
The authors are solely responsible for the content of this technical presentation. The technical presentation does not necessarily reflect the
official position of the Society of Motion Picture and Television Engineers (SMPTE), and its printing and distribution does not constitute an
endorsement of views which may be expressed. This technical presentation is subject to a formal peer-review process by the SMPTE
Board of Editors, upon completion of the conference. Citation of this work should state that it is a SMPTE meeting paper. EXAMPLE:
Author's Last Name, Initials. 2011. Title of Presentation, Meeting name and location.: SMPTE. For information about securing permission
to reprint or reproduce a technical presentation, please contact SMPTE at jwelch@smpte.org or 914-761-1100 (3 Barker Ave., White
Plains, NY 10601).

SMPTE Meeting Presentation

An Open Object-Based Immersive Audio Content
Format

Ton Kalker, Jean-Marc Jot
DTS, Inc. {ton.kalker,jean-marc.jot}@dts.com

Written for presentation at the
SMPTE 2013 Annual Technical Conference & Exhibition

Abstract. We introduce an open and future-proof multi-channel audio format designed for the
creation, archiving and distribution of digital media content for the cinema, broadcast and gaming
industries. The proposed format extends the existing multi-channel audio formats with the addition of
a plurality of audio object channels accompanied with positional rendering metadata. We describe
the basic concepts of the sound-field model, describe the associated file and stream format, and
report on the status of relevant standardization activities.

Keywords. Object-based audio, Immersive audio, Cinema, Broadcast, Gaming

2

1 Introduction
With the development of upcoming Ultra High Definition TV standards and the emergence of
Immersive Audio systems in movie theaters, audio technology companies and standardization
organizations (such as MPEG, ATSC and EBU) have begun developing next-generation
multichannel audio technology applicable in the cinema and broadcast industries. Currently,
multichannel audio content creation and delivery relies on assumed frontal stereo or horizontal
multi-channel surround loudspeaker playback configurations. In this paper, we describe a multi-
channel audio content creation model and format which breaks the current constraints tying the
creation format to the playback configuration while enabling a more natural listening experience
and new level of innovation in entertainment services. This is realized by adapting to linear
media creation and delivery the concept of object-based audio, previously developed for
interactive audio applications such as computer music, virtual reality and gaming systems [5][6]
[7][8].

In interactive audio applications, the need for object-based audio arises for the fact that the
audio scene description parameters are determined at playback time – including the
dynamically varying positions of virtual sound sources. These positions are represented by
geometrical coordinates in a virtual world, and the soundtrack can be generated for an arbitrary
playback configuration by real-time positional audio rendering and superposition of the audio
waveforms representing each of the sound sources [9]. A similar rendering operation is
performed by the mixing console or digital audio workstation during traditional music or movie
soundtrack production to export a recording in standard 2.0, 5.1 or 7.1 multi-channel audio
format or in one of the recently proposed 11.1 or 22.2 immersive audio formats [10]. In these
channel-based formats, however, the geometric description of the audio scene is implicitly and
inseparably captured via differences among the output signal channels, valid for a particular
assumed loudspeaker playback configuration. Adapting an original channel-based recorded
soundtrack to multiple consumer playback configurations requires producing multiple versions of
the original recording, or applying heuristic spatial audio format conversion methods that often
compromise the original audio quality.

An object-based audio content creation format affords content creators the ability to “create
once, play everywhere” and facilitates content interchange, reuse and archiving. For
consumers, the advantages of object-based audio include enabling the most faithful spatial
audio reproduction possible on the target playback system configuration, and flexibility in the
setup of multi-channel home theater sound systems. Additionally, object-based audio formats
offer additional flexibility for personalization of the content (such as dialog enhancement) and
interactivity (modifying the mix by emphasizing, relocating or replacing sound elements). For
broadcast or video-on-demand service providers, an object-based audio format enables single
inventory while catering for different delivery channels, languages, hearing or visually impaired
consumers, and listening configurations (including enhanced reproduction over headphones, in
noisy environments, or at night time).

The remainder of this document is structured as follows. In section 2, we provide a technical
overview of MDA (Multi-Dimensional Audio), an audio content authoring and interchange format
for linear media in which a soundtrack is represented as a collection of audio waveforms
accompanied by a sound scene description specified as a dynamic collection of point and
extended sound sources. We review the MDA Core specification, which defines MDA elements
and their logical relationships, and the MDA bitstream specification, which embodies a
serialization of a MDA sound scene description. In section 3, we conclude this paper with a
status update on related development and standardization activities in the cinema and
broadcast industries.

