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Abstract—In this paper, we describe a novel framework to
recommend personalized intervention strategies to minimize 30-
day readmission risk for heart failure (HF) patients, as they
move through the provider’s cardiac care protocol. We design
principled solutions by learning the structure and parameters
of a multi-layer hierarchical Bayesian network from underlying
high-dimensional patient data. Next, we generate and summarize
the rules leading to personalized interventions which can be
applied to individual patients as they progress from admit to
discharge. We present comprehensive experimental results as well
as interesting case studies to demonstrate the effectiveness of our
proposed framework using large real-world patient datasets on
Microsoft Azure for Research platform.

I. INTRODUCTION

Heart Failure (henceforth referred to as HF) is one of the
leading causes of hospitalization, and studies [1], [2] show
that many of these admissions are readmissions within a
short window of time. Readmission can result from a variety
of reasons, including early discharge of patients, improper
discharge planning, and poor care transitions. In particular,
studies[1], [2] have shown that targeted interventions dur-
ing pre-discharge [3] and post discharge phases, like home
based follow up [1], patient education [4], or administering
appropriate procedures during the hospital stay can reduce
the readmission rates considerably and improve the health
outcome of the patients. Such factors that could be externally
controlled (or administered) are construed as interventions and
are applicable at different phases of a patients life cycle.

We, for the first time, attempt to go beyond risk prediction
for HF, and focus on actionable intervention recommenda-
tion to aid clinicians in designing improved quality of care
protocols to reduce the 30-day1 readmission risk for HF. To
recommend intervention strategies, we consider a multitude
of factors, such as, socio-demographic factors, co-morbidities2

and other diagnoses, and procedures by understanding the
complex interplay between these factors and how they con-
tribute to the 30-day readmission risk.

As an example, consider an elderly black female patient
with long-standing hypertension who has developed shortness
of breath and significant dependent lower extremity swelling.
She undergoes an echocardiogram and other outpatient testing.
It is determined that she has evidence of diastolic heart failure

130-day is considered clinically meaningful by different healthcare
services and standards [5].

2Comorbidities are specific patient conditions that are secondary to the
patient’s principal diagnosis and that require treatment during the stay.

and a treatment plan is initiated. Unfortunately, her symptoms
continue to aggravate and she is admitted to the local hospital
for further intervention. However, an alternate care pathway
might have included the patient being referred to a heart failure
specialty clinic after the initial diagnosis of diastolic heart
failure was made. We intend to investigate all these alternatives
and recommend that care pathway which is likely to minimize
her readmission risk. Therefore, the problem we address is:

Problem Definition 1: Make personalized intervention rec-
ommendations to minimize 30-day HF readmission risk.

The underpinning of our proposed framework relies on
the following four steps: (1) Since we deal with very high
dimensional data involving several hundreds of factors, we
first attempt to learn the structure of the network automatically
from the data itself using different approaches. (2) Once the
structure is defined, we use parameter learning [6] techniques
to compute probability distribution. (3) Third, we propose
novel algorithm to generate a set of intervention rules. (4)
Finally, for a given patient the generated rules are summarized
to offer personalized intervention recommendations.
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Fig. 1: A learned structure for Example 1.

The contributions of our work are:
• We initiate the study for recommending personalized

interventions to minimize 30-day HF readmission risk.
• We formalize the intervention recommendation task as a

hierarchical Bayesian Structure Learning problem. Fur-
thermore, we propose multiple algorithms as solutions
and summarize rules for personalized intervention.

• We present comprehensive experimental results on Mi-
crosoft Azure, as well as case studies to demonstrate the
effectiveness of our proposed techniques.

Our proposed intervention recommendation framework is pro-
posed in Section II. Sections III and IV contain our experimen-
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tal setting, empirical evaluation, and case studies. Section V
describes the related work, and we conclude in Section VI.

