
© 2021 Zesty EBook 01

THE EBS
COOKBOOK

(Almost) Everything You Need To Know About Amazon EBS

Understanding EBS Volume Types 3

Standard Magnetic Volumes 4

Protecting Sensitive Data with EBS Volume Encryption 12

Provisioned Storage Costs 15

Provisioned IOPS and Provisioned Throughput Costs 15

Snapshot Costs 16

Fast Snapshot Restore (FSR) Costs 16

Overprovisioning EBS Volumes 20

Ignoring EC2 Configuration for High-performance EBS Volumes 20

Ignoring FSR (Fast Snapshot Restore) Configuration 20

Keeping Unused EBS Volumes 20

Using a Suboptimal File System 20

Using a Single Volume to Host Everything 20

Creating Non-synchronized Snapshots 21

EBS Direct APIs for Snapshots Costs 16

Analyzing EBS Costs

Checking EBS Volume Status

Checking EBS volumes performance

Checking Over-Provisioned Volumes

18

19

19

20

RAID 0 6

RAID 1

NTFS 8

8ext3

9ext4

9xfs

10ZFS

10Btrfs

12So, Why would You Care About File Systems?

6

HDD Storage Volumes

SSD-backed Volumes 4

4

Cold HDD (sc1) Volumes 4

Throughput-Optimized HDD (st1) Volumes 4

gp2 General Purpose SSD Volumes 4

gp3 General Purpose SSD Volumes 4

io1 Provisioned IOPS SSD Volumes 5

io2 Provisioned IOPS SSD Volumes 5

io2 Block Express Volumes 5

What Is Amazon EBS? 3

EBS-Optimized EC2 Instances 5

EBS and RAID 6

Understanding File Systems 8

Amazon EBS Multi-attach 6

EBS vs EFS 7

How EBS Pricing Works 15

EBS Bad Practice 20

EBS Best Practices 21

Conclusion 23

Monitoring EBS Volumes 18

Table of Contents

© 2021 Zesty EBook 02

Amazon Web Services (AWS) offers a highly performant block storage service called Amazon EBS or
Elastic Block Store. This service enables the creation of standalone virtual hard drives in the cloud and
attaching these volumes to Amazon Elastic Compute Cloud (EC2) virtual machines.

AWS customers have used EBS since its early days for almost all types of demanding workloads such as
databases, applications, email, file storage, backup, or websites. EBS volumes are easy to create and
configure and can be scaled to deliver extremely high IO performance. These volumes are also highly
available and durable. Although EBS volumes are not replicated across multiple Availability Zones, they
are copied to multiple servers in the same AZ, thus offering 99.99% availability and up to 99.999%
durability. Users can also encrypt EBS volumes for data security at rest.

Due to the nature of the technology, SSD volumes offer
the highest speed and throughput. However, many
workloads are also suitable for HDD volumes.

Previous generation standard magnetic storage volumes.

Broadly, there are three types of EBS volumes:

Hard disk drive (HDD) backed storage volumes.

Solid-State Device (SSD) backed storage volumes.

What Is Amazon EBS?

Understanding EBS Volume Types

© 2021 Zesty EBook 03

EBS Volume Types

Currently (as of May 2021), there are two types of HDD
storage volumes:

HDD Storage Volumes

Most write-intensive workloads are better served by SSD-
backed EBS volumes. These volumes can quickly access data
due to the non-rotational nature of the underlying solid-state
devices (SSD). The IO block size for SSD volumes is 16 KB. At the
time of writing, there are five types of SSD-backed volumes.

SSD-backed Volumes

sc1 type Cold HDDs are the lowest priced EBS volumes
($0.015/GB-month) and are suitable for storing
infrequently accessed data like backups and archives.
These volumes generally have higher capacity and
performance than the standard magnetic volumes.
Cold HDDs can go up to 16 TB in size, offer a maximum
of 250 IOPS (1 MB per IO), and a throughput of 250 MiB/
second (262.14 MB/second)

Cold HDD (sc1) Volumes

Next high up in the ladder is throughput-optimized st1 volumes. The significant difference between st1 and sc1 or standard magnetic volumes is that st1’s
offer throughput optimization. In other words, when you provision an st1 EBS volume, you can specify its IO throughput.

Like sc1s, st1 volumes can have a maximum size of 16 TB and have a 1 MB IO block size. However, the throughput can be as high as 500 IOPS per volume or
500 MiB per second. That’s why st1 volumes are better suited for high throughput workloads like log management, big data, data warehouses, ETL, or
streaming applications.

Throughput-Optimized HDD (st1) Volumes

gp2 is the default SSD-backed EBS volume for EC2 instances.
AWS recommends using this type of volume for smaller
workloads like boot volumes, non-production environments, or
small-scale applications. These volumes have a baseline
performance of 3 IOPS per GB of provisioned storage and can
deliver up to 16,000 IOPS. The maximum volume size can be 16
TB, and the maximum throughput can be 250 MB/s.

gp2 General Purpose SSD Volumes

gp3 is the latest generation general-purpose SSD-backed EBS
volume. It offers 3,000 IOPS and 125 MB/s throughput as a baseline
performance for any volume size. Customers can provision up to
16,000 IOPS and 1,000 MB/s throughput for an extra fee. gp3 can be
used for a wide variety of workloads that need low-latency
performance such as single instance databases, VDIs, medium-
scale data warehouses, and so on.

gp3 General Purpose SSD Volumes

The previous generation standard EBS volumes backed by magnetic hard drives are still used for some workloads today.
These EBS volumes can have a maximum size of 1 TB and can offer up to 200 IOPS (Input/Output per Second).
Standard magnetic EBS volumes are suitable for small-scale workloads where throughput isn’t a requirement.

