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ABSTRACT
Chest computed tomography (CT) scanning is one of the most
important technologies for COVID-19 diagnosis and disease moni-
toring, particularly for early detection of coronavirus. Recent ad-
vancements in computer vision motivate more concerted efforts in
developing AI-driven diagnostic tools to accommodate the enor-
mous demands for the COVID-19 diagnostic tests globally. To help
alleviate burdens on medical systems, we develop a lesion-attention
deep neural network (LA-DNN) to predict COVID-19 positive or
negative with a richly annotated chest CT image dataset. Based on
the textual radiological report accompanied with each CT image, we
extract two types of important information for the annotations: One
is the indicator of a positive or negative case of COVID-19, and the
other is the description of five lesions on the CT images associated
with the positive cases. The proposed data-efficient LA-DNN model
focuses on the primary task of binary classification for COVID-19
diagnosis, while an auxiliary multi-label learning task is imple-
mented simultaneously to draw the attention of DNN to the five
lesions associated with COVID-19. The joint task learning process
makes it a highly sample-efficient DNN that can learn COVID-19
radiology features more effectively with limited but high-quality,
rich-information samples. The experimental results show that the
sensitivity (recall), area under the curve (AUC), F1 score, and ac-
curacy for COVID-19 diagnosis are 88.8%, 94.7%, 87.9%, and 89.0%,
respectively. A free online system is currently alive for fast diagno-
sis using CT images at the website https://www.covidct.cn/, and all
codes and datasets are freely accessible at our github address.
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1 BACKGROUND
The novel coronavirus disease 2019 (COVID-19) is undergoing an
unprecedented global outbreak. On March 11, 2020, COVID-19
was declared as an international public health emergency by the
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World Health Organization (WHO). By July 24, 2020, more than
200 countries or territories have been affected by COVID-19 with
a total of more than 15 million confirmed cases and over 630,000
deaths. Both the numbers of confirmed cases and deaths continue
climbing up quickly worldwide.

The fast increasing numbers of COVID-19 cases and deaths have
caused overburdens onmany localmedical systems across theworld.
Currently, the reverse-transcription polymerase chain reaction (RT-
PCR) test is the standard method for detecting the coronavirus in
COVID-19 patients. However, the laboratory RT-PCR test usually
takes a rather long time (e.g., in days) to deliver the final result. To
shorten the time of diagnosis, the real time RT-PCR test is recom-
mended which can deliver a reliable diagnosis result much faster
(e.g., in 6–8 hours). Such tests need a collection of a sample with
a swab that goes deep in a person’s nose or throat, i.e., parts of
the body where the coronavirus gathers. However, if the swabbed
areas do not have coronavirus accumulated, the tests may fail to
identify a COVID-19 patient correctly, yielding a false negative
result. Many countries are experiencing a backlog of test results
due to a lack of diagnostic kits at their medical facilities, and the
test results may even take longer time than anticipated due to the
increasing demands for testing globally. Not only are these tests
insufficient to meet the urgent and vast demands in many countries
(particularly those with poor medical infrastructures), but they are
also inefficient as the time lag of test reporting may cause treatment
delay, especially for patients with critical conditions. Moreover, the
sensitivity of the current RT-PCR testing kits is not high; that is, a
large number of COVID-19 patients cannot be identified accurately
after their first tests due to false negatives. As a result, it usually
requires several tests to make a final confirmation and it is not un-
common to have several negative test results followed by a positive
one. Hence, patients may not receive appropriate treatment and
necessary quarantine during the RT-PCR testing period. This is
particularly true for patients with no or minimal symptoms.

