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ABSTRACT 

For curbing recent COVID-19 outbreaks, suppression and 

mitigation are two typical intervention strategies. Both strategies 

have their merits and limitations, and hardly achieve an optimal 

balance between healthcare demand and economic protection. This 

paper designed a model to attempt to access effectiveness of 

multiple rolling interventions for controlling COVID-19 outbreaks 

in London and the UK. Our model assumed that each intervention 

has equivalent effect on the reproduction number R across 

countries and over time; where its intensity was simply presented 

by average number contacts with susceptible individuals as 

infectious individuals. We considered two key features: direct link 

between Exposed populations and Recovered populations, and 

actual healthcare demand by separating mild, severe and critical 

cases. We combined the calibrated model with data on the cases of 

COVID-19 in London and non-London regions in the UK during 

February 2020 and March 2020 to estimate the number and 

distribution of infections, growth of deaths, and healthcare demand 

using multiple interventions. The results show that one optimal 

strategy was to take suppression with high intensity in London from 

23rd March for 100 days, and 3 weeks rolling intervention between 

high intensity and moderate intensity in non-London regions. In 

this case, the total infections and deaths in the UK would be limited 

to 9.3 million and 143 thousand; the peak time of healthcare 

demand was due to the 96th day (May 11th), where it needs hospital 

beds for 68.9 thousand severe and critical cases. This strategy 

potentially reduces the overall infections and deaths, and delay and 

reduce peak healthcare demand. 
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1 INTRODUCTION 

Infectious diseases (ID), also known as transmissible diseases, are 

widely considered as serious threats to global public health and 

economics [1]. Recent ongoing global outbreaks of coronavirus 
disease 2019 (COVID-19) has spread to at least 146 countries, and 

killed over 640 thousands people in the world by 25th July 2020 [2]. 

In order to give an accurate prediction of outbreaks, many 

researchers have been working in traditional ID propagation 
models [3-7] like SIR, SEIR,.et.al, for understanding COVID-19 

transmission with human mobility and predicting outbreak process 

of epidemics. Also, as realizing a long period of this battle against 

COVID-19, many of them focus on studies of intervention 
strategies [8-10] that can balance a trade-off between limited 

human mobility and potential economic loss in COVID-19 control. 

It poses an important research area that explores how and when to 

take what level of interventions in light of multiple natures and 
capabilities of countries. 

Compartmental models have a long history of being applied in 

epidemiology, SIR (Susceptible-Infectious-Recovered) [3] and 

SEIR (Susceptible –Exposure-Infectious-Recovered) [4] are two 
popular approaches to simulate and predict how infectious disease 

is transmitted from human to human. These two models have 

defined several variables that represent the number of people in 

each compartment at a particular time. As implied by the variable 
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function of time, these models are dynamic to reflect the changes 

and fluctuations of these numbers in each compartment over time. 
For COVID-19 control in Wuhan, Zhong, et.al [11] introduced a 

modified SEIR model in prediction of the epidemics trend of 

COVID-19 in China, where the results showed that under strong 

suppression of “lockdown Hubei”, the epidemic of COVID-19 in 
China would achieve peak by late February and gradually decline 

by the end of April 2020. Some other extended models [8] [12] 

were proposed for predicting the epidemics of COVID-19 in 

Wuhan and give some similar forecasts. While above methods 
demonstrate good performance in prediction of COVID-19 

outbreak by taking strong public intervention (suppression) [13] 

that aims to reverse epidemic growth, one important challenge is 

that taking suppression strategy only is to treat disease controls as 
single-objective optimisation of reducing the overall infectious 

populations as soon as possible, and require strategic consistency 

in the long term. In real-world, taking public health intervention 

strategies is a multi-objective optimisation problem including 
minimizing economic loss and society impacts. Many countries 

have implemented multiple intervention strategies, like enhanced 

surveillance and isolation to affected individuals in Singapore [14], 
four-stage response plan of the UK [15-16], mitigation approaches 

[13] and even multiple interventions taken in many EU countries 

[17-21]. Due to the fact that standalone intervention strategy has 

apparent merits and limitations, it is necessary to study the 
feasibility of intervention strategies to certain country in light of its 

multiple natures and capabilities.  