Standard Magnetic Volumes

© 2021 Zesty EBook 04

io1 provisioned IOPS SSD-backed EBS volumes offer higher IO
performance, throughput, and lower latency than their ֿ
general-purpose cousins. These volumes are best suited for IO
and throughput-intensive workloads like MPP data warehouses,
large OLTP databases, or NoSQL backends.

io1 SSD volumes can go up to 16 TB in size and can sustain a
maximum IOPS of 64,000 at 1000 MB/s throughput. AWS
recommends using io1 SSD EBS volumes with EBS-optimized
instances for maximum performance. When attached to
EBS-optimized EC2 instances, io1 SSD volumes can deliver their
provisioned performance 99.9% of the time, and the latency
comes down to single-digit milliseconds.

io1 Provisioned IOPS SSD Volumes

The io2 provisioned IOPS SSD EBS volumes are similar to io1 SSD
volumes as they have the same maximum IOPS of 64,000 at 1000
MB/s throughput. However, it has a durability of 99.999% (io1 SSDs
have 99.9%) and offers an IOPS-to-storage ratio of 500 IOPS/GB.
This is 10 times more than that of io1, which has an IOPS-to-
storage ratio of 50 IOPS/GB.

AWS recommends using io2 SSD volumes for workloads like SAP
Hana, IBM DB2, Oracle, etc.

io2 Provisioned IOPS SSD Volumes

At the time of writing, io2 Block Express is the latest generation io2
SSD-backed EBS volume. It can go up to 64 TB in size and has a
maximum IOPS of 256,000 - four times that of io1 or io2. The
throughput is also four times more, with a maximum of 4,000 MB/s.
The durability is 99.999%, and the IOPS-to-storage ratio is 1,000
IOs/GB - twice that of io2.

An EBS volume's performance depends on the network capacity
of the EC2 instance it's attached to. That's because EBS volumes
and EC2 instances are both virtualized: EBS volumes are not
physically connected to EC2 instances like traditional disks or
Storage Area Networks (SAN) which are connected to physical
servers via SCSI interfaces. This also means an EC2 instance uses
its network channel to connect to (and share its network
bandwidth with) both the outside network and its EBS volumes.
For this reason, busy EC2 instances using the same network
channel for both IP and storage traffic can cause significant
performance bottlenecks in the attached EBS volumes.

Amazon offers a number of EC2 instance types classed as "EBS
optimized". These instances use separate network channels for IP
and EBS traffic. EBS volume performance in these instances is
significantly higher than non-EBS optimized instances because
the storage traffic doesn’t have to compete for network
bandwidth. As an example, General Purpose (gp2 and gp3) SSD
volumes attached to EBS-optimized instances are guaranteed to
deliver their baseline and burst performance 99% of the time.
Provisioned IOPS (PIOPS) volumes (io1, io2) attached to EBS-
optimized instances are guaranteed to deliver their provisioned
performance 99.9% of the time.

The newer generation EC2 instance classes have EBS
optimization enabled by default - users don't need to do
anything. These instance types offer EBS bandwidth from 425
Mbps to up to a staggering 38,000 Mbps, and an EBS connection
throughput from 118 MB/second to 1187.5 MB/s for 128Kb I/O
chunks. The maximum IOPS supported by these instances is
173,333 for 16 KB I/O blocks.

There are other instance types that support EBS optimization, but it's
not enabled by default. You need to enable it either when creating
the instance, or later by modifying its properties. These instance
types offer a maximum EBS bandwidth of up 2000 Mbps, a maximum
connection throughput of 2000 MB/s, and a maximum disk
throughput of 16,000 IOPS. Also, you need to pay for EBS optimization
once you enable it.

There are two things you should remember when choosing an EBS-
optimized instance.

First, always choose a current-generation EBS-optimized instance
type. These instances offer better performance than older-
generation ones.

Second, ensure the throughput capacity of the instance closely
matches the throughput capacity of the attached EBS volumes. For
example, if an instance class has a maximum EBS channel
throughput of say, 10,00 IOPS and an attached EBS volume has a
maximum throughput of 6000 IOPS, the rest 4000 IOPS capacity of
the EBS channel can't be used. Conversely, if you are attaching a high
throughput EBS volume to a low-bandwidth EC2 instance, you will
never get the full throughput performance from the disk, and you’ll
pay for the unused capacity.

EBS-Optimized EC2 Instances

io2 Block Express Volumes

© 2021 Zesty EBook 05

RAID (Redundant Array of Inexpensive Disks) was (and still is) heavily used in on-premise, non-cloud environments. RAID involves configuring a
group of physical disk volumes directly attached to a physical server to provide larger disk capacity and enhanced fault tolerance. There are
different levels of RAID available. For example, RAID 5 or RAID 6 are widely used for maximum data protection.

With the adoption of the cloud, infrastructure engineers don’t have to configure RAID at the hardware and network level. Instead, Amazon EBS
volumes are virtualized and have their own underlying redundancy. AWS customers can also create EBS volume snapshots for data protection
and provision IOPS for the required performance.

AWS still supports creating RAID volumes at a software level though. With EBS, the two common RAID options are RAID 0 and RAID 1.

RAID 0 RAID 1
This involves creating a RAID array with multiple EBS volumes.
Like the on-premise counterpart, EBS RAID 0 does not offer any
fault tolerance, but it improves write performance. With RAID 0,
data is striped across all EBS volumes, improving the overall IO
performance.