On the other hand, chest CT scans provide another critical tool
for COVID-19 diagnosis and disease monitoring, especially for
early detection when the symptoms are yet onset. After entering
the body, coronavirus often attacks the lung first and thus certain
lesions would manifest in the lung’s CT image, before a swab can
collect an adequate amount of virus in the nose or throat for testing.
According to many existing studies [1, 3], CT scanning serves as
an important and necessary supplement for the RT-PCR test and
sometimes can even outperform the laboratory test for COVID-
19 diagnosis. In contrast to the RT-PCR test, the chest CT scans
have been commonly used in many disease areas (e.g., cancer) for
diagnosis and monitoring, and the corresponding diagnostic results
can be obtained in a much faster way.
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Top: CT images with various
radiographic abnormalities: bilat-
eral diffuse consolidation with air
bronchograms.

Middle: COVID-19 positive with
clinical and CT findings, but with
repeated negative RT-PCR tests.
Axial (A) and coronal (B) CT
images show typical bilateral
subpleural areas of GGO.

Bottom: Progress of CT findings
in a COVID-19 patient, showing
an increase of extent of GGO
with crazy paving appearance.

Figure 1: Illustration of the multi-label chest CT images of
COVID-19 positive patients collected from online papers.
Besides the flag of COVID-19, five lesions labels are anno-
tated: ground glass opacities (GGO), consolidation (Csld),
crazy paving appearance (CrPa), air bronchograms (AirBr),
and interlobular septal thickening (InSepThi).

To improve the efficiency of the CT-based diagnosis, automatic di-
agnostic systems have been developed with AI technologies by read-
ing patients’ chest CT images as inputs and then output the diagno-
sis results [6, 9, 11, 13]. These AI-drivenmethods have demonstrated
very promising performances on COVID-19 prediction. However,
most of the existing work do not share the training data publicly,
while He et al. [6] constructed the first openly accessible COVID-
19 chest CT dataset by extracting the CT images from over 760
preprints in medRxiv and bioRxiv. This publicly available dataset
contains 746 samples, among which 345 of them are COVID-19
positive and the rest 401 are negative1. We continue expanding
the dataset by collecting new samples appeared in the latest online
publications on COVID-19.

Figure 1 shows several examples of the CT images in the dataset
annotated with professional textual analysis, accompanied with
the radiological reports on the right side. The text reports typically
narrate the results on whether the patients are COVID-19 positive
or not, as well as descriptions of lesions of COVID-19 patients.
Based on our comprehensive statistical analysis over the entire
text annotations, there are five different lesions associated with
COVID-19, including the ground glass opacity (GGO), consolidation
(Csld), crazy paving appearance (CrPa), air bronchograms (AirBr),
and interlobular septal thickening (InSepThi). Figure 1 shows that
most of the confirmed COVID-19 cases is attached with one to
five lesion labels2. Our experiments corroborate that the auxiliary
information on these lesions is extremely valuable for COVID-19 di-
agnosis and can greatly improve the diagnostic accuracy. However,
the pioneering work [6] only focused on the COVID-19 diagnosis
by conducting a binary classification task on predicting the flag
of COVID-19, but ignored the significant amount of information

1The original dataset [6] has 349/397 positive/negative samples, while the authors
assigned 4 positive labels to negative samples by mistake.
2We could not find any lesion information for 18 COVID-19 positive cases from the
radiological reports.

on the common lesions which are distinctive from other types of
pneumonia.

We develop a highly accurate COVID-19 diagnosis system based
on the chest CT images as well as the corresponding rich annota-
tions on the five lesions. Our model adopts a double-task learning
process which contains a primary binary classification task on the
flag of COVID-19 and an auxiliary multi-label attention learning
task on the five lesions. Both tasks are trained synchronously, while
it shows that the auxiliary task promotes the primary task to focus
its attention on the lesion areas and, as a result, the diagnostic accu-
racy of COVID-19 is improved above the level of the state-of-the-art
method. Due to the incorporation of the attention mechanism on
the five lesions, we refer to our new model as the lesion-attention
deep neural network (LA-DNN).

