are built in a pre-assembly step (e.g., as
static or dynamic link libraries) and stored in a pack-
age repository (“artifactory”).

2. Value Capturing: In a final assembly step, code com-
ponents that are relevant for the project are taken
from the artifactory, configured, parametrized, and
glued together (e.g., by linking the libraries) to create
the project deliverable.

Interestingly, the role model for this setup can be exam-
ined in every Linux-based PC/server. The basic reusable

component is the operating system and then, depending
on the individual user requirements, additional ready-
to-use components are added. Famous artifactories for
managing reusable components are for example APT or
RPM. To install a driver for a specific graphics card, for
example, one would simply execute the command: ‘apt in-
stall nvidia-driver-440’.

However, embedded systems often have hardware con-
straints. In this case, any binary code needs to be highly
optimized. A software factory setup as depicted in Fig-
ure 6 would not be suitable because the compilation pro-
cess in the pre-assembly step would not know about the
project-specific requirements. In such situation, the “Ide-
al Software Factory” would still consider reusable code
components as assets. The only difference would be that

Figure 6: The Ideal Software Factory.

the components would be brought together as source
code in final-assembly, not as compiled binary code (see
Figure 7). However, such a software factory is conception-
ally equal to the aforementioned “Ideal Software Factory”.

Analytics as navigation guide towards the Ideal
Software Factory

In practice, a software factory is often not yet an “Ideal
Software Factory” as elaborated in the last section. In-
stead of just gluing ready-to-use code components to-
gether, a typical project involves a significant amount of

project-specific coding effort; because the projects re-
quire functionality that is not yet provided by the reusable
code components. In software factories with very low
maturity, only rudimentary components are provided, and
each project has to build up the similar functionality from
scratch – over and over again.

Analytics helps to quantify how far a software factory is
still away from the ideal setup. For each work item of a
project (stored in e.g., Jira, IMS, …) the code changes are
revealed (stored in e.g., Git, MKS, Mercurial, …) and the ef-
fect on the code units (determined by static code analy-

Figure 7: The Ideal Software Factory – if compile-time optimization is necessary.

sis). This way, full traceability is provided for each work
item:

• How much coding effort was necessary to imple-
ment the work item (reconstructed from the an-
onymized developer footprints in Git, MKS, …; no
time tracking information is needed)?

• Where in the architecture did the coding effort flow
into? Which component received how much effort
(e.g., in person days)?

• What was the effect on the code? In-
creased amount of logic, complexity, …?

There are two perspectives how these analytics-based
insights help the software factory become better. On the
one hand, one can observe the amount of additional proj-
ect-specific coding effort across all projects. The goal
should be to minimize such effort and make value cap-
turing effortless. The only exception would be if there is
a strategic investment into a specific component during
the course of a project. However, this would mean that the
“value creation” part is performed within or in parallel to
the “value capturing” part.

On the other hand, one can observe in which code compo-
nents the additional project-specific coding takes place.
One can even drill down to individual code files that con-
sume the effort (see Figure 8). This gives clear actionable
insights into which components are not yet ready for out-
of-the-box use. These components are good candidates

for strategic investment (value creation) to free up devel-
oper time in upcoming projects (value capturing).

Summary and outlook

In this paper, we discussed challenges for the ones be-
ing responsible for a software factory; particularly, the
need to continuously balance and optimize the factory
with respect to various dimensions. For the dimension
“efficiency”, we made a deep dive and pinpointed various
aspects that reduce productivity. We then had a dedicated
look into software factories for embedded software and
introduced the concept of the highly efficient “Ideal Soft-

Figure 8: Drill down from a KPI quantifying efficiency loss into the code
architecture to reveal the root cause of the problem.

ware Factory” that distinguishes between investments
into reusable code components (value creation) and ef-
fort-free money-making by assembling customer-specific
software in projects (value capturing). Furthermore, we
described the concept of analytics-driven software pro-
cess mining that enables software factory “owners” to
observe and measure the inner workings of their factory.
And we showed how analytics can help to reach the ideal
software factory setup.

For reasons of brevity, we did not elaborate on the im-
mense power of this analytics method for software en-
gineering in general. As an outlook, it shall be mentioned
that analytics-based traceability along the development
process helps in a multitude of ways. Examples: It helps
to improve quality by revealing defect-risks behind re-
quirements and work items very early; it reveals disad-
vantageous team setups and knowledge distributions; it
allows for comparison of performance KPIs across multi-
ple software factories the hierarchy of departments, busi-
ness units, and divisions within a corporate – regardless
of the technology-, tool- or methodology-specifics used in
software production.

Author

Dr. Johannes Bohnet is founder and Co-CEO of Seerene
GmbH, an analytics and software process mining compa-
ny that has its roots in the Hasso Plattner Institute, the
German university center of excellence in the field of soft-
ware engineering. Before starting with Seerene, Johannes
completed his graduate studies in physics at the German
universities of Heidelberg and Münster. After this, he
worked as a research and teaching assistant at the Hasso
Plattner Institute, where he built up and headed HPI’s re-
search group on software analytics and visualization. He
finished his academic career phase with a Ph.D. in com-
puter science at the University of Potsdam. In parallel to
his scientific activities, he worked as an IT consultant and
trainer a renowned consultancy firm in Frankfurt for many
years.

Contact

Internet: www.seerene.com
Email: johannes.bohnet@seerene.com