In addition, the storage space, IOPS, and throughput of the array
is the sum of those of the individual volumes. For example, if
there are three 500 GB EBS volumes in a RAID 0 array with each
having 5000 IOPS and 500 MBps throughput, the resulting array
will have a total of 1.5TB storage, 15,000 IOPS, and 1,500 MBps
throughput.

Since there’s no fault tolerance in RAID 0, losing one volume in
the array will mean data loss.

RAID 1 involves creating an array with mirrored EBS volumes.
RAID 1 can be used for instance-level data redundancy. With
RAID 1, data is simultaneously written to the participating
volumes - ensuring data is still available if one mirrored
volume is lost. Also, the total disk space, IOPS, and
throughput are the same as those of the individual
participating volumes.

AWS doesn’t recommend creating RAID 5 or RAID 6 with EBS.
That’s because writing the parity bit across all volumes can
cause a loss of the available IOPS.

Creating snapshots of EBS volumes in RAID configuration can
be tricky. With RAID 0, data integrity can’t be guaranteed if
the volume snapshots are not synchronized. That’s why AWS
recommends creating EBS multi-volume snapshots. With
multi-volume snapshots, it’s possible to create simultaneous,
consistent snapshots of up to 40 volumes attached to an
EC2 instance.

For workloads requiring extremely high performance, multiple
EC2 instances may need to access the same storage space
simultaneously. This is usually the case for clustered
applications. EBS provides an advanced feature called “multi-
attach” to cater to this use case, but it has several caveats.

With EBS multi-attach, an io1 or io2 EBS volume can be
attached to up to 16 Nitro Linux instances in the same
Availability Zone in the same region. This feature isn't available
in all regions, and it may limit other EBS functionalities like
resizing a volume.

Amazon EBS Multi-attach

The multi-attached common volume needs to be formatted
as a clustered file system, and it doesn't support I/O fencing.
Regular filesystems like ext4 don’t support this type of volume.

As this is an advanced setup for special use cases, make sure
you understand the trade-offs and your OS, file system, and
application support the feature. For a complete list of
limitations in multi-attached EBS volumes, check
the AWS documentation.

EBS and RAID

© 2021 Zesty EBook 06

https://en.wikipedia.org/wiki/Standard_RAID_levels
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-creating-snapshot.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-volumes-multi.html
https://en.wikipedia.org/wiki/Standard_RAID_levels

AWS offers another storage service called the Elastic File System (EFS). EFS is a managed Network File System (NFS) designed for Linux-based
EC2 instances and on-premise servers. There’s a similar storage system for Windows hosts called the Amazon FSx for Windows File Server.
FSx uses the Server Message Block (SMB) protocol while EFS uses NFS.

Like EBS, EFS also offers high durability. However, the main difference lies in scalability. EFS volumes can scale up quickly and automatically to
meet abrupt spikes in workload demand and scale down with a decreased load. This makes EFS more flexible than EBS. Also, unlike EBS, where
maximum volume size can be up to 16 TB, there’s no maximum storage size for EFS volumes.

This scalability also means EFS volumes don’t need to be pre-provisioned with a specific size for an anticipated load, which ultimately saves
costs. Similar to EBS, you can also specify a provisioned throughput for EFS volumes.

EBS vs EFS

© 2021 Zesty EBook 07

Creating EFS Volume

EFS also offers lifecycle management, a price-saving feature similar to S3 lifecycle management. EFS lifecycle management enables the automatic
and transparent transfer of infrequently accessed data to a separate storage class.

EFS Lifecycle Management

https://aws.amazon.com/fsx/windows/

© 2021 Zesty EBook 08

Another difference between EBS and EFS is that an EFS volume
can be mounted on hundreds or even thousands of nodes,
whereas generally, an EBS volume can be attached to a single
EC2 node only. As we noted earlier however, EBS multi-attach is
the exception to this rule.
This EFS feature can be quite cost effective. . EFS volumes cost
more than EBS volumes, but mounting an EFS volume to
multiple EC2 instances will have the same cost as mounting it
to a single instance. In comparison, creating and attaching EBS
volumes for every node will quickly add to the bill.

So, should you use EFS for all your EC2 instances instead of EBS?
Not at all. EBS volumes are best suited for relational and NoSQL
databases, enterprise applications like ERP systems, mail
servers, SharePoint, web servers, directory servers, DNS servers,
or middlewares. That’s because these systems typically don’t
run on large clusters, and therefore don’t need a commonly
mounted volume.

A file system controls how data in a computer storage medium
is stored, arranged, addressed, and retrieved. It also controls
the fault tolerance and compression of the data and stores its
different attributes. The computer’s operating system offers
commands for interacting with the underlying file system. This
includes both high-level operations like copy, move, delete, or
create directories, and low-level operations like create
partitions and formatting.

There are many different file systems available for different
types of storage mediums like hard disk drives, removable SSD
drives, tape or optical drives, NFS volumes, or even temporary
mediums like RAM disks. For most computing needs though,
direct-attached storage is still the mainstay today.

Since EBS can be logically classed as direct-attached storage,
we will talk about the major file systems you can use with EBS
volumes. These include both Linux and Windows file systems.

NTFS
New Technology File System (NTFS) is Microsoft’s proprietary
file system used in the Windows family of operating systems
including Windows Servers. It superseded the older FAT and
FAT32 file systems.

ext3
The third Extended File System (ext3) comes with most Linux
distributions. It offers journaling for crash protection. The
maximum block size for file IO is 8 KB in ext3, which is less
than what most modern file systems offer. Also, ext3 lacks
some critical features like online defragmentation, undelete,
or compression.