Experimental results demonstrate that our LA-DNN model can
achieve great improvements by using the textual information. The
area under the sensitivity (recall), area under the receiver operat-
ing characteristic (ROC) curve (AUC), F1 score, and accuracy for
COVID-19 diagnosis are 88.8%, 94.7%, 87.9%, and 89.0%, respectively.
These results improve drastically over the existing work and reach
the clinical standards for COVID-19 diagnosis [3, 8]. Therefore, our
system can be deployed for practical use to alleviate the enormous
burdens of COVID-19 diagnostic tests [3]. The annotated lesion
label files and the implementation codes in Python (PyTorch 1.4)
can all be freely accessed at https://github.com/xiaoxuegao499/LA-
DNN-for-COVID-19-diagnosis. An online system has been devel-
oped and is openly available for fast COVID-19 diagnosis using
chest CT images at the website https://www.covidct.cn/.

2 METHODOLOGY
2.1 Motivation and model
There has been an increasing amount of work on developing an
AI-based COVID-19 diagnostic system using patients’ chest CT
scans [11]. Unfortunately, most of the data used in the deep learn-
ing models are not publicly available, which makes the existing
models and results difficult to verify and reproduce. He et al. [6]
published the first open-access COVID-19 chest CT image dataset
by collecting the lung CT images appeared in the online preprints
of research work on COVID-19. In a supervised learning process,
classification based on deep learning models typically requires a
relatively large number of annotated samples to train the model for
accurate prediction. However, the current publicly available dataset
[6] only contains 746 published chest CT images. The shortage of
labeled samples and the urgency for the development of automated
COVID-19 diagnostic tools motivate us to derive a sample-efficient
deep neural network that can integrate all sources of information
for optimal decision making.

Through careful studies on the preprints associated with the
patients’ chest CT scans, we can extract valuable textual annota-
tions of these CT images. One is the flag of COVID-19, positive or
negative, and the other is the radiological reports on five potential
lesions in the lungs for COVID-19 positive patients (no information
on the lesions for COVID-19 negative patients). In the pioneering
work by He et al. [6], they trained a binary classification model
based on the COVID-19 flag only, while ignoring all the lesion
information which requires further annotations. To improve the

https://github.com/xiaoxuegao499/LA-DNN-for-COVID-19-diagnosis
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Figure 2: The architecture of the proposed lesion-attention deep neural networks with a primary task of binary classification
and an auxiliary task of multi-label learning of five lesions; the last three layers are fully connected (FC) layers.

performance of COVID-19 diagnosis, we propose to integrate the
information on the lesion descriptions into the classification of the
flag of COVID-19.

Our goal is to make accurate classification of the COVID-19
positive or negative directly using the chest CT images. However,
in contrast to the work of He et al. [6] which focused on making
a complex knowledge transfer, we aim to fully exploit the richly
annotated textual information in the data. After annotating the
five-category lesions on the COVID-19 positive images, we propose
an auxiliary multi-label learning model based on the summarized
five different lesion labels, in addition to the primary objective
of the binary classification for COVID-19. The auxiliary task ap-
plies multi-label learning over the five lesions annotated using the
corresponding radiological reports, which include ground glass
opacities (GGO), consolidation (Csld), crazy paving appearance
(CrPa), air bronchograms (AirBr), and interlobular septal thicken-
ing (InSepThi), as shown in Figure 2. The primary and auxiliary
tasks are trained synchronously in our LA-DNN model, so that the
unknown parameters can be learned more effectively than those
by only training the primary task for binary classification. The
auxiliary multi-label learning task promotes the fine-grained infor-
mation on the radiology-revealed lesions to be integrated into the
primary task, which makes the primary task pay more attention to
the lesion areas rather than other uninteresting areas when making
a classification decision. This lesion-attention mechanism drasti-
cally improves the diagnostic accuracy up to the level of clinical
standards by medical experts. Although our LA-DNN is trained
jointly by binary classification and five-label learning with lesion
annotations, for practical use it does not require any annotations on
the lesions in the lung image. Our system simply takes a plain lung
CT image as an input and directly outputs the binary classification
as COVID-19 positive or negative.