This paper conducts a feasibility study that analyses and 

compares mitigation and suppression intervention strategies for 
controlling COVID-19 outbreaks in the UK. Taking Wuhan as a 

case using data from [11] for initial simulation analysis, we found 

the performance of taking different intervention strategies [16][22]: 

a) No interventions: the peak of daily infections would be up to 1.8 
million, but will be completed  in 150 days. The epidemics lasts a 

relatively shorter period of 130 - 140 days, but lead to more death. 

b) Suppression intervention from the 32nd day: the peak of daily 

infections greatly reduced to 33 thousand, but it had to be followed 
at least 150 days. Nearly 3 months suppression may potentially lead 

to economic loss even crisis. c). Mitigation intervention from the 

32nd day: the peak of daily infectious populations increased to 114 

thousand, but the period of maintenance extended to 250 days. It 
implied there would be growing death but less economic loss 

compared to suppression. d). Hybrid interventions every 2 weeks: 

the epidemics of COVID-19 appeared a long-term multimodal 

trend where the peaks of daily infectious populations were within a 
range of 34-42 thousand. This might lead to less daily critical cases 

and offer more time to hospital for releasing their resources. 

Above analysis demonstrates the complexity of controlling 

COVID-19 outbreaks that how and when to take what level of 

interventions. Thus, we proposed a mathematical model: SEMCR 

to study this problem. The model extended traditional SEIR 

(Susceptible-Exposed-Infectious-Recovered) model [3-4] by 

adding one important fact: there has been a direct link between 

Exposed and Recovered population. Then, it defined parameters to 

classify two stages of COVID control: active contain by isolation 

of cases and contacts, passive contain by suppression or mitigation. 

The model was fitted and evaluated with public dataset containing 

daily number of confirmed active cases including Wuhan, London, 

Hubei province and the UK during January, 2020 and March 2020. 

For accessing impacts of each intervention, we design and set up 

experimental protocols for comparison and exploration, 

highlighting following contributions:  

 In the UK, one optimal strategy was to take suppression with 

very high intensity in London from 23rd March for 100 days, 

and 3 weeks rolling intervention between very high intensity 

and high intensity in non-London regions. In this scenario, the 

total infections and deaths in the UK were limited to 9.3 

million and 143 thousand; the peak time of healthcare demand 

was due to the 96th day (May 11th)), where it needs hospital 

beds for 68.9 thousand severe and critical cases.  

 To release rolling intervention intensity to moderate level and 

simultaneously implement them in all regions of the UK, the 

outbreak would not end in 1 year and distribute a multi-modal 

mode, where the total infections and deaths in the UK possibly 

reached to 23.3 million and 971 thousand.  

 Our results show that taking rolling intervention is probably an 

optimal strategy to effectively and efficiently control COVID-

19 outbreaks in the UK. As large difference of population 

density and social distancing between London and non-

London regions in the UK, it is better to take consistent 

suppression in London for 100 days and rolling intervention in 

other regions. This strategy would potentially reduce the 

overall infections and deaths, and delay and reduce peak 

healthcare demand.  

The remainder of this paper is arranged as follows. Section 2 

introduces the model. In the Section 3, the materials and 
implementation of experiment are reported. Section 4 provides 

detailed experimental evaluation and discussion. The conclusion 

and future directions are given in Section 5. 

2 METHODOLOGY  

2.1 Problem formulation of COVID-19 outbreak  

We implemented a modified SEIR model to account for a dynamic 

Susceptible [S], Exposed [E] (infected but asymptomatic), 

Infectious [I] (infected and symptomatic) and Recovered [R] or 

Dead [D] population’s state. For estimating healthcare needs, we 

categorised infectious group into two sub-cases: Mild [M] and 

Critical [C]; where Mild cases did not require hospital beds;  

Critical cases need hospital beds but possibly cannot get it due to 

shortage of health sources. Conceptually, the modified modal is 

shown in Figure.1.  