According to Microsoft, NTFS can support up to 8 Petabytes
of maximum file size and volume size. With the default 4KB
page size (i.e., the data block size for an IO operation)
though, it can support up to 16 TB file and partition size, which
is also the maximum volume size supported by EBS.

Journaling for crash protection of files.

Enforceable space quotas for users.

File encryption, compression, and sparse files.

Ability to expand or shrink partitions.

NTFS offers features like:

Volume Shadow Copy Service to keep older versions of
files and folders using copy-on-write technology. This
allows users to recover older versions of files and folders.

Fine-grained security through Access Control Lists (ACLs).

Understanding File Systems

The performance requirements of these workloads can also be
met by existing EBS volume types. EBS volume snapshots are
sharable with other EC2 instances in different regions. Also, EBS
volumes can be attached to both Windows and non-Windows EC2
machines whereas EFS volumes are designed for Linux-based
hosts only.

EFS volumes are best suited for enterprise-wide file servers,
backup systems, Big Data clusters, Massively Parallel Processing
(MPP) systems, Content Distribution Networks (CDN), and other
such large use cases.

https://docs.microsoft.com/en-us/windows-server/storage/file-server/ntfs-overview#:~:text=NTFS%20can%20support%20volumes%20as,and%20the%20number%20of%20clusters.

© 2021 Zesty EBook 09

ext4
The fourth Extended File System (ext4) is an improved
version after ext2 and ext3. At the time of writing, most Linux
distributions’ root volume comes with the ext4 file system by
default.

Use of extents to facilitate block allocation of large files.

Faster file system consistency checks.

Delayed allocation of blocks to files (only when they
are written).

Unlimited number of subdirectories.

Support of maximum 1 Exbibyte volume size and 16
TB file size.

Its improvements over ext3 include:

Online defragmentation.

xfs
Also known as Extended File System, xfs is a 64-bit journaled
file system with features similar to ext4. XFS is the default file
system for Red Hat Enterprise Linux.

xfs offers a maximum file size and volume size of 8 Exbibytes.

Metadata journaling for crash recovery.

Delayed block allocation to files.

B-trees for file and directory allocation.

Guaranteed Rate I/O (GRIO). This allows applications
to reserve bandwidth.

Some of its features are:

Online defragmentation and enlargement of the file system.

To use ZFS out-of-box on EBS volumes, it’s best to use a
FreeBSD AMI. There’s also the option to install ZFS in Linux.
You can check out the ZFS on Linux site to learn more.

© 2021 Zesty EBook 10

ZFS
The Zettabyte File System (ZFS) was originally developed by
Sun Microsystems and later ported to FreeBSD. There are two
variants of ZFS today: the original ZFS - now owned by Oracle
Corporation, and closed source, and the Open ZFS, still
offered via Common Development and Distribution License.
Due to CDDL’s incompatibility with GNU Public License (GPL),
most Linux distros don’t have it as part of their kernel,
although they offer methods to install it.

This is an advanced file system. In fact, when it was first
developed, it was meant to be the ultimate file system.

Ability to span the file system across a pool of
drives such as a volume manager, and continue
to add more.

Copy-on-write capability. This helps ZFS to recover
older versions of overwritten files and directories.

Automatic snapshot of the entire file system for
change tracking of the data, and rollback
capability for recovery purposes.

A maximum of 16 Exbibyte file size and a maximum
of 256 Quadrillion Zettabytes volume size.

Some of ZFS’ features include:

Btrfs
Btrfs (often pronounced “ButterFS”, “Better FS”, or “Btree FS”)
was also originally developed by Oracle Corporation and
later merged into the main Linux kernel. Several vendors
including Red Hat, Intel, and SuSE are now contributing to its
development. Btrfs uses B-tree structures for data storage
and retrieval.

capCopy-on-writeability.

Logical volume management capability (like ZFS).

Readable and writable snapshots of the entire file
system that can be accessed like a regular folder.

Built-in support for RAID 0, RAID 1, and RAID 10.

Automatic Cyclic Redundancy Check (CRC) to
ensure the integrity of data and metadata.

Transparent compression with both zlib and LZO.

Efficient storage of files smaller than the default
block size.

Online defragmentation.

Maximum file size and volume size of 16 Exbibytes.

It offers features like:

https://aws.amazon.com/marketplace/pp/FreeBSD-FreeBSD-12/B07L6QV354
https://zfsonlinux.org/

The following table shows a quick
comparison between the file systems
using a 4KB block size:

NTFS 8 PB 8 PB Yes Yes Yes2 - 132
Microsoft Windows
& Windows Server

ext4 1 EiB 16 TiB No Yes No2 - 132Linux

xfs 8 EiB 8 EiB Yes Yes No2 64Linux

Btrfs 16 EiB 16 EiB Yes Yes Yes2 64Linux

ext3 16 TB 2 TB No Yes No
Minimum between
(volume sze / 2),

& the number of blocks)

13Linux

ZFS
256x2^50

ZiB
16 EiB Yes Yes Yes

2 in any
directory

FreeBSD,
Open Solaris, Linux

48

File
System

OS Support
Maximum

Volume Size
Maximum

File Size
Maximum

Number of Files
Online Size
Extension

Online Size
Shrink

Deduplication

NTFS Yes No YesYes
Microsoft Windows
& Windows Server

ZFS Yes Yes YesYesFreeBSD, Open Solaris, Linux

Btrfs Yes Yes YesNoLinux

ext3 No No NoNoLinux

ext4 No No NoYesLinux

xfs Yes No NoNoLinux

File
System

OS Support ChecksumCopy On Write CompressionEncryption

© 2021 Zesty EBook 11

The EC2 instance’s root volume comes pre-installed with the operating system’s default file system. However, you can choose the file
system of the EBS volumes you attach to the machine. Depending on the type of workload, the file system you choose can have a wide
impact on performance and fault tolerance.