2.2 Implementation of LA-DNN
Figure 2 shows the architecture of the proposed LA-DNN model.
Using the ImageNet, we first pre-train the backbone networks,
and then via the idea of transfer learning, a pre-trained backbone

network takes the patient’s chest CT images as inputs. Seven well-
known deep neural networks are explored one at a time to be used
as the backbone network in the experiment, including VGG-16
[10], ResNet-18 [5], ResNet-50 [5], DenseNet-121 [7], DenseNet-169
[7], EfficientNet-b0 [12], and EfficientNet-b1 [12]. These backbone
networks typically involve millions of parameters which are pre-
trained using the ImageNet. The output of the last layer of dimen-
sion 6 is carried forward to two branches. One branch is used to
predict whether a patient is COVID-19 positive or not, for which a
primary loss function 𝐿P is calculated based on the cross entropy of
the binary classification task. Simultaneously, the other branch aims
to make a multi-label prediction on the five lesions, which brings in
an auxiliary loss function 𝐿A. The multi-label learning of the five le-
sions are predicted using the 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 function 𝜎 (𝑥) = 1/(1 + 𝑒−𝑥 ).
The final prediction error is the summation of 𝐿P from the primary
binary task and 𝐿A from the auxiliary multi-label task. In other
words, we have two different sources of feedback to fine-tune the
backbone networks.

2.3 COVID-19 chest CT scans
We train the proposed LA-DNN model on the dataset published by
He et al. [6] in conjunction with our newly collected dataset. The
original dataset contains 345 samples of COVID-19 positive and
401 COVID-19 negative CT scans, which are collected from 760
research preprints related to COVID-19 from medRxiv and bioRxiv,
posted online from January 19th to March 25th 2020. We continue
expanding the dataset of chest CT images by further collecting
219 new samples from 57 COVID-19 positive patients and 259 new
negative samples from 164 non-COVID-19 patients from the newly
appeared publications up to May 21th 2020. We denote the original
dataset with 746 samples as D0, and denote the dataset with newly
collected 478 samples as D1. The combined dataset D0 + D1 con-
tains a total of 564 positive samples from 269 COVID-19 patients
and 660 negative samples from 339 non-COVID-19 individuals. Ta-
ble 1 shows the details of the two datasets and the split of the data
into training, validation and testing sets. All results reported below
are based on the testing sets.



Table 1: Descriptions of the datasets (D0 byHe et al. [6] and our newly collected samples inD1) stratified by COVID-19 positive
or negative, with the number of samples (or CT images) and the number of patients given in parentheses in each dataset, and
the split of the data based on the patient ratios of 60%, 15%, 25% for training, validation, and testing sets.

COVID-19 COVID-19 Positive COVID-19 Negative
Datasets Positive Negative Training/Validation/Testing Training/Validation/Testing

D0 345(212) 401(175) 187(126)/60(32)/98(54) 238(109)/58(24)/105(42)
D1 219(57) 259(164) – –

D0+D1 564(269) 660(339) 340(169)/81(34)/143(66) 398(215)/97(44)/165(80)
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Figure 3: Descriptions of COVID-19 positive and negative
samples: (a) Histogram of the numbers of each lesion; (b)
Histogram of the numbers of labels of samples in the
COVID-19 positive set; (c) Lesion concordance matrix; and
(d) Composition of the COVID-19 negative samples.

The COVID-19 negative samples in the combined dataset include
the CT scans of normal individuals as well as patients with other
types of diseases, e.g., lung cancer or other types of pneumonia.
The COVID-19 positive CT images are further annotated with the
corresponding radiological reports, which are the textual clinical
information for the patients. The radiological information is proven
to be extremely valuable for the COVID-19 diagnosis. From the
textual annotations, we extract two types of important information:

• The first type of information is whether patients are diag-
nosed positive or negative for COVID-19, which corresponds
to the binary classification labels.

