Laser Science and Laser Illuminated Projection

SMPTE Webcast
October 7, 2014

Bill Beck
The Laser Guy
bill.beck@barco.com

Specific brands, products or services may be included for informational purposes only and do not represent SMPTE promotion, recommendation, or endorsement.

Views and opinions expressed during this SMPTE Webcast are those of the presenter(s) and do not necessarily reflect those of SMPTE or SMPTE Members.
Your Host

Joel E. Welch
Director of Education
SMPTE

Today’s Guest Speaker

Bill Beck
The Laser Guy
Barco
Goals of the Webcast

- Provide foundational concepts and terms by which to describe, understand and evaluate laser illuminated projectors (LIPs)
- Introduce and explain laser technology basics, laser engine architectures and LIP performance
- Introduce and define key figures of merit (FOM)
- Review current Image Quality and Operational FOMs
- Summarize current state of the art for RGB and BPP LIPs

Laser Webcast Outline

1. Introduction and Status
2. Laser Science
3. Laser Engine Architectures
4. Projector – Image Quality (IQ) Figures of Merit (FoM)
5. Projector – FoMs and 6P
6. Summary
7. Q&A
8. Glossary of Terms, Acronyms and Definitions
1. Introduction and Status

Introduction and Status

- **Commercial Laser Illuminated Projectors are here!**

 - High Brightness RGB LIPs deliver >60,000 DCI lumens
 - Premium Laser Format (PLF) theaters
 - Larger screen 3D conventional theater
 - Blue Pumped Phosphor LIPs do ~6,000 DCI lumens
 - Small theaters, typically with gain screens
Who is Selling Laser Illuminated Projectors?

- Integrated Single Projector
- Dual Projector
- Fiber Coupled Projector Head

BPP (Laser Phosphor)

2. Laser Science
What are Lasers?

Solid state components that

CONVERT ELECTRICITY INTO LIGHT

With very special Properties...

How do Lasers differ from Xenon lamps?

- High Spatial Brightness – power emanates from a very small spot as a collimated beam and diverges (spreads slowly) i.e., low *étendue*

- Lasers produce **narrow wavelengths** or bands of color - 0.1 to 2 nm and are coherent, which causes interference and speckle

- Lasers have **very long lifetimes** - 10,000 to 100,000 hours - with little decline in brightness per hour of use

- Lasers have **high conversion efficiency** - overall Electrical to Optical (E to O); no excess or unwanted wavelengths to block

10-30+ %
How is a Laser Light Source different from a Xenon Lamp?

<table>
<thead>
<tr>
<th>Attribute</th>
<th>units</th>
<th>Laser</th>
<th>Xenon Lamp</th>
</tr>
</thead>
<tbody>
<tr>
<td>E to O Conversion</td>
<td></td>
<td>Stimulated emission</td>
<td>Gas discharge; short arc creates bright “spot”</td>
</tr>
<tr>
<td></td>
<td></td>
<td>High spatial brightness</td>
<td></td>
</tr>
<tr>
<td>Output pattern</td>
<td></td>
<td>Coherent; collimated to</td>
<td>Isotropic = all directions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>moderately divergent</td>
<td>Must be focused to spot</td>
</tr>
<tr>
<td>Spectral bandwidth</td>
<td>nm</td>
<td>“Narrow” - 0.01-2</td>
<td>“Wide” - 60 - 80/per RGB Primary</td>
</tr>
<tr>
<td>étendue</td>
<td>mm²-sr</td>
<td>Very small - 0.001-1</td>
<td>High relative to laser 4-20</td>
</tr>
<tr>
<td>Lifetime</td>
<td>Hours to end of life</td>
<td>5,000 -100,000 to 80%</td>
<td>200 - 2000 to 50% power 500 - 1000 (typical)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30,000 Commercialized</td>
<td></td>
</tr>
<tr>
<td>System Efficiency</td>
<td>lumens / wall plug watt</td>
<td>5 - 8</td>
<td>2-6</td>
</tr>
</tbody>
</table>

Why use lasers?