II. INTERVENTION RECOMMENDATION FRAMEWORK

We model the intervention recommendation as a network
learning task using the Bayesian network learning principles.
Once we have the underlying structure and the conditional
probabilities, we develop an algorithm to generate recommen-
dation rules based on the fitted network learned from the
given dataset. These three steps constitute the training part
of the proposed framework. During testing (recommendation
evaluation), we summarize the generated rules and validate the
effectiveness of recommendation. Figure 2 describes the high
level design of the framework.
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Fig. 2: Design of the proposed framework.

The running example is presented next to recommend inter-
ventions during hospitalization, but we note that the framework
could be easily adapted to any other phase.

Example 1: Consider two socio-demographic factors : age
(discretized appropriately), and gender(m/f); three binary di-
agnosis variables (Congestive Heart Failure (CHF) DX4280,
Acute Respiratory Failure (ARF) DX51881, and Pneumonia
(PN) DX486); and three binary procedure factors (Continuous
Invasive Mechanical Ventilation < 96 hrs PR9671, Venous
Cath NEC PR3893, Packed Cell Transfusion PR9904)3. These
eight factors are predictors and we wish to learn how they
relate to the likelihood of a 30-day HF readmission. The
dependent variable “readmission” is a binary variable, where
“Readmission=0” stands for 30 day readmission unlikely, and
“Readmission=1” stands for highly-likely. For simplicity, we
consider only the procedures that are intervenable.
Bayesian Network and Relevant Notations: Relevant no-
tations and their interpretations are represented in Table I.
A Bayesian network is a graphical representation of a prob-
ability distribution over a set of variables or factors U =
X1, X2, . . . , Xn

} [7], [8]. It consists of two components:
• A directed network structure as a DAG. Given Exam-

ple 1, a possible structure is described in Figure 1.
• A set of probability distribution functions (PDFs), one

on each node (variable), conditional on each value
combination of the node’s parents. Together with the
network structure, the PDFs are sufficient to represent
the joint probability distribution of the domain.

Pr(X1, X2, . . . , Xn

) =
Q

i=n

i=1 Pr(X
i

|PXi
a

) (1)

3Each diagnoses procedure has a unique code written after its name
and these procedures are applicable during hospitalization.

TABLE I: Notations and Interpretations

Notation Interpretation
D the dataset with N data points

X,Y, Z three variables
x, y, z values of X, Y, Z, respectively
P

X
a a set of nodes that are parent of X
X the entire set of predictor variables(factors)

A. Structure Learning
Our structure learning solution relies upon the Causal Suf-

ficiency Assumption and the Markov Assumption[9]. We use
Constraint Based, Score-Based, and Hybrid methods to learn
the structure of the network.

1) Constraint Based Methods: These methods make use of
the conditional independence tests using statistical tests on
the data set. We use a computationally efficient algorithm,
Grow and Shrink [10] which relies on detecting the Markov
Blanket [11] of the variables to induce the network structure.

2) Score-Based Methods: Constraint-based algorithms suf-
fer from poor “robustness”, i.e., a large effects on the output
of the algorithm is observed, for small changes of the input.
To overcome that shortcoming, we apply Score-based approach
and apply hill climbing based greedy heuristics using Bayesian
information criterion (BIC) [12] for approximation.

3) Hybrid Approach: We finally apply a hybrid approach to
learn the network structure, namely the max-min hill climbing
algorithm [8] which combines ideas from the both Score-Based
approach and Constraint-Based Approach.
B. Parameter Learning

After the structure of the network is constructed, the next
step is to learn the parameters of the network, given the
structure. Using Example 1, this step is analogous to creating
pdfs to each node in the constructed network to create the
conditional probability table at each node.In our implemen-
tation, we use Bayesian Parameter Estimation [13] to learn
the parameter ✓. In this method, the prior distribution over ✓
(i.e., Pr(✓)) is known. Now the posterior distribution of ✓ is
calculated according to Bayes rule:

P (✓|D) = Pr(D|✓)Pr(✓)R
Pr(D|✓)Pr(✓)d✓

C. Recommendation Rule Generation
We make use of the inference learned by the network

to perform recommendation. Using the constructed network,
for each patient record d, we could compute the probability
Pr(Readmit = 1|d) and Pr(Readmit = 0|d). We describe
next how to make use of these inference probabilities to
generate a set of recommendation rules.