• The second significant but often ignored information is
descriptions of the five common lesions associated with
COVID-19. As shown in Figure 3 (b), most of the lung CT
images of COVID-19 positive patients are identified with
one or two lesions in the lung, and two samples even have
five lesions, while only 18 samples have no lesions found in
the CT images.

Figure 3 shows the visualization of the COVID-19 positive and
negative samples in our combined dataset. Specifically, the statis-
tics of frequency of the five lesions, GGO, Csld, CrPa, AirBr, and
InSepThi, in our dataset are as shown in Figure 3 (a). Clearly, GGO
is the most common lesion and consolidation ranks the second.
Figure 3 (b) and (c) exhibit the distribution of numbers of lesion

labels for COVID-19 positive samples and the lesion concordance
matrix (i.e., the number of times a pair of lesions appeared in the
same sample), respectively. From the histogram of the numbers
of labels for all COVID-19 positive samples, we find that most of
them have either one or two lesion labels. The paired-label concor-
dance matrix of the 212 COVID-19 positive samples, each of which
have two lesion labels, demonstrates that GGO and consolidation
often appear together in the CT images, as shown in Figure 3 (c).
Moreover, GGO is the lesion that has the most frequent interac-
tions with all the other four lesions. Figure 3 (d) illustrates the
composition of the COVID-19 negative samples. The negative sam-
ple set contains lung cancer (Non Small Cell Lung Cancer), Lung
Nodules (LNodules), Pulmonary Viral Pneumonia (PVP) which is
non-COVID-19 pneumonia, and normal samples from healthy indi-
viduals. The lung cancer covers many types of common cancers,
including lung adenocarcinomas (LungAden), lung squamous cell
carcinoma (LungSCC), and others. These non-COVID-19 samples
contain a variety of lung diseases, which can help to train our LA-
DNN to distinguish COVID-19 from other lung diseases including
other types of pneumonia.

3 RESULTS
3.1 Evaluation metrics
To compare the LA-DNNs under different backbone networks with
the corresponding baselines without multi-label lesion learning,
we select four performance metrics: sensitivity, the area under the
ROC curve (AUC), the F1 score, and accuracy for model evaluation.

Sensitivity, also known as recall or the true positive rate (TPR),
is a statistical measure of the performance of a binary classification
test that is widely used in medical diagnostic tests. Sensitivity is the
probability of diagnostic test/classication positive using LA-DNN
for a truly COVID-19 positive patient, which can be calculated as the
fraction of the number of true positives (retrieved by our LA-DNN
model) over the number of all the positive cases in ground-truth,

Sensitivity =
#True Positive

#True Positive + #False Negative
.

The AUC, the area under an ROC curve, is a performance mea-
surement for classification problems, where the ROC curve is cre-
ated by plotting the TPR against the false positive rate (FPR) at
various threshold settings. It delivers the information on how much
a classification model is capable of distinguishing different classes.
The larger the AUC, the better is the model in predicting posi-
tive samples as 1’s (positive labels) and negative samples as −1’s
(negative labels). In our case, the higher the AUC, the better is the
LA-DNN in distinguishing patients with COVID-19 and those of
non-COVID-19.



(a) ROC curves of the baseline and LA-DNN (b) Precision-recall curves of the baseline and LA-DNN

Figure 4: Performances of our LA-DNN model for COVID-19 diagnosis under the ROC and precision-recall curves in compar-
ison with the baseline on the combined dataset D0 + D1.

Table 2: Comparisons of the sensitivity, AUC, F1 score, and
accuracy (%) between the baseline model and our LA-DNN
model on the independent testing sets using the original
dataset D0 and the combined dataset D0 + D1, respectively.