- **BRIGHTER IMAGE** – low étendue output of lasers enables digital projector brightness levels 2-3 times that of Xenon lamps

- **BETTER IMAGE** – significant, demonstrated increases in uniformity, contrast ratio and color gamut and saturation

- **LONGER LIFETIME** – solid-state lasers hold the promise of NO LAMP CHANGES over 5-10 year life of projector

- **HIGHER EFFICIENCY** – lasers can reduce direct and indirect power consumption by 30-50%
Laser Device - Figures of Merit (FOMs)

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Figure of Merit</th>
<th>Unit of Measure</th>
<th>Range or Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Color</td>
<td>Wavelength</td>
<td>Nanometers (nm)</td>
<td>400 to 700</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>Full Width/Half Max</td>
<td>FWHM</td>
<td>0.1 to 3</td>
</tr>
<tr>
<td>Spectral Power Distribution</td>
<td>Spectral Curve</td>
<td>N/A</td>
<td>up to 30 nm</td>
</tr>
<tr>
<td>Output Power</td>
<td>Watts (CW equivalent)</td>
<td>Optical watts (W)</td>
<td>0.5 to 100+</td>
</tr>
<tr>
<td>Luminous Efficacy</td>
<td>Lumens per optical watt</td>
<td>lm/W</td>
<td>20 to 683 max</td>
</tr>
<tr>
<td>Electrical to Optical Efficiency</td>
<td>watts_{optical}/watts_{electrical}</td>
<td>%</td>
<td>3 to 30</td>
</tr>
<tr>
<td>Lifetime</td>
<td>Hours until 20% down</td>
<td>hr</td>
<td>10,000 to 40,000</td>
</tr>
<tr>
<td>Roll-off rate</td>
<td>Power redux / khour</td>
<td>%</td>
<td>0.67 to 2.5</td>
</tr>
<tr>
<td>Beam Quality</td>
<td>Divergence; roundness</td>
<td>Mrad; °; %</td>
<td>“0” to 35°</td>
</tr>
</tbody>
</table>

Laser types

- **Diodes (LD) – single emitter (SE)**
 - Edge emitters
 - Surface emitters (SEL; VCSEL;)
- **Diodes – multiple emitter (ME)**
 - Bars or lines of edge emitters (Pumps; Stacks)
 - Arrays of surface emitting lasers
 - Aggregations of SE or ME into a beam or fiber
- **“Doubled” Diode modules (SHG = Second Harmonic Generation)**
 - Diodes with SHG crystals/devices double frequency CHANGES the **COLOR**
Lasers used for Projection

- **Diodes (LD) – single emitter (SE)**
 - Edge emitters
 - Surface emitters (SEL; VCSEL)

- **RED** 635 – 660 nm
 - mW – 2W Continuous Wave = CW
 - 10-25% Wall Plug Efficiency = WPE
 - Moderate cost/W

- **GREEN** 510 - 530 nm (in development)
 - mW to 1 W CW
 - Low % WPE
 - High cost/W

- **BLUE** 440 - 470 nm
 - 1-3 W CW
 - 10-30% WPE
 - Low cost/W

- **“Doubled Diode” modules (SHG)**
 - Infrared diode, array or bar
 - Second Harmonic Generation
 - 1064nm => 532nm
 - 930nm => 465nm
 - mW – 3W (CW)
 - 5 - 8% WPE

- **Diode pumped SS and FL - IR + SHG modules**
 - Infrared 808nm array or bar pumps laser crystal => 1064nm
 - Crystal doubles frequency (SHG) 1064nm => 532nm
 - mW – 100W (CW)
 - 8 – 17% WPE
RGB Laser Wavelength Options