For Windows Servers, the choice of a file system is fairly straightforward: it’s NTFS. However, you may want to enable the Volume Shadow
Copy or the encryption service for NTFS volumes storing critical data. Similarly, choosing a file block size equal to the database page size
can increase performance as the database engine doesn’t have to wait for multiple IO hops from the operating system.

For Linux systems, features like copy-on-write, compression, or
encryption will dictate the choice of the file system. If your server is
supporting large-scale databases, busy web servers, or critical
middleware, you may want to consider features like online file system
extension, or multi-volume management. If fault-tolerance is a
priority (e.g., for backup servers), you would want a file system with a
transparent snapshot facility.

Although storage is cheap, large savings in both space and cost can
often be achieved with data deduplication. When deduplication is
enabled, the file system examines areas in the volume where the
same data has been written multiple times. It then stores that data
only once - optionally compressing it - and ensures it can be
reproduced for each file that contains it. Data deduplication can be
used for large backup volumes, database snapshots, etc.

Choosing the right file systems for the OS, swap space, application,
and data should therefore be a part of your application architecture
process.

Btrfs is suitable for high fault tolerance.

ZFS is suitable for extremely large computing needs
(e.g. dealing with astronomical data, very
large-scale graphics manipulation), or running
Oracle applications.

ext4 can be used for a wide variety of vanilla data
storage requirements.

xfs can be very efficient for storing and
manipulating large files.

 Here’s a quick checklist:

So, Why would You Care About File Systems?

Organizations often need to implement encryption in order to protect their data
both at rest and in transit. Sometimes this is a requirement dictated by the
sensitive nature of the data or by industry or region-specific regulations.
Amazon makes it easy to encrypt EBS volumes for data protection.

An encrypted EBS volume ensures data inside it is encrypted, and all data
moving between the volume and the EC2 instance is also encrypted. Any
snapshot created from an encrypted volume is also encrypted, and so are all
new volumes created from that snapshot.

You can use Amazon Key Management Service (KMS) to encrypt an EBS volume.

Protecting Sensitive Data
with EBS Volume Encryption

© 2021 Zesty EBook 12

You choose the option to encrypt an EBS volume when you launch an EC2 instance or create it
from the EBS console. The image below shows EBS encryption when creating a volume.

The high-level steps for EBS encryption and
decryption works like this:

© 2021 Zesty EBook 13

Creating Encrypted EBS Volume

The Elastic Block Store Service calls the Key Management Service to create a Data
Encryption Key or DEK. The DEK is a symmetric key using the AES-256 algorithm.

KMS generates a DEK and encrypts it with a key called the Customer Master Key (CMK).
Now, you may already have a custom CMK in the KMS, or it can be the default CMK for EBS
in that region. In the image above, we are using the default CMK called aws/ebs.

KMS provides the encrypted DEK to the EBS service which then stores the key in the disk.

The encrypted EBS volume is attached to an EC2 instance.

When the EBS volume is attached, the EC2 instance contacts the KMS with a decrypt
request for the encrypted DEK stored on the disk.

KMS provides the unencrypted DEK to the EC2 instance which then loads it into the
hypervisor memory. The decrypted key is stored in the memory as long as the EBS volume
is attached to the instance.

The EC2 instance uses the DEK to encrypt and decrypt data it stores in the volume or
reads from it.

© 2021 Zesty EBook 14

The CMK we used in this example is the one
EBS creates in each region and uses as the
default key. You can also configure EBS to use
a separate default CMK for all encryptions. To
configure this, go to the EC2 console and
select "EBS encryption" from the "Account
attributes" panel:

Once the “Settings - EBS encryption” screen comes up, you can modify it, and select the
default encryption CMK you want to use in future:

Notice the checkbox to enable “Always encrypt new EBS volumes”. When you enable this
option, all new EBS volumes you create will be encrypted. The snapshots you create from
unencrypted volumes will be encrypted, and the volumes you restore from those
snapshots will also be encrypted.

EC2 Dashboard’s Account Attributes Panel

How EBS
Pricing
Works

© 2021 Zesty EBook 15

The volume type and the storage size.

The volume’s total snapshot size.

Fast Snapshot Restore (FSR).

EBS direct APIs for snapshots.

EBS volume costs depend on a few factors. These are:

The volume’s provisioned throughput.

The volume’s provisioned IOPS.

Not all the costs apply to all volume types, and sometimes you
won’t be using some of the features like FSR. Also, there are free
tiers for baseline performance and throughput.

An EBS volume’s storage size is charged as GB-month. That’s the
total size of the volume in GB over a total month, calculated per
second increments, with a 60-second minimum.

So, let’s say you provisioned a 500 GB gp2 General Purpose SSD
volume for your EC2 instance running in Mumbai, India. The storage
cost in that region at the time of writing is $0.114 per GB-month of
provisioned storage. Let’s also say, you deployed the volume on the
14th of September at 2:00 PM.

With 30 days in September, it would be 15 days and 10 hours (2 PM to
12:00 AM on 14 September) before the current calendar month’s
billing period ends for that EBS volume.

In other words, the EBS volumes will be up for:

$0.0912/GB-month for storage.