D0 D0 + D1Metrics Backbone Net Baseline LA-DNN Baseline LA-DNN
VGG-16 75.5 84.7 85.3 88.8
ResNet-18 71.4 80.6 75.5 82.5
ResNet-50 67.3 78.6 82.5 87.4
DenseNet-121 77.6 79.6 86.0 86.0
DenseNet-169 77.6 85.7 85.3 87.4
EfficientNet-b0 68.4 87.8 86.7 88.1

Sensitivity

EfficientNet-b1 70.4 77.6 76.2 86.0
VGG-16 81.3 89.8 92.7 94.0
ResNet-18 83.0 88.2 93.1 93.1
ResNet-50 87.6 90.5 91.6 93.8
DenseNet-121 86.0 88.7 92.8 93.2
DenseNet-169 88.2 91.2 93.1 93.3
EfficientNet-b0 87.7 90.0 92.0 92.4

AUC

EfficientNet-b1 84.1 87.6 91.6 94.7
VGG-16 74.8 83.0 84.1 87.9
ResNet-18 74.0 79.8 80.6 84.6
ResNet-50 75.9 83.2 82.8 86.8
DenseNet-121 80.0 81.2 84.2 85.4
DenseNet-169 81.3 84.8 86.2 86.8
EfficientNet-b0 74.9 83.9 85.2 86.6

F1 score

EfficientNet-b1 73.4 80.0 79.8 87.9
VGG-16 75.4 83.2 85.1 88.6
ResNet-18 75.9 80.2 83.1 86.0
ResNet-50 79.3 84.7 84.1 87.7
DenseNet-121 81.3 82.3 85.1 86.4
DenseNet-169 82.8 85.2 87.3 87.7
EfficientNet-b0 77.8 83.7 86.0 87.3

Accuracy

EfficientNet-b1 75.4 81.2 82.1 89.0

The F1 score is defined as an average of the precision and recall,

F1 =
2 × Precision × Recall
Precision + Recall

,

where

Precision =
#True Positive

#True Positive + #False Positive
.

The relative contributions of precision and recall to the F1 score
are equal, and an F1 score reaches its best value at 1 and the worst
score at 0.

Accuracy is the rate of the correct predictions over the number
of both positive and negative samples in the test set,

Accuracy =
#True Positive + #True Negative

#Positive + #Negative
.

Besides the aforementioned four metrics, we use Hamming
loss to evaluate the performance of the multi-label prediction on
the five lesions. The Hamming loss measures the fraction of the
incorrect labels with respect to the total number of labels, which is
defined as

Hamming loss =
1
𝑝

𝑝∑
𝑖=1

𝐼 (𝑦𝑖 ≠ 𝑦𝑖 )

where 𝑦𝑖 and 𝑦𝑖 are respectively the 𝑖th component of y and ŷ, the
𝑝-dimensional binary vectors of observed and predicted values,
and 𝐼 (·) is the indicator function. Hence, the optimal value of the
Hamming loss is zero.

3.2 Overall performance
In our experiments, we split both the original dataset D0 and the
combined dataset D0 + D1 respectively into a training set, a vali-
dation set, and a testing set by patients’ IDs with the same ratios of



60%, 15%, 25% as those in [6]. One patient may possibly has multiple
CT images in the dataset, while all the CT images belonging to the
same patient would be allocated together to the same set. Through
splitting the dataset by patients, we can avoid information leaking
from the training to the testing set, as CT images from the same
patient are highly correlated and contain largely overlapping in-
formation. We need to ensure that the COVID-19 positive patients
in the training, validation, and testing sets cover the lesion labels
based on the annotations using the radiological reports.

Due to the limited training samples, we adopt a classical deep
neural network that has been well pre-trained on a large dataset
ImageNet [4] as a feature extraction function. Through transfer
learning, we further fine-tune the weights in the last several fully
connected layers with the COVID-19 chest CT image dataset, while
keeping the majority part of the pre-trained model intact. We select
seven popular deep architectures as the backbone networks, includ-
ing VGG-16 [10], ResNet-18 [5], ResNet-50 [5], DenseNet-121 [7],
DenseNet-169 [7], EfficientNet-b0 [12], and EfficientNet-b1 [12].