<table>
<thead>
<tr>
<th>Color</th>
<th>Wavelength (nm – FWHM)</th>
<th>Device Type</th>
<th>Watts per Device</th>
<th>Lumens Per watt</th>
<th>Lumens per Device</th>
<th>E to O % Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>RED</td>
<td>657 - 1</td>
<td>Diode</td>
<td>0.5 - 2</td>
<td>50</td>
<td>50 - 100</td>
<td>10 - 20 (est.)</td>
</tr>
<tr>
<td>RED</td>
<td>638 - 1</td>
<td>Diode: Bar</td>
<td>0.5 - 16</td>
<td>131</td>
<td>131 - 2096</td>
<td>10 - 30</td>
</tr>
<tr>
<td>RED</td>
<td>615 - 8</td>
<td>DPSS + OPO</td>
<td>10</td>
<td>301</td>
<td>3010</td>
<td>5</td>
</tr>
<tr>
<td>GREEN</td>
<td>550 - 0.1</td>
<td>VCSEL SHG</td>
<td>2</td>
<td>679</td>
<td>1358</td>
<td>3 - 4</td>
</tr>
<tr>
<td>GREEN</td>
<td>546 - 12</td>
<td>DPSS wide spectrum</td>
<td>20 - 50</td>
<td>671</td>
<td>>30,000</td>
<td>8 - 10</td>
</tr>
<tr>
<td>GREEN</td>
<td>532 - 0.1</td>
<td>DPSS, VCSEL, FL + SHG</td>
<td>2 - 100</td>
<td>603</td>
<td>>60,000</td>
<td>5 - 17</td>
</tr>
<tr>
<td>GREEN</td>
<td>525 - 2</td>
<td>Diode</td>
<td>1</td>
<td>542</td>
<td>542</td>
<td>8 - 12</td>
</tr>
<tr>
<td>BLUE</td>
<td>465 - 2</td>
<td>Diode</td>
<td>1.2</td>
<td>50</td>
<td>60</td>
<td>18 - 22</td>
</tr>
<tr>
<td>BLUE</td>
<td>445 - 2</td>
<td>Diode</td>
<td>3.5</td>
<td>20</td>
<td>60</td>
<td>20 - 24</td>
</tr>
</tbody>
</table>

Why RGB Wavelengths Matter...

Lumens per Laser Watt – P3 vs. Rec. 2020

<table>
<thead>
<tr>
<th>Wavelength (nm)</th>
<th>P3</th>
<th>Rec. 2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>P3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>635</td>
<td>201</td>
<td>12,267</td>
</tr>
<tr>
<td>545</td>
<td>669</td>
<td>43,361</td>
</tr>
<tr>
<td>465</td>
<td>50</td>
<td>2,728</td>
</tr>
<tr>
<td>RGB</td>
<td>366</td>
<td>50,000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wavelength (nm)</th>
<th>P3</th>
<th>Rec. 2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>630</td>
<td>181</td>
<td>14,752</td>
</tr>
<tr>
<td>532</td>
<td>603</td>
<td>42,108</td>
</tr>
<tr>
<td>615</td>
<td>367</td>
<td>3,128</td>
</tr>
<tr>
<td>RGB</td>
<td>288</td>
<td>60,000</td>
</tr>
</tbody>
</table>
Primary Selection vs. Gamut

- Narrowband primaries “on locus”
- Wider gamut and more saturated
- But higher speckle and OMF
- Longer Reds and shorter Blues are commercially available
- Shorter Green adds Magenta but cuts Yellow saturation
- Wider gamut primaries reduce luminous efficacy (lm/watt)

Primary Selection vs. Luminous Efficacy

- Luminous Efficacy = White balanced lumens / RGB watt
- Ideal is to use “native” laser primaries:
 - Rec 709: 613/550/463 nm = 362 lm/W
 - DCI P3: 615/545/465 nm = 366 lm/W
 - Rec 2020: 630/532/467 nm = 288 lm/W
- Readily available lasers: 640/532/445 nm
 - Rec 709: Raw 249 lm/W Correction reduces lm/W
 - DCI P3: Raw 261 lm/W Correction reduces lm/W
 - Rec 2020: Raw 261 lm/W Very slight reduction in lm/W
3. Laser Engine Architectures