    This modal assumed that S is initial susceptible population of 

certain region; and incorporated an initial intervention of 

surveillance and isolation of cases in contain phase by a parameter 

β [14-15]. If effectiveness of intervention in contain phase was not 

sufficiently strong, susceptible individuals may contract disease 

with a given rate when in contact with a portion of exposed 

population E. After an incubation period α 1, the exposed 

individuals became the infectious population I at a ratio 1/α1.The 

incubation period was assumed to be 6 days [8]. Once exposed to 

infection, infectious population started from Mild cases M to 

Critical cases C at a ratio a, Critical cases led to deaths at a ratio d; 

other infectious population finally recovered.  
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Figure 1: Extended SEMCR model structure: The population is 

divided into the following six classes: susceptible, exposed (and not 

yet symptomatic), infectious (symptomatic), mild (mild or 

moderate symptom), critical (severe symptom), death and 

recovered (i.e, isolated, recovered, or otherwise non-infectious). 

    Notably, two important features in our model differ with other 

SIR or SEIR models [12-13]. The first one was that we built two 

direct relationships between Exposed and Recovered population. 

Infections with mild symptoms and Recovered population. It was 

based on an observation of COVID-19 breakouts in Wuhan that a 

large portion (like 45.4% in Wuhan) of self-recovered population 

were asymptomatic or mild symptomatic [14] [23]. They did not go 

to hospital for official COVID-19 tests but actually were infected. 

Without considering this issue, the estimation of total infections 

were greatly underestimated [13]. In order to measure portion of 

self-recovery population, we assumed that exposed individuals at 

home recovered in 5 days; mild case at home recovered in 7 days 

[24]. The second feature was to consider shortage of health sources 

(hospital beds) in the early breakouts of COVID-19 might lead to 

more deaths, because some severe or critical cases cannot be 

accommodated in time and led to death at home (non-hospital). In 

order to accurately quantify deaths, our modal considered 

percentage of elder people in the UK at a ratio O, occupancy of 

available NHS hospital beds over time at a ratios Ht and their 

availability for COVID-19 critical cases at a ratio Jt. We assumed 

that critical cases at non-hospital places led to death in 4 days; 

elderly people in critical condition at hospital led to death in 14 

days, and non-elderly people in critical condition at hospital led to 

death in 28 days [25]. 

One parameter was defined to measure intervention intensity 

over time as Mt. which was presented by average number of 

contacts per person per day. We assumed that transmission ratio β 

equals to the product of intervention intensity Mt and the 

probability of transmission (b) when exposed (i.e., β= mb). In 

Wuhan, intervention intensity was assumed within [3-15], and gave 

with a relatively accurate estimation of COVID-19 breakouts [11]. 

We calibrated its value with respect to the population density and 

human mobility in London and the UK, and estimated outcomes of 

COVID-2019 outbreaks by implementing different interventions. 

Using Wuhan’s data, our estimation was close to the practical trend 

of outbreaks in Wuhan, and gave similar results to other works [11]. 

We tested that transmission rate from I to S is about 0.157; 

transmission rate from E to S is about 0.787 [11]. The incubation 

period was assumed to be 6 days [8]. As for other parameters, we 

followed the COVID-19 official report from WHO [25], and gave 

a medium estimation on average durations related from infectious, 

to mild or critical case, and death or recovery were shown in 

Table.1.  