We take the pioneering work of He et al. [6] as the baseline
for comparison. We train the baseline and the proposed LA-DNN
model on the original dataset D0 as well as the combined dataset
D0 + D1 with the same data splitting strategy. Table 2 summarizes
the overall performances of the baseline and our LA-DNN model
under different backbone networks on the testing sets. Clearly,
the proposed LA-DNN model significantly improves the prediction
accuracy of COVID-19 positive or negative on all of the four metrics
with both the original and combined datasets. Experimental results
demonstrate that the auxiliary task learning process by using the
five lesions from the textual information can greatly improve the
primary task for binary classification of COVID-19. Moreover, the
additional dataset D1 can further improve the model’s prediction
accuracy. Among all the methods considered, the best performance
are delivered by the LA-DNN using the VGG-16 and EfficientNet-b1
as the backbone nets with the combined dataset.

3.3 Curves for assessment
To further assess the proposed LA-DNN model, an ROC curve and
a precision-recall curve are exploited to evaluate the performances
under different threshold values when interpreting probabilistic
predictions. Figure 4 shows the plots and AUC values on the dataset
D0 + D1. Figure 4 (a) exhibits the ROC curves of the baseline and
our LA-DNN model by selecting VGG-16 [10] and EfficientNet-b1
[12] as the backbone networks, respectively. The results show that
our model can predict the COVID-19 based on patients’ chest CT
scans with an AUC of 0.947 when choosing EfficientNet-b1 as the
backbone net and 0.940 when choosing VGG-16 as the backbone net,
which improve substantially over the corresponding AUC values of
0.916 and 0.927 from the baseline. Figure 4 (b) shows the precision-
recall curves of the baseline and our LA-DNNmodel when choosing
the VGG-16 [10] and EfficientNet-b1 [12] as the backbone networks,
respectively. The precision-recall curve plots the precision against
recall under different threshold values. The ideal model with a
perfect prediction corresponds to the point with the coordinates of
(1, 1). As shown in Figure 4 (b), the curves of our LA-DNN models
using the backbone nets VGG-16 and EfficientNet-b1 bend towards
the point (1, 1) much closer than those of the baseline.

Table 3: Performance of multi-label classification on five le-
sions under the proposed LA-DNN with the datasetD0 +D1.

Backbone Net Accuracy (%) Hamming loss
VGG-16 87.3 0.127
ResNet-18 85.9 0.141
ResNet-50 88.8 0.112
DenseNet-121 88.5 0.115
DenseNet-169 86.6 0.134
EfficientNet-b0 87.6 0.124
EfficientNet-b1 85.6 0.144

Figure 5: Grad-CAM++ visualization for the baseline and
our LA-DNNmodel with the backbone net of DenseNet-169.
The first column represents the original CT scans; Columns
2 and 3 are the class activation maps of the baseline [6];
Columns 4 and 5 are the class activation maps of our LA-
DNN model. The color from deep red to dark blue corre-
sponds to the activation values from large to small.

3.4 Multi-label classification on five lesions
The proposed method is a double-task learning approach, which
contains the primary task of classifying the flag of COVID-19 and an
auxiliarymulti-label classification task on predicting the five lesions.
The accuracy and hamming loss of the multi-label classification are
as shown in Table 3. We observe that the performances of the LA-
DNN under the seven different backbone networks are comparable
with each other. Among all seven backbone networks, ResNet-18
and DenNet-50 achieve the better results than other networks.
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Figure 6: Plots of the pairwise relationships among the five lesions based on the numerical values of the last fully connected
layer of LA-DNN on making the binary classification of COVID-19 or non-COVID-19.

4 ANALYSIS
4.1 Lesion attention map
To gain more insights into our LA-DNN model, we can visualize
the lesion attention map (i.e., the class activation map) concerning
the five lesion labels with a convolutional neural network (CNN)
visualization tool, Grad-CAM++ [2]. Grad-CAM++ can localize the
lesions in a CT image even if there are multiple occurrences of the
same lesion. Subsequently, Grad-CAM++ renders a class activation
map, which illustrates the importance of each pixel in a feature

map towards the final classification result. The attention heat-map
exhibits the pixel-wise weighting of the gradients back-propagated
from the output with respect to a particular spatial position in the
final convolutional feature map of the CNN. In other words, the
class activation map is a saliency map indicating which areas the
model has paid attention to.