Laser Projector Architectures

Direct Scanned laser Projection

- Laser beam
- Direct laser light projected on the screen
- Eye-Safety hazards
- Image quality challenges
- Not used in front projection applications

Laser Illuminated Projection

- Blue laser Pumped Phosphor
- Direct laser light + laser pumped phosphor
- Limited brightness

RGB Laser

- Direct RGB laser light for High Brightness
- Up to 6,000lm DCI
- 60,000 lm

Barco
Visibly yours
Lasers in the BOX or out of the BOX?

Integrated
- Simple
- Safe
- Efficiency - ~ 10-15% higher

Fiber Coupled
- Complex
- Remote source
- Modular

RGB Architectures

Free Space Aggregation

Fiber Coupled
RGB Power Quantification

- Assume Native DCI P3 Primaries 615/545/465
- Generates 366 white balanced lumens per RGB laser watt
 60,000 lumens out = ~165 RGB laser watts to the screen

- Assume readily available lasers 640/532/445
- Generates only 261 white balanced lumens per RGB laser watt
 60,000 lumens out = ~230 RGB laser watts out – after color correction

Now assume ~33% projector throughput (after laser input)

~700 RGB watt input required or around 200+ devices

BPP Architectures
Image Quality - Figures of Merit (FOMs)

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Figure of Merit</th>
<th>Unit of Measure</th>
<th>Range or Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brightness</td>
<td>White Balanced Lumens</td>
<td>lm</td>
<td>6,000 – 60,000</td>
</tr>
<tr>
<td>Sequential Contrast</td>
<td>Peak White : Full Black</td>
<td>Ratio</td>
<td>2000 - 3000:1</td>
</tr>
<tr>
<td>Speckle Contrast Ratio</td>
<td>SCR = S.D./mean</td>
<td>%</td>
<td>~2 - 20</td>
</tr>
<tr>
<td>Luminance Uniformity</td>
<td>Min / Max (Center)</td>
<td>%</td>
<td>90 - 95</td>
</tr>
<tr>
<td>Color Uniformity</td>
<td>Delta x,y</td>
<td>0.00x</td>
<td>Meets DCI</td>
</tr>
<tr>
<td>Spatial Resolution</td>
<td>1000 pixels wide</td>
<td>K</td>
<td>1 - 4</td>
</tr>
<tr>
<td>Color Space (Gamut)</td>
<td>Primary points</td>
<td>x,y</td>
<td>P3; Rec. 2020</td>
</tr>
<tr>
<td>3D systems</td>
<td></td>
<td></td>
<td>Supports all types</td>
</tr>
<tr>
<td>Stereo Contrast Ratio (6P)</td>
<td>Correct eye/incorrect</td>
<td>Ratio</td>
<td>700-1000:1</td>
</tr>
</tbody>
</table>
What is speckle?

You know it when you see it...

- Speckle is an interference pattern image artifact that occurs when highly coherent, narrow band light is used.

- Figure of merit is “Speckle Contrast Ratio” (SCR%)
 \[SCR\% = \frac{\text{Standard deviation of measured pixel intensity}}{\text{mean pixel intensity}} \]

- Though objectively measureable, level of offensiveness is subjective.
- Content, observer, visual acuity, position, screen type all impact speckle.