Table 1: Parameters estimation in SEMCR model in the UK 

Name Representation Value [25] 

N UK population by Aug 2019 66 million 

i Efficiency of isolation contacts 0.78-1.00 

β1 Transmission rate from I to S 0.157 

β2 Transmission rate from E to S 0.787 

    α1  Incubation period 6 days 

α2 Average period from M to C 7 days 

ɤ1 Average period from E to R 5 days 

ɤ2 Average period from M to R 7 days 

ɤ3 Average period from Non-H to R 42 days 

ɤ4 Average period of older people from 

H to R 

    21 days 

ɤ5 Average period from non-older 

people from H to R 

14 days 

d1 Average period from Non-H to D 4 days 

d2 Average period of older people from 

H to D 

14 days 

d3 Average period of non-older people 

from H to D 

28 days 

m Proportion of Mild case  0.80 

s Proportion of Severe case 0.138 

c Proportion of Critical case 0.061 

Bt Number of hospital beds  167589 

O Percentage of people over 65  0.18 

Ht Percentage of unoccupied hospital 

beds 

0.20-0.60 

Jt Percentage of available hospital beds 

for COVID-19 critical cases  

0.8-1 

Mt The intensity of intervention  3-15 
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Regard as the percentage of elderly people in the UK, it was 

assumed as 18%. The total number of NHS hospital beds was given 

as 167589 with an initial occupied ratio up to 85%. Considering 

that UK government began to release NHS hospital beds after 

COVID-19 breakouts, we assumed the occupied ratio reduced to 

80% and would further fall to 40% by April 04, 2020. Accounting 

for other serious disease cases requiring NHS hospital beds in the 

early breakout of COVID-19, we assumed that a ratio of available 

hospital beds for COVID-19 critical cases was initially at 80%, and 

gradually raised to 100%.   

The intervention intensity was related to the population density 

and human mobility. We gave an initialization to London and non-

London regions: London (M=15, population: 9.3 million), non-

London regions (M=14, population: 57.2 million). After taking any 

kind of interventions, we assumed the change of M would follow a 

reasonable decline or increase in 3-5 days.  

If we assumed the overall population of a certain region is N, the 

number of days is t, the dynamic transmissions of each components 

of our model are defined as follow:  

𝑑𝑆(𝑡)

𝑑𝑡
= −

𝛽1𝑆(𝑡)𝐼(𝑡)

𝑁
−

𝛽2𝑆(𝑡)𝐸(𝑡)

𝑁                               (1) 

𝑑𝐸(𝑡)

𝑑𝑡
=

𝛽1𝑆(𝑡)𝐼(𝑡)

𝑁
+

𝛽2𝑆(𝑡)𝐸(𝑡)

𝑁
− 𝛼1𝐸(𝑡) − 𝛾1𝐸(𝑡)   (2) 

𝑑𝐼(𝑡)

𝑑𝑡
=

𝑑𝑀(𝑡)

𝑑𝑡
+

𝑑𝐶(𝑡)

𝑑𝑡                                           (3) 

𝑑𝑅(𝑡)

𝑑𝑡
= 𝛾1𝐸(𝑡) + 𝛾2𝑀(𝑡) + 𝛾3𝐶(𝑡)                    (4) 

    Regarding Mild cases, Critical cases and Death, the dynamic 

transmission is as below: 

𝑑𝑀(𝑡)

𝑑𝑡
= 𝛼1𝐸(𝑡) − 𝛼2

𝑐+𝑠

𝑚
𝑀(𝑡) − 𝛾2𝑀(𝑡)                  (5) 

𝑑𝐶(𝑡)

𝑑𝑡
= 𝛼2

𝑐+𝑠

𝑚
𝑀(𝑡) − 𝛾3𝐶(𝑡) − 𝑑

𝑐

𝑐+𝑠
𝐶(𝑡)               (6) 

𝑑𝐷(𝑡)

𝑑𝑡
= 𝑑

𝑐

𝑐+𝑠
𝐶(𝑡)                                                       (7) 