Without loss of generality, let us assume that a total of |X 0|
of |X | factors are non-interventionable, and the remaining set
{X}�{X 0} of factors could be recommended as interventions.

For each patient record d whose actual class label is 0
(i.e.,Readmit = 0), we use only |X 0| attributes of record
d (denoted as d(X 0)) and feed it through the constructed
network to obtain the inference probability p1. Then, we use
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TABLE II: Attribute summary for heart failure cohort

Group Category Description
1 Demographics Age, Gender, Race
2 Comorbidity;Diagnosis 21 comorbidity ;90 diagnosis
3 Utilization;Procedures 21 health service utilization flags ;70 procedures
4 Others Length of stay, # diagnosis, # procedures, #

chronic conditions

the entire patient record (with both interventionable and non-
interventionable attributes, modulo the class label), and use
that to make a second inference probability p2.

p1 = Pr(Readmit = 0|d(X 0), p2 = Pr(Readmit = 0|d)

If p2 > p1 (which indicates that our constructed model infers
that the set of procedures associated with the patient input is
effective in further bringing down her readmission risk), we
store the set of procedures {X} � {X 0} associated with d as
the generated recommendation, given the values for the non-
procedure attributes.Using Example 1, a recommendation rule
in our case may look as follows:

• Rule-1: if Gender = Female & Age = 64 & diagnosis=
PN & diagnosis= ARF & Readmit=0, recommended
interventions (i.e, procedures) P1 (PR3893) = 1 & P2
(PR9904) = 0 & P3 (PR9671)= 1.

Similar check is performed to generate rules for patient records
associated with actual class label of 1.

III. EXPERIMENTAL RESULTS

Our empirical analyses are conducted on Microsoft Azure
using 8 cores and each core with 56GB of RAM using R-
studio and Python. All numbers are presented as the average
of three runs.

A. Dataset Preparation

We use the State Inpatient Databases (SID)
(http://www.hcup-us.ahrq.gov/sidoverview.jsp) of Washington
State (referred as SID-WA for the rest of the paper) of year
2010 and 2011. SID of one year comprises four files (i.e.
core file charges file, diagnosis and procedure groups file, and
disease severity measures file) that provide 596 attributes in
total for a single patient encounter.

We construct a heart failure cohort based on the initial
dataset extracted from SID-WA. The cohort contains patients
whose primary or secondary ICD9-CM diagnosis codes are
listed in [14]. Initially, the cohort contains 3,908 distinct
diagnosis codes and 2,049 procedure codes. In order to resolve
the issue of sparsity and high dimensionality of the data, we
perform chi-square feature selection to filter attributes that are
less influential. Table II summarizes the 209 attributes used in
the cohort. Unless otherwise stated, all 70 procedures and the
attribute length of stay are construed as interventions.

The final heart failure cohort contains data extracted from
SID-WA 2010 and SID-WA 2011. Our experiments use the
2010 data (67967 patients) for training and the 2011 data
(52021 patients) for testing.

TABLE III: Number of edges and distinct rules discovered in
each experiment setting

Number of edges;rules
Alg 30 diagnosis 60 diagnosis 90 diagnosis
HC 277; 58,864 306; 37,028 341; 51,479
GS 63; 46,501 67; 46,501 75; 46,531
HY 107; 42,465 108; 24,322 119; 24,322

B. Implemented Algorithms
We implement 3 different structure learning algorithms (Hill

Climbing (HC), Grow-Shrink (GS), Hybrid (HY) and compare
it with a baseline implementation using Logistic Regression
(LR) technique. We vary the number of diagnosis attributes
(30, 60, 90). The LR algorithm does not “discover” any causal
relationship between the variables, but“learns” the association
between different interventions and readmission risk. Based on
that, it ranks the interventions and returns them. We note that
other ranking based methods, such as, Odds Ratio [15] does not
lend itself naturally to our problem settings. We also implement
two natural baselines for summarization module (referred to
Section III-D2). For brevity, we present a subset of results.
The omitted ones are akin to the ones that are presented.
C. Learning Phase