$0.0456/provisioned MB/s-month over 125 MB/second
provisioned.

Also, at the time of writing, in the AWS Mumbai region, gp3
volumes cost:

$0.0057/provisioned IOPS-month above 3,000 IOPS.

(10 x 3,600) seconds + (15 x 24 x 3,600) seconds = 1,332,000 seconds.

In September we have (30 x 24 x 3600) = 2,592,000 seconds.

So, the storage charge will be 500 GB x $0.114/GB-month x (1,332,000
seconds / 2,592,000 seconds) = $29.29.

Provisioned Storage Costs

If you decided to deploy the EBS volume as gp3 General Purpose
SSD, you could provision both its throughput and IOPS. These
charges are not applicable to the SSD gp2 volume you
provisioned.

The calculation for provisioned throughput (MB/s) and provisioned
IOPS work the same way as GB-month. Provisioned throughput
charge is calculated as MB/second-month, and provisioned IOPS
is charged at IOPS-month.

So let’s say, instead of gp2, you deployed the volume as gp3. You
also specified a provisioned IOPS of 15,000, and a disk throughput
of 500MB/second.

Currently , Amazon doesn’t charge anything for up to 3,000 IOPS
and 12 MB/second. So your AWS account will only be charged for
15,000 - 3,000 = 12,000 IOPS, and 500 MB/s - 125 MB/s = 375 MB/s
for the volume.

Using all this information, let’s calculate the total charge for the
gp3 volume.

The storage cost will be 500 GB x $0.0912/GB-month x (1,332,000
seconds / 2,592,000 seconds) = $23.43.

The provisioned IOPS charge will be 12,000 IOPS x $0.0057/
provisioned IOPS-month x (1,332,000 seconds / 2,592,000 seconds)
= $35.15

The provisioned throughput charge will be 375 MB/second x
$0.0456/provisioned MB/s-month x (1,332,000 seconds / 2,592,000
seconds) = $8.79

The total charge for that volume in September would be: $23.43 +
$35.15 + $8.79 = $67.37.

Provisioned IOPS and Provisioned
Throughput Costs

Amazon prices change all the time and EBS volume types also undergo changes, so it’s best you refer to the EBS pricing page for the latest price. As a
general rule though, you can refer to the following table for applicable charges across different volume types:

Storage

General Purpose SSD (gp2)

General
Purpose SSD (gp3)

Provisioned IOPS SSD (i01)

Provisioned IOPS SSD (i02)

Throughput Optimized
HDD (st1)

Cold HDD (sc1)

Provisioned
IOPS

Provisioned
Throughput

EBS
Snapshots

Fast Snapshot
Restore

EBS Direct APIs
for Snapshots

Another EBS price component relates to snapshots. EBS snapshots are
saved in S3 in a compressed format. The first snapshot contains all
the contents of the volume, and subsequent snapshots only contain
contents of the changed block. This also means that your AWS
account will be charged only for the changed blocks after the first
snapshot.

At the time of writing, EBS snapshots are charged $0.05 per GB-month
of data stored.

Snapshot frequency.

Data transfer costs for cross-region snapshots.

Other factors that affect snapshot cost include:

The compression ratio of the data.

ListChangedBlocks and ListSnapshotBlocks API calls are charged
$0.0006 / 1,000 requests.

PutSnapshotBlock API call is charged $0.006 / 1,000 SnapshotAPIUnits.

At the time of writing, Amazon lists three API pricing:

GetSnapshotBlock API call is charged $0.003 / 1,000 SnapshotAPIUnits.

Snapshot Costs

Amazon Fast Snapshot Restore (FSR) allows restoring an EBS
snapshot without the initialization overhead at volume creation
time. This eliminates the usual I/O latency when a block in the
restored volume is accessed for the first time. With FSR, a restored
EBS volume immediately starts operating with its provisioned
performance.

FSRs are charged in Data Services Unit-Hours (DSUs) for each
snapshot and each Availability Zone (AZ) where it’s enabled. DSUs
are charged per minute with a minimum of 1 hour. You can enable
FSR when you create a snapshot. AWS will keep charging the
FSR-enabled snapshot until you disable it.

FSR costs $0.75 per DSU hour in each Availability Zone where
it’s enabled.

Fast Snapshot Restore (FSR) Costs

Amazon Direct APIs for snapshots allow applications to directly read
data from snapshots and find differences between two snapshots. This
feature is mainly meant for backup applications, in order that they can
find the changes between snapshots and reduce the backup time.

EBS Direct APIs for Snapshots Costs

© 2021 Zesty EBook 16

https://aws.amazon.com/ebs/pricing/

Provisioned storage per GB-month.

Per 1-million I/O requests.

Magnetic volumes are priced by:

The easiest way to calculate EBS costs is to access the AWS pricing calculator. In the image below, we are using the
same figures for the 500 GB gp3 volume in the us-east-1 region and calculating the costs for a full month (730 hours)
and two daily snapshots. The snapshots will have 200 MB of data changes per snapshot:

Calculating EBS Cost

© 2021 Zesty EBook 17

You can also refer to the previous generation EBS pricing page for magnetic volume pricing.

https://aws.amazon.com/ebs/previous-generation/
https://calculator.aws/#/

EBS_EBook_16 Copy

EBS_EBook_18 Copy

© 2021 Zesty EBook 18

AWS Cost Explorer

EBS Volume Status

You can use the AWS Cost Explorer to check the EBS costs incurred in your account. Just select EBS
groups in the “Usage Type Group” dropdown list, and you can analyze EBS costs by region, AWS
account, or usage type.