2.2 Implementation of dynamic transmission  

We need to estimate the defined parameters including 𝜶𝟏, 𝜶𝟐, β, 

and 𝜸𝟏, 𝜸𝟐, 𝜸𝟑, b, where β is the product of the people exposed to 

each day by confirmed infected people (k) and the probability of 

transmission (b) when exposed (i.e., β = kb) and σ  is the 

incubation rate which is the rate of latent individuals becoming 

symptomatic (average duration of incubation is 1/𝜶𝟏). According 

to report [8], the incubation period of COVID-19 was reported to 

be between 2 to 14 days, we chose the midpoint of 6 days. γ is the 

average rate of recovery or death in infected populations. Using 

epidemic data from [6], we used SEMCR model to determine the 

probability of transmission (b) which was used to derive β and the 

probability of recovery or death (γ). The number of people who 

stay susceptible in each region was similar to that of its total 

resident population. Other parameters were estimated with early 

prediction of Hubei cases in [6] on January 23 2020 using Monte 

Carlo simulation, as shown in the Table.1  

    Here, i is the efficiency of isolation contacts; m is the proportion 

of mild case; s is the proportion of severe case, and parameter c is 

the proportion of critical case. O is the percentage of people over 

65 in the UK. 

β1 is the transmission rate from I to S, β2 is the transmission rate 

from E to S. 𝜑1  is the transmission rate from E to M 

(1/ 𝛼1(incubation period)), 𝜑2 is the transmission rate from M to C 

(1/ 𝛼2(average period from M to C)).  

 𝛾1 is the transmission rate from E to R (1/ ɤ1(average period 

from E to R)), 𝛾2  is the transmission rate from M to R 

(1/ ɤ2(average period from M to R)), 𝛾3 is the transmission rate 

from NH to R (1/  ɤ3 (average period from NH to R)), 𝛾4  is the 

transmission rate of older people from IH to R (1/  ɤ4 (average 

period of older people from IH to R)), 𝛾5 is the transmission rate of 

non-older people from IH to R (1/ ɤ5(average period of non-older 

people from IH to R)). 

    𝛿1 is the transmission rate from NH to R (1/ 𝑑1(average period 

from NH to D)), parameter 𝛿2  is the transmission rate of older 

people from IH to R (1/ 𝑑2(average period of older people from IH 

to D)), 𝛿3 is the transmission rate of non-older people from IH to R 

(1/ 𝑑3(average period of non-older people from IH to D)). 

    𝐵𝑡 is the number of hospital beds in the UK, 𝐽𝑡  is the percentage 

of available hospital beds for COVID-19 critical cases, 𝐻𝑡 is the 

percentage of unoccupied hospital beds，𝑀𝑡  is the intensity of 

intervention. 

    Notably, as for the strength of intervention M, it was related to 

the population density in a region. We used a benchmark reported 

in [11] that assumes Hubei province with no intervention as M = 

15, and after suppression intervention, M reduced to 3. When 

applying our model into other cases, M was initialized according to 

the population density and human mobility in these places. Also, 

after taking any kind of interventions, the change of M would 

follow a reasonable decline or increase over few days, not 

immediately occur at the second day. The implementation of 

dynamic transmission of SEMCR model follows steps as below: 

St+1 = St −
β1MtItSt

Nt
−

iβ2MtItSt

Nt
  (8) 

Et+1 = Et +
β1MtItSt

Nt
+

iβ2MtItSt

Nt
− 𝜑1Et − 𝛾1Et (9) 

Mt+1 = Mt + 𝜑1Et − 𝜑2(
s+c

m
)Mt − 𝛾2Mt (10) 

If  𝐶𝑡 > 𝐵𝑡𝐽𝑡𝐻𝑡 ∶ 

𝑁𝐻𝑡 = 𝐶𝑡 − 𝐵𝑡𝐽𝑡𝐻𝑡   (11) 

𝐼𝐻𝑡 = 𝐵𝑡𝐽𝑡𝐻𝑡    (12) 

else 

𝑁𝐻𝑡 = 0   (13) 

𝐼𝐻𝑡 =  𝐶𝑡   (14) 
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Figure 2: Illustration of controlling COVID-19 outbreaks in London and non-London regions by taking suppression and mitigation 

with parameters (a) London population: 9.30 million; non-London population: 57.2 million. (b) Suppression Intervention (M = 3), 
Mitigation Intervention: Low (M = 10). Moderate (M = 8). High (M =6). (c) Effectiveness of isolation in contact phase (before 12th March 

2020): London. 91%, non-London: 78%.