During learning, in order to allow further flexibility and
observe the relationship between procedures(i.e, interventions)
and readmission, we white-list edges from influential pro-
cedure nodes (based on the results of feature selection) to
readmission node. We use heuristics to construct the blacklist
which contains out-links from readmission,in-links to Demo-
graphics attributes and in-links to any attributes in Comorbidity
and Diagnosis coming from any attributes in Utilization and
Procedures. Finally, we obtain 12657 edges in the black-list
and 5 edges in the white-list. Table III shows the complexity
of the networks and the number of distinct rules discovered
for each experiment setting.
D. Validation Phase: Summarization & Scalability

The network structure is learned on Microsoft Azure using
10, 000 records randomly sampled from the training data and
the parameters are using all 68K records.

The validation phase uses the summarization module. The
intuition is to be able to discover a set of patients “akin” to
the given patient and aggregate their interventions to generate
recommendation for her. Given an input patient record (only
with non-procedure attribute), we find out a set of k rules
which gives rise to the highest similarity with the input using
K-Nearest Neighbor search (K-NN) [15]. Based on these k-
rules, we create a summary rule, by taking the majority voting
of the suggested recommendations.

1) Evaluation Measures: We design our experiments in
order to assess the effect of the three structure learning
algorithms described in Section II and the effect of various
numbers of diagnosis attributes on the quality of evaluation.
We use four metrics to evaluate our experiment results: 1) the
number of exact matches from the rules of the test data (HIT);
2) the Jaccard index between the recommendation procedure
vector and the actual observed procedure vector (JAC); 3)
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Fig. 3: Effectiveness of different algorithms for intervention recommendation; x-axis varies the number of diagnoses attributes
and y-axis captures the average of a respective quality measure.
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Fig. 4: Effectiveness of summarization module; x-axis varies k and y-axis captures the average of a respective quality measure.

accuracy of the recommendations (ACCY); 4) True positive
rate (TPR) or Recall 4. For each pair of a set of recommended
procedures and a set of observed procedures, we define a true
positive (tp) case, if a recommended procedure appears in
the observed procedure set. We define a true negative (tn)
case, if a non-recommended procedure does not appear in
the observed procedure set. False positive (fp) occurs when
the recommended procedure does not appear in the observed
set. False negative (fn) occurs when the non-recommended
procedure actually appears in the observed procedure set.

2) Effectiveness of Summarization: In this set of experi-
ments, we vary k (number of nearest neighbor) to create
summary and observe the effectiveness of the generated recom-
mendations based on the 4 quality measures described above.
We also implement two baseline algorithms, referred to as BL-
1 and BL-2. For brevity, we compare them with only one
structure learning algorithm (HC) with 90 attributes and the
LR baseline. Since, our data suggests that most of the time no
procedure is recommended to a patient, BL-1 simply suggests
0 procedure. One the other hand, BL-2 does not use learning,
but consider the entire patient population and suggests the

4Note that Precision is not relevant in our settings, as it captures
the actually correct recommendations out of all recommendation.

top-3 most frequent procedures always. Figure 4 contain the
results that exhibits that the baseline algorithms are clearly
inappropriate for TPR. Unsurprisingly, with increasing k, the
quality improves only upto certain extent, that suggests that a
reasonably small number of similar rules (small k) is adequate
for effective intervention recommendation.