Single line vs. Multi/Wide-band Primaries

Narrow band RGB laser “lines” FWHM ≤ 1 nm
- Simple modeling and supply chain … but
- Massive Speckle
- Potential for “Observer Metameric Failure” (OMF)

Multiple RGB lines per primary - n x FWHM ≤ 1 nm
- Wavelength options depend on physics and availability
- Little impact on speckle if narrowband
- Unknown impact on OMF

Spectrally broadened RGB bands FWHM 10 - 40 nm
- Replicates incoherent white light
- Low speckle and OMF
- Hard to achieve with available lasers
Primary selection vs. Speckle Contrast Ratio (SCR)

- Benchmark is Xenon illumination – Incoherent and Lambertian
 - RGB pass bands for DCinema installed base ~60 nm wide
 - System f# ~2.4 (fast) to maximize angle and usable lamp output
 - SCR for Xenon ~ 1% - hard to measure
- Single wavelength, narrow line (~0.1 nm) RGB primaries SCR ~20%
 - UNWATCHABLE in Green and Red; speckle noticeable even in Blue
- Multiple emitters of the same wavelength – some reduction in SCR%
- Multiple wavelengths of different wavelengths further reduces speckle
- 6 primary 3D engines help reduce speckle further

Contrast Ratio / High Dynamic Range (HDR)

- Current DCI spec: 2000:1
- LIPs at 2300 - 3000:1
- All movies are mastered for this spec contrast level!
 - Post production reference projectors about 2000-2300:1
 - If cinema contrast is much higher -> artifact visibility
- Laser + redesigned projector optics can achieve 10,000:1
- Will require additional HDR DCP (Digital Cinema Package)
- Higher contrast typically results in
 - Lower optical efficiency
 - More speckle
5. Projector FOMs

How lasers reduce Operating Costs

- Longer lifetime at full power - > 30,000 hours vs. 500 hours

 - *Eliminates 60 or more lamp changes vs. 6 kW Lamp Projector*

- Higher projector OPTICAL throughput

- Higher wall plug efficiency - 5 - 6 lm/WPW vs. 2 - 5 for Xenon

 - *Lower Power Consumption*
Light Source Lifetime Comparisons

- **Xenon lamps**
 - 6.5 kW lamps (500 hrs @ 50% of initial brightness)
 - Blue Phosphor Projector (20k hours at 50% of initial brightness)

- **RGB Laser Projector**
 - 30k hours @ 80% initial brightness

- **RGB Laser Projector Eliminates 60 or more Xenon Lamp Replacements**

Xenon vs. Laser Efficiency Comparison

<table>
<thead>
<tr>
<th></th>
<th>Initial Brightness</th>
<th>Average Brightness</th>
<th>System Power Consumption</th>
<th>Efficiency (lm/W)</th>
<th>Consumption (W/klm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barco Xenon DP4K-32B</td>
<td>33,000 lm</td>
<td>@75% = 24,750 lm</td>
<td>7.5 kW</td>
<td>3.3 lm/W</td>
<td>303 W/klm</td>
</tr>
<tr>
<td>Barco Laser DP4K-60L</td>
<td>60,000 lm</td>
<td>@90% = 54,000 lm</td>
<td>10 kW</td>
<td>5.4 lm/W</td>
<td>185 W/klm</td>
</tr>
</tbody>
</table>

Laser DP4K-60L has:
- **64% better efficiency**
- **39% lower power consumption**
What is 6 Primary or “6P” 3D?

- With lasers, it’s possible to use 6 RGB Primaries for Color3D separation (=6P)
- Single and dual projection architectures possible (active and passive)
- In both cases, the image quality and brightness are much better than with Lamp Based Dolby or Infitec Wheels and Polarization systems.

Laser 6 Primary Architectures

- Single 6P solution
- Dual, 3P + 3P solution
6. Summary and Conclusions

- Laser Illuminate Projectors are here NOW

- Lasers DO provide consistent, higher brightness, contrast, uniformity

- Lasers DO provide substantial operating cost saving

- Laser Illuminated Cinema performance already exceeds Xenon illuminated digital projectors
Questions & Answers

Bill Beck
The Laser Guy
Barco

THANK YOU!
Bill Beck
The Laser Guy
bill.beck@barco.com

Visit www.barco.com/laser