Ct+1 = Ct + 𝜑2 (
s + c

m
) Mt − 𝛾3NHt − 𝛾4𝑂IHt − 𝛾5(1 − 𝑂)IHt 

−𝛿1 (
𝑐

𝑠+𝑐
) NHt − 𝛿2 (

𝑐

𝑠+𝑐
) 𝑂IHt − 𝛿3 (

𝑐

𝑠+𝑐
) (1 − 𝑂)IHt (15) 

It+1 = Mt+1 + Ct+1  (16) 

Dt+1 = Dt + 𝛿1 (
𝑐

𝑠 + 𝑐
) NHt + 𝛿2 (

𝑐

𝑠 + 𝑐
) 𝑂IHt 

+𝛿3 (
𝑐

𝑠+𝑐
) (1 − 𝑂)IHt  (17) 

Rt+1 = Rt + 𝛾1Et + 𝛾2Mt + 𝛾3NHt + 𝛾4OIHt 

+𝛾5(1 − 𝑂)IHt (18) 

3 EXPERIMENTS 

3.1 Effectiveness of suppression 

We estimated that suppression with intensity M = 3 was taken in 

both London and non-London regions in the UK on the 46th day 

(March 23rd, 2020). The model reproduced the observed temporal 

trend of cases within London, non-London and the UK. As shown 

in Figure.2, it captured the exponential growth in infections 

between the 35th day (March 12th, 2020) and the 55th day (April 1st, 

2020). We estimated that at the day (on March 23th, 2020) to take 

intervention, daily infectious population (Exposed) in the UK 

actually reached 157950. Our results suggested there were nearly 

26 times more infections in the UK than were reported as confirmed 

cases (6030 on March 23rd, 2020). The infections in London nearly 

occupied about 23% of the overall UK infections. 12th, 2020), M in 

the UK was adjusted to 12 from March 12th 2020 to March 23rd 

2020. 



 
Figure 3: Illustration of controlling COVID-19 outbreaks in London and non-London regions by taking suppression and 3 weeks rolling 

intervention with parameters (a) London population: 9.30 million; non-London population: 57.2 million. (b) Suppression Intervention (M = 

3), 3 weeks rolling intervention: M = 3-5-3-5. (c) Effectiveness of isolation in contact phase (before 12th March 2020): London. 91%, non-
London: 78%.  

But after taking intensive suppression on 23rd March in the UK, 

daily exposed and infectious population were greatly reduced. A 

rapid decline in R has occurred in later March, from 2.61[1.32-4.32] 

at the 24th day (1st March 2020) to 0.69[0.59-0.79] at the 51st day 

(28th March 2020). It implied implementing suppression in the UK 

performed significantly impact on reduction of infections. In Fig.2, 

we also estimated that the peak of infection in the UK would have 

occurred between 29th March and 3rd April 2020; the peak of death 

would have occurred between 18th April and 24th April 2020. 

The results in the UK appeared a similar trend as Wuhan in Fig.2, 

where daily exposed and infectious population were greatly 

reduced. The total deaths by the 200th day (August 24th, 2020) in 

the UK was about 69511, where London had about 12921 deaths 

and non-London regions had about 56590 deaths. The outbreak of 

COVID-19 could be possibly controlled by the 100th day (May 16th 

2020), and can be nearly ended by the 150th day (July 5th 2020). 

The difference was that the peak of daily infectious population (E 

= 50200) of London was nearly 3.4 times greater than the one in 

Wuhan (E = 32880); the peak time (the 50th day) of daily infections 

in London was 18 days later than the one (the 32nd day) in Wuhan. 

It was probably because suppression applied in Wuhan (the 32nd 

day) was 14 days earlier than London (the 46th day). It implied that 

earlier suppression could reduce infections significantly, but may 

lead to an earlier peak time of healthcare demand 
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3.2 Effectiveness of mitigation 

We simulated that mitigation with low, moderate and high intensity 

(M = 6, 8, 10) were taken in both London and non-London regions 

in the UK at the 46th day (March 23rd, 2020), as show in Fig.2.  
Considering that the UK went to delay phase on the 35th day (March 

12th, 2020), M in the UK was adjusted to 12 from March 12th 2020 

to March 23rd 2020. 