As with most resources in AWS, using meaningful and consistent tagging of EBS volumes and snapshots will allow
you to further drill down and apportion the costs.

Amazon EBS-related status and metrics can be captured from the EBS console and CloudWatch. This information shows
the volume status, throughput, IO performance, and can help detect saturation and bottlenecks.

Monitoring EBS Volumes

Analyzing EBS Costs

AWS will run automatic checks to determine the status of EBS volumes. This can be checked from the AWS console.

All volumes will have a “Volume Status”. io1 and io2 disks will also have an extra check for “IO Performance”, which shows a
comparison between the current volume performance against its expected performance.

Checking EBS Volume Status

© 2021 Zesty EBook 19

A status of “Okay” means the volume is working as expected. Unhealthy volumes are marked as “Impaired”. Impaired
volumes will automatically have I/O operations disabled to prevent data corruption and file system inconsistencies
but this behavior can be overridden by setting the Auto-Enabled IO attribute for the EBS volume.

Although it’s rare to see an impaired EBS volume, if it happens, administrators need to stop any applications using
the impaired volume, re-enable I/O for the volume in the AWS console, log into the EC2 instance, and then run a
filesystem repair tool to check for disk errors.

Inadequately provisioned IOPS can cause EBS volumes to experience throttled IO operations, low burst balance,
maximum throughput saturation, or even EC2 network bandwidth saturation.

To check possible IOPS limitations, start by looking at the VolumeQueueLength metric. It shows the number of IO
requests waiting to be completed. A consistently high value for this metric can mean throttling. You can also check
the bandwidth and throughput-related metrics, including Volume ThroughputPercentage.

Some volumes are “burstable” (e.g., gp2, st1, and sc1), and can accumulate “performance credits”. This means even if
the volume doesn't use a lot of resources, it has the ability to perform above baseline for all the credits it
accumulated over time. If your volume is regularly running low in burstable credit balance, it should be resized or
changed to a provisioned IOPS type.

If all metrics look okay, make sure EBS volumes are not reaching their maximum throughput limit or that the EC2
instance isn’t reaching its network bandwidth limit.

Checking EBS volumes performance

Auto-Enable Volume IO

EBS Performance Charts

It's important to keep an eye on over-provisioned volumes, particularly those with provisioned IOPS, as it can quickly become costly.

Metrics to watch for provisioned IOPS volumes include VolumeThroughputPercentage - which shows the percentage of total provisioned IOPS
delivered, VolumeQueueLength, and VolumeIdleTime. Overprovisioned disks should have a low VolumeThroughputPercentage and
VolumeQueueLength, and may have a high VolumeIdleTime.

Many organizations don’t provision or use EBS volumes in an
optimal way that can offer the best possible price-
performance ratio. There are few common “bad practices”.

EBS Bad Practices

Checking Over-Provisioned Volumes

The most common EBS bad practice is over-provisioning.
Overprovisioning happens when large-capacity, highly
performant EBS volumes are attached to EC2 instances but
contain a very small amount of data, or work well above the
required performance. Typically overprovisioning happens
when volumes are created without any clear application
architecture or planning about capacity and performance
requirements. Overprovisioning results in unnecessary costs.

Overprovisioning EBS Volumes

The performance of an EBS volume is highly dependent on the network
bandwidth and throughput of the EC2 instance it’s attached to.

EBS volumes are accessed via a network, that’s why attaching a highly
performant EBS volume to a low network throughput EC2 instance will
result in low volume utilization. Using a high-performance EBS volume
with a non-EBS-optimized EC2 will also result in bigger latency.

Ignoring EC2 Configuration for
High-performance EBS Volumes

This is another bad practice where EBS volumes are provisioned for
possible future use or detached from existing EC2 instances, but never
used. These unattached volumes sit idle in the customer’s account,
costing money despite the fact that they are not being used.

Keeping Unused EBS Volumes

By default, after creating an EBS volume from a snapshot, the
data isn’t readily available inside the volume. The data is
lazily loaded only when it’s accessed.

For certain workloads like databases, this can mean the
volume performs slower than desired for a long time until all
the data has been accessed at least once.

Fast Snapshot Restore addresses this issue. Although it
comes with extra costs, it should be carefully considered for
latency-sensitive workloads.

Ignoring FSR (Fast Snapshot
Restore) Configuration

This bad practice stems from how easy it is to provision EC2 instances,
attach EBS volumes, and not give enough thought to the workload.

In this model, the operating system, application, data, logs, and swap
space all share the same volume. It’s often argued that using a single
disk for everything was an issue in the old days when hard drives were
directly attached to physical servers. Today, indeed a cloud-hosted
volume’s storage space maps to multiple, geographically separated
machines. However, this is more to do with capacity than performance.

As far as the operating system is concerned, it still sees the volume as
a storage area with a finite limit. So when the volume runs out of space,
the applications in the machine will still be affected.

Take the example of a single-volume EC2 instance running a critical
database. This machine will have an operating system cache, log files,
and temporary files - all generated in the same volume where the
data files are stored. If the log files are all blown up in size (perhaps
due to an application bug sending huge trace messages to the files),
the storage may run out far quicker than anticipated. This condition
would affect the database’s availability.

The only time using a single volume or the root volume to store
everything makes sense is when the machine is hosting a small or less
critical application. It also makes it easy to snapshot the volume.

Using a Single Volume to Host Everything

A file system dictates how data in a storage volume is
stored, accessed, searched, written, or tracked. There are
different file systems for different operating systems like
Linux, UNIX, or Windows.