3) Recommendation Effectiveness & Discussion: The ex-
perimental results are presented in Figure 3 for k = 7.
Understandably the HIT values are in the lower side for all the
algorithms, while the other three measures (especially Accu-
racy) are reasonable and demonstrates the effectiveness of our
proposed methods. Figure 3 and Table V show our experiment
results. We perform paired t-test to further understand the
statistical significance of the obtained results. The significance
level is set to p-value < 0.05. The results indicates that, for
JAC and ACCY, HC significantly outperform GS, HY as well
as LR (for the same number of attributes). The results also
demonstrate that JAC and ACCY of HY with 30 attributes
outperform the other two variants – HY with 60 attributes
and HY with 90 attributes. On the other hand, HC with 90
attributes achieved significantly better results for JAC and
ACCY compared to other two structure learning algorithms
(GS and HY) and to the settings of using 30 and 60 attributes.
In terms of TPR, all the Bayesian Network based algorithms
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TABLE V: Recommendation evaluation for the alternative
whitelist. * denotes the value that is significantly higher

Alg HITS JAC ACCY TPR
GS orig 284 0.3067* 0.9355* 0.4796

alt 217 0.3044 0.9307 0.4876*
HY orig 291 0.3082* 0.9355* 0.4834

alt 217 0.3031 0.9341 0.4840

show a significant statistically improvement over the LRs and
especially the results of HY are the statistical best. On the other
hand for GS and HY, the structure learning algorithms with
90 attributes outperforms the ones with 30 and 60 attributes
in TPR while 30 is the best for HC. These results corroborate
that based on the underlying algorithm and the input diagnoses,
the effectiveness of different algorithm varies for the task of
intervention recommendation.

4) Effects of Prior Knowledge: In order to investigate the
effect of prior clinical knowledge encoded in the whitelist,
we perform an experiment using a different set of arcs in the
whitelist for the setting of 30 diagnosis attributes with GS and
HY algorithms. Naturally, LR algorithm is not applicable here
anymore. Our alternative whitelist replaces two procedures that
are highly associated with readmission with two less correlated
procedures. We apply paired t-test with significance level at
0.05 to examine whether differences exist between the original
and alternative whitelist.

Table III-D4 compares the averaged results between the
original and the alternative whitelist. It shows that using the
original whitelist produces significantly better results in JAC
and ACCY for both GS and HY structure learning algorithms.
However, in the case of GS, we observe that the alternative
whitelist has small but significant higher TPR.

IV. CASE STUDIES : RECOMMENDATION EFFECTIVENESS

For clinical validation, we involve a cardiologist to clinically
validate the effectiveness of the recommended interventions for
5 real patient cases randomly chosen from the data. The cases
are summarized in Table VI, using different combinations of
demographics and diagnosis as the inputs to evaluate the proce-
dure recommendations. All three network learning algorithms
are used in this process and the generated rules are summarized
using k = 7. Table VII shows the results. We ask two questions
specifically - a) How likely this procedures would be used for
this patient? b) How likely the recommended procedures could
reduce the readmission risk? These two questions are referred
to as Ques 1 and Ques 2 respectively in Table VIII. The
cardiologist rates in a scale of 1�5 (least likely to most likely).
These results in Table VIII demonstrate that our proposed rules
are reasonably effective.

V. RELATED WORK

To the best of our knowledge, no prior work has investigated
the intervention recommendation problem for heart failure.
Several effective solutions to predict the risk of readmission
for congestive heart failure [16], [14], [17] is known that do
not have any easy extension for intervention recommendation.

TABLE VIII: Ratings provided by the cardiologist describing the
effectiveness of the generated recommendations in Table VII. The re-
sults indicate that our automated recommendation generation process
is quite effective.

Case Ques 1 Score - HC, GS, HY Ques 2 Score - HC, GS, HY
1 5,5,5 4,4,4
2 4,4,4 4,4,4
3 3,3,3 3,3,3
4 4,4,4 4,4,4
5 4,4,4 4,4,4

Existing research proposes different modeling to enable deci-
sion support for generating treatment plan for other diseases
such as coronary diseases [18], ulcers [19], sepsis [20], and
depression [21].Unlike us, none of these work deal with the
problem of high dimensionality, scale, or multiple layers.
Unlike us, they do not generate recommendation rules, nor
do they perform large scale validation.