The simulated results showed that mitigation strategies were able 
to delay the peak of COVID-19 breakouts in the UK but ineffective 

to reduce total infectious populations. Compared to suppression, 

mitigation taken in the UK gave a slower decline in R in March, 

from 2.73[0.97-5.40] on the 24th day (1st March 2020) to 0.98[95% 
CI 0.88-1.09] on the 110th day (27th May 2020). It implied that 

during this period, there were still much growth of infections in the 

UK. But London had lower R than non-London regions. 

We estimated that the peak of daily infectious population was 

reduced to 3.6 million (M = 10) to 1.9 million (M = 8) or 0.69 

million (M = 6); the peak date of daily infections was about on the 

80th, 92nd and 110th day. Compared to suppression, the total deaths 

in the UK increased to 2.8 million (M = 10) to 2.1 million (M = 8) 

or 1.1 million (M = 6), where London had about 0.38 million (M = 

10) to 0.28 million (M = 8) or 0.15 million (M = 6) and non-London 

regions had about 2.4 million (M = 10) to 1.8 million (M = 8) or 1 

million (M = 6). The periods of breakouts with varied mitigations 

were extended to 160, 200 or 300 days.    

3.3 Effectiveness of multiple interventions 

We simulated two possible situations in London and the UK by 

implementing rolling interventions as shown in Figure.3. We 

assumed that all regions in the UK implemented an initial 3 weeks 

suppression intervention (M=3) from the 46th day (March 23rd 2020) 

to the 67th day (April 13th 2020). Then, two possible rolling 

interventions were given: 1) to keep suppression in London, and 

take a 3 weeks rolling intervention between suppression and high 

intensity mitigation (M = 5) in non-London regions; (2) to take a 3 

weeks rolling intervention between suppression and high intensity 

mitigation (M = 5) in all UK.  

The simulated results showed the epidemic appeared a unimodal 

distribution trend over 350 days, longer than the period of 

suppression. Similar to suppression in Figure.3, the peak date of 
infectious population in London or non-London regions remain 

same at the 50th day. After three weeks, rolling intervention with 

released intensity in non-London regions led to a fluctuation with 

4 or 5 peaks of infections until the end of epidemic. The total deaths 

in the UK were greatly reduced to a range from 143 thousand to 

154 thousand. It was about 85% - 100% more than the outcome of 

taking suppression in all the UK. 

Above two rolling interventions taken in the UK gave a similar 
trend of R as suppression, where there was a fast decline in R in 

March, from 2.61[1.32-4.32] on the 24th day (1st March 2020) to 

0.69[0.59-0.79] on the 51st day (28th March 2020). It implied that 3 

weeks rolling intervention (M = 3 or 5) had equivalent effects on 
controlling transmissions as suppression, but need to be maintained 

in a longer period of 350 days. From then, R value was oscillated 

between 1.22 [1.04-1.41] and 0.77[0.63-0.92] with the shrinkage of 

intervention intensity. 

3.4 Optimal rolling intervention 

We simulated other possible rolling interventions with varied 

period (2, 3 and 4 weeks) and intensity (M = 4, 5 and 6). The results 

first revealed that rolling intervention with middle intensity (M = 6) 

cannot control the outbreaks in one year, where the distribution of 

epidemic was a multimodal trend as similar to mitigation outcomes 

in Figure.3. The overall infections and deaths significantly 

increased to over 14 million and 319 thousand. While the peak time 

of healthcare demand for severe critical cases delayed to the 112nd 

– 139th day, the total deaths of the UK would be double than other 

rolling interventions with low intensity.  