One file system often performs better than another for the
same workload type. Often an EC2 instance is running
multiple types of workloads, each accessing a different
volume for its data. It then becomes a question of using
different file systems for different EBS volumes attached to
the EC2 instance. More often than not, the same file system is
used in all the volumes - resulting in suboptimal
performance.

Using a Suboptimal File System

© 2021 Zesty EBook 20

Snapshots are used to backup EBS volumes. The snapshot process is usually automated: a scheduled task runs a backup program or script against
every EBS volume attached to every EC2 instance. Once completed successfully, the job usually sends a message to the operations team. It also sends
a warning if it can’t snapshot one or more volumes.

Logically, this is a perfect solution. In reality, many snapshots need precise synchronization. For example, let’s consider an application that runs on two
EC2 servers. One EC2 machine hosts the app’s database files, the other one hosts its binaries, logs, and configuration files. Throughout the day, both
configuration files and the database are updated, and both need to be in sync.

Now imagine this. The automated snapshot process backs up the database volume at the start of its job, and after a few hours, snapshots the
configuration files’ volume. Between the two snapshots, there’s a gap of a few hours - making the volume backups out-of-sync. When restored, these
volumes may not work in sync for the application to come online properly.

Here is a quick list of best practices for AWS EBS volumes. We have intentionally kept it short so you can use it as a checklist.

Recommended Best Practices

Use individual EBS volumes for different components of a system running in the EC2 instance
- based on their performance requirements, overall cost optimization, and availability needs.
For example, you can provision:

Separation of volumes for different components not only gives the flexibility to “mix-and-match”
for optimal performance and cost, it also ensures the volumes persist even if the EC2 instance
crashes, or if there’s a need to forensically analyze the volumes. It also gives the ability to encrypt
individual volumes.

The instance root volume for the OS, which is the default.

A separate, smaller HDD volume for application binaries, patches and updates. This is because
these items do not require high speed access.

One gp2 or gp3 volume for log files, traces and dumps. Like the swap volume, the general
purpose SSD ensures cost-effective but speedy write capability.

And finally, one or more separate provisioned IOPS io1 or io2 volumes to host data files. For
large databases, this can be even further broken down into two categories:

Provisioned io1 volumes for static, low-traffic, or lookup tables

Provisioned io2 or io2 block express volumes for large, transactional tables.

Another way to make this division is to allow a separate volume for transaction logs,

redo logs or write-ahead logs, and a separate volume for actual data files.

A dedicated smaller volume of gp2 or gp3 type for swap space or the Page FIle. The use of SSD
volume ensures high speed access, yet the general purpose type means costs are less than
provisioned IOPS volumes.

Storage Setup

Area

Devise an automated snapshot deletion process in line with your data retention policy. You can
use Amazon Data Lifecycle Manager for this.

Implement automated, periodic restore and mounting of EBS volumes from snapshots and
check their data consistency.

Configure EBS snapshot for all application and data volumes across all EC2 instances.

Use synchronized EBS snapshots for all volumes related to the same application, platform, or
process workflow. For EBS volumes attached to the same EC2 instance, this can be achieved with
EBS multi-volume snapshots.

Availability

EBS Best Practices

Creating Non-synchronized Snapshots

© 2021 Zesty EBook 21

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/snapshot-lifecycle.html

© 2021 Zesty EBook 22

Recommended Best Practices

Implement automated alerting for the failed EBS snapshot jobs.Monitoring

Use automated monitoring and alerting for impaired EBS volumes.

Create EBS performance monitoring dashboards in CloudWatch that can show

Volumes experiencing throttling.

Consistently under-utilized volumes.

Ensure EBS volumes are configured for encryption by default.

Implement automatic EBS encryption key rotation.

Enable encryption for existing EBS volumes with AWS-managed or customer-managed KMS keys.Security

Area

Use EBS-optimized EC2 instances (or EC2 instances with 10 GB networking)
for high-performance applications.

Use current generation EBS-optimized EC2 instance types.

Ensure the EBS snapshot restore process utilizes FSR.

Ensure the throughput capacity of the EC2 instance closely matches the throughput
capacity of its attached EBS volumes.

Choose an appropriate block size for the intended workload when formatting the
volume with a file system. For example, Oracle databases have a default block size of 8
KB. If your EBS volume hosts Oracle DBF files, it’s worthwhile to use an 8 KB block size.

Performance

Use a consistent tagging mechanism for all EBS volumes and snapshots.

Identify and remove already-attached EBS volumes that are not hosting any
data, application, or swap space.

For SSD volumes, use General Purpose instead of Provisioned IOPS unless
application performance requires otherwise.

Consider using HDD volumes for small-scale applications where high
performance isn’t important (e.g., small look-up databases, firewalls, etc.).

Create an automated process to identify and delete detached EBS volumes.

Ensure EC2 instances have the DeleteOnTermination property set to True for all
attached EBS volumes.

Cost

© 2021 Zesty EBook 23

This e-book provides a comprehensive examination of AWS
EBS, specifying its various features, benefits, and drawbacks.
We outlined the available file systems and volume types as well
as their impact on speed, throughput and availability and went
through some strategies for analyzing and optimizing storage
volumes. We described tips for cost efficient EBS utilization to
ensure users avoid overspending on EBS.

Finally, we discussed common practices you should avoid
when using EBS and some best practices to ensure you get the
most out of this popular block storage service.

Hopefully, this ebook has provided enough information for you
to have a closer look at your EBS volumes, save costs, and fine-
tune performance. Remember, Amazon is always changing its
disk prices and features. To keep up with the changes, refer
back to their documentation.

Conclusion