Based on the selected six chest CT image samples, Figure 5 shows
the class-specific attention maps for the baseline and our LA-DNN
model when both choose DenseNet-169 as the backbone network.
The first column represents the original COVID-19 CT images, and



the lesion areas of these images are bounded with green boxes.
Columns 2 and 3 in Figure 5 show the results of the baseline. In
particular, column 2 is the class-specific attention map learned by
the baseline. In column 3, the class attention map of the baseline is
superimposed on the original images to show the activated areas.
The color of the maps from deep red to dark blue corresponds
to the values of pixels’ class-specific saliency from large to small.
Columns 4 and 5 in Figure 5 exhibit the corresponding results of
the proposed LA-DNN model. The class-specific saliency map is a
visual explanation of the lesions of COVID-19 CT scans that are
predicted by the network. By comparing the results between the
baseline and our model, we observe that the proposed LA-DNN
model can capture almost all the salient areas for the COVID-19
prediction.

4.2 Visualization of the primary and auxiliary
tasks

During the testing, the primary task of our LA-DNN model outputs
a binary label on COVID-19 diagnosis, and meanwhile the auxiliary
task outputs a five-dimensional vector to predict the labels of five
lesions. Figure 6 shows the numeric values of these five-dimensional
vectors in the last fully connected layer of LA-DNN paired with
the COVID-19 classification labels. The paired plot creates a matrix
for the five lesions of GGO, Csld, CrPa, AirBr and InSepThi. The
diagonal plots exhibit the distributions of values of each lesion from
the auxiliary task in distinguishing COVID-19 positive or negative.
The off-diagonal axes display the distribution of each paired lesions
over the two categories: COVID-19 or non-COVID-19. Not only
are the GGO and consolidation lesions common in COVID-19 but
they also frequently appear in non-COVID-19 cases (e.g., other
types of pneumonia or lung cancer). As a result, both lesions are
less powerful in helping to triage COVID-19 or non-COVID-19. In
summary, the paired plots in Figure 6 corroborate that the three
lesions of CrPa, AirBr, and InSepThi aremore important factors than
GGO and Csld in distinguishing COVID-19 from non-COVID-19.

5 CONCLUSION
To accommodate the urgent and enormous demands for COVID-19
testing, we develop a multi-lesion attention deep neural network
for automating the COVID-19 diagnosis using richly annotated
chest CT image data. The samples of our dataset are a combination
of those collected from over 760 online preprints [6] and the newly
added images from online publications. To overcome the limitation
of the sample size, we extract two types of supervised information
from the radiological text: One is the flag of COVID-19, and the
other is the multiple labels for the five lesions of COVID-19. The
rich annotations allow us to propose a sample-efficient deep neu-
ral network to learn valuable features with a limited number of
samples. The proposed highly data-driven deep model contains a
primary task on the binary classification for COVID-19 and an aux-
iliary multi-label attention task which forces the model to pay close
attention to the five lesions of COVID-19 during the training pro-
cess. It is worth emphasizing that the labels for five lesions are only
required for training our LA-DNN model, which are not required
for COVID-19 diagnosis of new testing samples. In other words,

our diagnostic system does not need annotation or segmentation
of the lesions in the CT images by clinical experts.

The experimental results demonstrate that the proposed LA-
DNNmodel is capable of achieving the current clinical standards for
diagnostic testing and thus our system should be broadly deployed
for practical use. Currently, an online version of the AI-driven
COVID-19 diagnostic system is set up for validation and continual
collection of the data. All our codes and annotated data are publicly
available to help other researchers to further develop more accurate
systems to defeat the COVID-19.
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