A recent work [22] has leveraged “big” healthcare claims
data for the knowledge discovery process. Although our
studied problem is fundamentally different; nevertheless, our
proposed framework could benefit from the proposed large
scale data analysis solutions. A recent research [23] studies
the problem of identifying risk signals of potential adverse
drug reactions (ADRs) through Bayesian network. It is easy
to observe that our effort is orthogonal to these related work.
Nevertheless, we wish to explore more advanced large scale
data mining techniques in the future.

VI. CONCLUSION

We investigate the problem of recommending interventions
to minimize 30-day risk of readmission for heart failure
patients. Our proposed solution relies on learning the structure
and parameters of a hierarchical Bayesian network from the
given data. After that, we propose algorithms to generate
rules and summarize them that could be used to recommend
interventions. Our implementation addresses the scalability and
high dimensionality issues using implementation on Windows
Azure. Our experimental results as well as case studies demon-
strate the effectiveness of the proposed framework.

VII. ACKNOWLEDGMENTS

We acknowledge the Microsoft Azure for Research team for
their support in this research. Additionally, we are thankful to
cardiologists Dr. Jane Wilcox at Northwestern Medical School
for her participation in the case study.

REFERENCES

[1] M. D. Naylor et al., “Comprehensive discharge planning and
home follow-up of hospitalized elders: A randomized clinical
trial,” JAMA, 1999.

[2] M. W. Rich et al., “A multidisciplinary intervention to prevent
the readmission of elderly patients with congestive heart failure,”
New England Journal of Medicine, 1995.

[3] J. Schneider et al., “A medication discharge planning program
measuring the effect on readmissions,” Clinical Nursing Re-
search, 1993.



6

TABLE IV: Statistical significance of quality results of Figure 3 is further explained using paired-t-test. * denotes that the result
is significantly better than the others among the three variations of attribute numbers. † denotes whether the result is significantly
better than the others among the three structure learning algorithms and logistic regressions.

HC GS HY LR
30 60 90 30 60 90 30 60 90 30 60 90

HIT 284 229 306 298 295 306 306 151 151 11 311 319
JAC 0.3925† 0.3834† 0.3948*† 0.3865 0.3907 0.3920* 0.3894* 0.3791 0.3795 0.2797 0.3632 0.3641*
ACCY 0.9394 0.9372 0.9400*† 0.9370 0.9380 0.9383*† 0.9444*† 0.9344 0.9344 0.9152 0.9380 0.9384*
TPR 0.596 0.5983 0.5905* 0.5979 0.5995 0.6002* 0.6020† 0.6145† 0.6164*† 0.5149 0.5284* 0.5274

TABLE VI: Case study scenarios: LOS is length of stay, CHRON is # chronic conditions

Case gender,age LOS,CHRON Diagnoses
1 Male,40-49 1,2 Diabetes, hypertension, Peripheral vascular disorders, Congestive Heart Failure, Coronary Atherosclerosis Of Autologous Vein Bypass Graft
2 Male,40-49 3,3 Chronic pulmonary disease, hypertension, Subendocardial infarction, Atherosclerosis Of Autologous Vein Bypass Graft
3 Male,30-39 2,2 hypertension, Subendocardial infarction, Ventricular Fibrillation
4 Male,50-59 1,2 Hypothyroidism,Chronic Systolic Heart Failure, Other Specified Forms Of Chronic Ischemic Heart Disease
5 Female,50-59 2,1 Hypertension, Acute Systolic Heart Failure, Subendocardial infarction.