Another finding was that given equivalent intensity (M= 3 or 5) 

of rolling interventions, the longer period (4 weeks) led to slight 

reduction of the total deaths to 151164, compared to 154569 of 3 

weeks rolling and 160236 of 2 weeks rolling in the UK. The peak 

time of healthcare demand nearly occurred at same: the 84th-111st 

day; with an equivalent peak value. Thus, in balance of total deaths 

and human mobility restriction, 3 weeks of period might be a 

feasible choice. 

We considered the length of intervention in the UK impacting on 

social and economic. Maintaining a period of suppression in 

London, it was possible to control the outbreaks at the 100th-150th 

day that minimized economic loss to the greatest extent. Due to 

lower population density and less human mobility of non-London 

regions, 3 weeks rolling intervention was appropriated to non-

London regions for balancing the total infections and economic loss, 

but the length of this strategy was extended to 300 days.   

4. DISSCUSSION 

Notably, the total infections estimated in our model was measured 

by Exposed population (asymptomatic), which might be largely 

greater than other works only estimating Infectious population 

(symptomatic). We found that a large portion of self-recovered 

population were asymptomatic or mild symptomatic in the 

COVID-19 breakouts in Wuhan (occupied about 42%-60% of the 

total infectious population). These people might think they had 

been healthy at home because they did not go to hospital for 

COVID-19 tests. It was one important issue that some SEIR model 

predicted infectious population in Wuhan that 10 times over than 

confirmed cases [12-13]. Early release of intensity might increase 

a risk of the second breakout.   

There are some limitations to our model and analysis. First, our 

model ’ s prediction depends on an estimation of intervention 

intensity that is presented by average-number contacts with 

susceptible individuals as infectious individuals in a certain region. 

We assumed that each intervention had equivalent or similar effect 

on the reproduction number in different regions over time. The 

practical effectiveness of implementing intervention intensity 

might be varied with respect to cultures or other issues of certain 

county. In the UK or similar countries, how to quantify intervention 

intensity needs an accurate measure of combination of social 

distancing of the entire population, home isolation of cases and 

household quarantine of their family members. As for 

implementing rolling interventions in the UK, the policy needs to 
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be very specific and well-estimated at each day according to the 

number of confirmed cases, deaths, morality ratio, health resources, 

etc.  

Secondly, our model used a variety of plausible biological 

parameters for COVID-19 based on current evidence as shown in 

Table.1, but these assumed values might be varied by populations 

or countries. For instance, we assumed that average period of mild 

cases to critical cases is 7 days, and average period of elderly people 

in hospital from severe cases to deaths was 14 days, etc. The change 

of these variables may impact on our estimation of infections and 

deaths in the UK.  

Lastly, our model assumes a condition that there will be a 

reasonable growth of available hospital source as time goes in the 

UK after 23rd March 2020. This was actually supported by latest 

news that Nightingale hospital that enables holding 4000 patients 

opened at London Excel centre on 4th April 2020. Our results show 

that taking rolling intervention is one optimal strategy to effectively 

and efficiently control COVID-19 outbreaks in the UK. This 

strategy potentially reduces the overall infections and deaths; 

delays and reduces peak healthcare demand. In future, our model 

will be extended to investigate how to optimise the timing and 

strength of intervention to reduce COVID-19 morality and specific 

healthcare demand.  

5 CONCLUSION 

This paper conducts a feasibility study by defining a mathematical 

model named SEMCR that analyses and compares mitigation and 

suppression intervention strategies for controlling COVID-19 

outbreaks in London and Wuhan Cases. The model was fitted and 

evaluated with public dataset containing daily number of confirmed 

active cases including Wuhan, London and non-London regions in 

the UK. The experimental findings show that the optimal timing of 

interventions differs between suppression and mitigation strategies, 

as well as depending on the definition of optimal. In future, our 

model could be extended to investigate how to optimise the timing 

and strength of intervention to reduce COVID-19 morality and 

healthcare demand in more complex situations.    

6 DATA AND CODE 

All data and code required to reproduce the analysis are available 

online at: https://github.com/TurtleZZH/Feasibility-Study-of-

Mitigation-and-Suppression-Intervention-Strategies-for-

Controlling-COVID-19.git  
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