< Slide 1 >

OCC SYSTEMS

Overview of Wearable Device Sensors

Walt Maclay President, Voler Systems Product Development

- Common physiological measurements
- Battery limitations
- Saving power

< Slide 3 >

Innovation examples

FitBit Activity Monitor

Elder monitor

Azumio

Bluetooth hearing aid

Game Golf

Go Key

Common physiological measurements

Body temperature

- Few good locations to measure core temperature
 - Axilla (under arm) or forehead are best locations
 - Not convenient for a wearable device
- Extremeties (eg wrist) have variable temperature
- Algorithms can partially adjust over time
- Good contact is important heat flow causes errors

Heart rate

- Measured by
 - ECG electrodes two are sufficient
 - Pulse oximeter sensing reflected
 - · Transmitted works on finger and ear
 - Pressure sensing of the pulse in the wrist
- Wrist measurement works well

Blood oxygen

- Oxygen saturation in blood
- Measured by pulse oximeter (infra-red) technology
 - Measure loss through body of 2 IR wavelengths
 - Separates changes in blood from other changes
 - Measure pulse at the same time
- Transmissive or reflective measurement
- Reflective for wrist

Respiration rate

- Number of breaths per minute
- Few good locations to measure
- Movement of chest
 - Chest strap
 - Not convenient for a wearable device except shirt
- Thoracic Impedance eliminates chest strap
- Does not work on wrist

< Slide 9 >

Motion

- The most studied and used parameter
- Step counts
- Gait analysis (illness)
- Types of motion (walking, standing, sitting)
- Dead reckoning (9-axis motion)
- Works on wrist, ankle, torso, etc.
 - Different algorithms at different locations

Blood pressure

- Measure of systolic and diastolic pressure
- Accurate measurement requires pressure cuff that is compressed and released
 - Does not work on wrist
- Pulse Transit Time measure at wrist or elsewhere
 - Currently not accurate enough

EKG / EMG / EEG

- Measure of electrical and muscle activity
- EKG measurement points have to be rather far apart
 - At least one and a half inches larger devices needed
 - More leads is better (up to 12 for standard ECG)
- EMG requires accurate placement (millimeters)
 - Measure the wrong muscle
- EEG must use electrodes on the head

Blood sugar (glucose)

- Measure of glucose level in blood sample
- Widely used
- Becoming a wearable
- Closed loop system replaces the pancreas
 - Measure and control glucose with a pump
- Attempts to not use finger tip less accurate
- Not accurate on wrist

- Common physiological measurements
- Battery limitations
- Saving power

Battery Limitations

- Slow pace of improvement
 If improved like semiconductors:
 Size of a pin head, could power your car, cost 1 cent
- Must always work around limitations
 - Long time between charging vs small size
- Battery life per charge

When will battery technology improve?

- Chemical energy storage is approaching the limit of its efficiency
- Nuclear energy is out of the question
- A lot of research being done on higher density and better safety
 - Perhaps 2 times higher density in a few years
 - Will safety suffer?

< Slide 16 >

Energy Density

Energy Density and Safety

- As energy density has increased, safety has become more of a problem
- Safety circuits are required on Lithium batteries
- Poorly designed batteries can catch fire even with safety circuit
- Shipping of Lithium batteries is restricted and regulated
 - Cells without safety circuit cannot ship by air

- Common physiological measurements
- Battery limitations
- Saving power

6 areas that impact power

- Wireless
- Displays
- Sensors
- Microprocessors
- Software

Three ways to get data into the cloud

1. Smart device directly to cloud

2. Sensor to gateway to cloud

3. Sensor to cell phone to cloud

Voler systems

Power- How much? How far?

	10 bytes/sec	1 Kbytes/sec	1 Mbytes/sec	
1 m				
	lowest power	data rate		
100 m	distance			
1 km			highest power	

All units in mW

Power- How much? How far?

	10 bytes/sec		1K bytes/sec		1 Mbytes/sec	
1 m	BLE/Zigbee LoRa Bluetooth WiFi	0.15 0.5 25 50	BLE/Zigbee Bluetooth WiFi	7.5 50 75	WiFi	300
100 m	LoRa WiFi 3G Cellular LTE Cellular	0.5 100 100 100	WiFi 3G Cellular LTE Cellular	100 120 120	WiFi LTE Cellular	400 500
1 km	LoRa 3G Cellular LTE Cellular	1 120 120	3G Cellular LTE Cellular	150 150	LTE Cellular	700

< Slide 23 >

- ✓ Wireless
- Displays
- Sensors
- Microprocessors
- Software

Display Technologies

Emerging Technology: Digital Paper (elnk)

• Nearly zero power when not changing

But:

- Not available in color (this is changing)
- Slow can't display video
- elnk kept prices high until they lost a patent fight in 2015
 - Market may expand now

< Slide 26 >

- ✓ Wireless
- ✓ Displays
- Sensors
- Microprocessors
- Software

< Slide 27 >

How much power do sensors use?

< Slide 28 >

- ✓ Wireless
- ✓ Displays
- ✓ Sensors
- Microprocessors
- Software

Microprocessor Power

- Low data rate sensor data collection: 1 to 10 mW
- Audio Compression: 10 to 100 mW
- Video Compression: 100 to 1000 mW
- Multi-processor running several Windows tasks: 5 to 50 Watts

< Slide 30 >

- ✓ Wireless
- ✓ Displays
- ✓ Sensors
- ✓ Microprocessors
- Software

Common causes of power consumption issues

- Inefficient use of the cellular & WiFi network
 - Sending small data packets
- Not putting the processor to sleep
- Keeping the display backlight on too long
- Sampling data too often
- Using high power sensors when lower power sensors are available
- Inefficient (frequent) messages from an app

SUMMARY: Total Power of the System

- Sensor + Processor + Display + Wireless
- Low: 0.01 mW
 - 3 axis accelerometer, processor asleep, no display, Bluetooth LE sends one sample every hour
 - Runs years on a coin cell
- Medium: 1 mW
 - GPS every minute, processor making decisions, LCD display, no backlight, WiFi transmits once a minute
 - Runs 2 months on one AA Alkaline battery
- High: 1000 mW
 - Cell phone, many sensors, high power processor, color LCD display with backlight, always connected to WiFi and cellular

• Runs a few hours

Latency for the Same Examples

- Low Power, 1 Hour latency
 - Bluetooth LE sends one sample every hour
- Medium Power, 1 Minute Latency
 - WiFi transmits once a minute
- High Power, Latency of milliseconds
 - Always connected to WiFi and cellular

< Slide 34 >

SUMMARY

- Common physiological measurements
- ✓ Battery limitations
- ✓ Saving power

< Slide 35 >

Walt Maclay, Voler Systems <u>Walt@volersystems.com</u>

Quality Electronic Design & Software Sensor Interfaces Wireless Motion Control Medical Devices