TABLE VII: Recommended utilities and procedures for the case studies in Table VI; unsurprisingly, the different belief network may still
reach the same conclusions for a given patient in some cases. These procedures includes Major operating room procedure (A), Cardiac
Catheterization Lab (B),Electrocardiogram (C),Other Implants (D),CCU (E),Chest X-Ray (F),Echocardiology (G),ICU (H),Emergency Room
(I),Pacemaker (J),INSERT DRUGELUTING CRNRY AR (PR-3607),Percutaneous Transluminal Coronary Angioplasty (PR-0066), INSERT 1
VASCULAR STENT (PR-0045), LEFT HEART CARDIAC CATH (PR-3722),Lt Heart Angiocardiogram (PR-8853)

Case HC GS HY
1 includes procedures A,B,C,D, PR-3607 ,PR-0066

,PR-0045
Same as HC plus procedure E Same as GS

2 includes procedures A,B,C,D,F,G,H,PR-3722,PR-
8853,PR-0066

Same as HC same as HC

3 includes procedures A,B,C,F,H,I,PR-3607,PR-
0066,PR-8853,PR-3722,PR-0045

includes procedures A,B,C,D,F,I, PR-3607, PPR-
0066,PR-8853, PR-0045

includes procedures A,B,C,D,F, I,H,PR-3607,PR-
0066,PR-8853,PR-3722,PR-0045

4 includes procedures A,C,D,F,H,J Same as HC plus PR-0066 Same as HC
5 includes procedures A,B,C,D,F,H,PR-3607,PR-

0066,PR-8853,PR-3722, PR-0045
Same as HC same as HC

[4] T. M. Koelling et al., “Discharge education improves clinical
outcomes in patients with chronic heart failure,” Circulation,
vol. 111, no. 2, pp. 179–185, Jan. 2005. [Online]. Available:
http://circ.ahajournals.org/content/111/2/179

[5] R. Amarasingham et al., “An automated model to identify heart
failure patients at risk for 30-day readmission or death using
electronic medical record data,” Medical Care, 2010.

[6] G. E. Box and G. C. Tiao, Bayesian inference in statistical
analysis. John Wiley & Sons, 2011, vol. 40.

[7] R. E. Neapolitan, Learning bayesian networks. Pearson Pren-
tice Hall Upper Saddle River, 2004.

[8] I. Tsamardinos et al., “The max-min hill-climbing bayesian
network structure learning algorithm,” Machine learning, 2006.

[9] P. Spirtes and C. Meek, “Learning bayesian networks with
discrete variables from data,” in KDD, 1995.

[10] F. Bromberg et al., “Efficient markov network structure discov-
ery using independence tests,” in SDM, 2006.

[11] F. V. Jensen and T. D. Nielsen, Bayesian networks and decision
graphs. Springer, 2007.

[12] W. Li et al., “Marker selection by akaike information crite-
rion and bayesian information criterion.” Genetic Epidemiology,
2000.

[13] S. C. Kramer and H. W. Sorenson, “Bayesian parameter esti-
mation,” Automatic Control, IEEE Transactions on, 1988.

[14] N. Meadem et al., “Exploring preprocessing techniques for

prediction of risk of readmission for congestive heart failure
patients,” in DMH-KDD, 2013.

[15] J. Han and M. Kamber, Data mining: concepts and techniques,
2006.

[16] K. Zolfaghar et al., “Risk-o-meter: an intelligent clinical risk
calculator,” in KDD, 2013.

[17] ——, “Big data solutions for predicting risk-of-readmission for
congestive heart failure patients,” in IEEE Big Data, 2013.

[18] J. Bittl et al., “Bayesian methods affirm the use of percutaneous
coronary intervention to improve survival in patients with un-
protected left main coronary artery disease,” Circulation, 2013.

[19] I. Cho et al., “Using ehr data to predict hospital-acquired
pressure ulcers: A prospective study of a bayesian network
model,” medical informatics, 2013.

[20] E. Gultepe et al., “From vital signs to clinical outcomes for
patients with sepsis: a machine learning basis for a clinical
decision support system,” JAMA, 2013.

[21] K. et.al, “Estimating mental states of a depressed person with
bayesian networks,” in Contemporary Challenges and Solutions
in Applied Artificial Intelligence. Springer, 2013.

[22] V. Chandola et al., “Knowledge discovery from massive health-
care claims data,” in SIG-KDD, 2013.

[23] R. Harpaz et al., “Empirical bayes model to combine signals of
adverse drug reactions,” in SIG-KDD, 2013.