3

2 Format Description
An MDA file or stream is a self-contained object-based sound scene description, referred to as
an MDA program. It consists of a collection of audio objects, each combining an audio
waveform with attached metadata. The metadata indicates, for instance, where the object
occurs on the program timeline or where it is positioned within the sound scene (see Figure 1).
This metadata is used by an MDA renderer to map the audio object waveforms to output
loudspeakers at playback time.

Figure	
 1.	
 MDA	
 Program	
 as	
 a	
 dynamic	
 collection	
 of	
 objects.	

The description of an MDA program relies on two documents, the core specification and the
bitstream specification, respectively. The former describes the core MDA concepts and their
relationships, whereas the latter specifies how the core concepts are encoded in a bitstream.
The former document includes the description of the reference MDA renderer, defining the
semantics of an MDA program. The MDA reference render may be used during content creation
to monitor the quality of an MDA program with respect to the artistic intent. The reference MDA
renderer is based upon the well-known Vector Base Amplitude Panning principle.

In the following three sections we provide a technical overview of MDA: MDA core, MDA
bitstream and MDA Reference renderer.

2.1 MDA Core

2.1.1 MDA Program
At top level, an MDA Program consists of a single program header and zero or more entities
(see Figure 2). A header (see Figure 3) lists basic metadata for the MDA Program as a whole,
including a globally unique MDA Program identifier, sample rate and constraint sets. An MDA
entity is a hierarchical construct that specifies actual audible objects on the MDA Program
timeline.

4

Figure	
 2.	
 MDA	
 Program.	

MDA has adopted the convention that values that need to be understood globally across the
MDA ecosystem are provided by means of key-value pairs. In particular, the key part of a key
value pair is formatted as a Uniform Resource Identifier (URI) [URI], with the actual value is
defined in the appropriate name space. For example, the sample rate of a MDA Program may
be given as the URI below:

http://mda.noname/2013/core/labels/sample-rate/48000Hz,

where the actual value of 48,000Hz is defined in the MDA namespace. As URIs have a
tendency to be rather long and hard to read, MDA allows these URIs to be abbreviated. For
example, the MDA constant AudioSampleRate48000	
 is	
 an	
 MDA	
 constant	
 that	
 evaluates	

to	
 the	
 URI	
 above,	
 and	
 that	
 may	
 be	
 used	
 as	
 an	
 alternative	
 for	
 the	
 full	
 URI.	

	

Figure	
 3.	
 MDA	
 Program	
 Header.	

The constraints in a Program header are similarly formulated as a URI and allow a MDA
renderer to quickly determine whether or not the MDA Program can be processed.

The MDA Program header, like most other MDA high-level elements, allows a reference to zero
or more extensions. Extensions may hold additional application specific metadata, but for the
purpose of the core MDA specification are considered to be opaque.

2.1.2 MDA Entity
An MDA Entity is a recursive construct that specifies actual audible objects. MDA entities are
associated with an (implicit or explicit) offset and duration on the MDA Program timeline.
Metadata associated with an Entity are static for the duration of an Entity. Each Entity however
has an ID that may be used to link multiple Entities together in the scope of an MDA program,
enabling the description of objects with dynamic metadata. It is prohibited for Entities with the
same ID to overlap on the MDA Program timeline.

5

Figure	
 4.	
 MDA	
 Entity.	

An MDA Entity may be either an aggregate construct or an atomic object. The Group construct
specifies an ensemble of member Entities, all to be played out simultaneously. The offset of a
Group is defined the minimum of all the offset of its members. The duration of a Group is
defined as the duration of the minimal time window that encloses its member Entities.

A Switch construct specifies an ensemble of member Entities of which only one will be played
out. One of its members is designated as default, and will be played out unless otherwise
indicated. Offset and duration are defined as for a Group.

2.1.3 MDA Fragment
An MDA Fragment is a base class for an atomic MDA object with explicit offset and duration.

Figure	
 5.	
 MDA	
 Fragment.	

The next level of specificity defines a MonoSourceFragment by associating AudioSamples with
a fragment (see Figure 6). In the context of MDA, the type AudioSamples consists of a
reference to an actual sequence of audio samples and an offset within that sequence (see
Figure 7). In the context of an MDA bitstream, this reference may either refer to assets
embedded in the MDA bitstream or to external assets (in a ZIP file, on a server, or otherwise).
This flexibility in specifying the location of audio samples is of relevance in the context MDA for
Digital Cinema.

Figure	
 6.	
 MonoSourceFragment.	

Two optional parameters are defined for a MonoSourceFragment. The compression parameter
defines the level of Dynamic Range Compression (DRC) and the gain parameter defines an
overall gain for the audio samples.

audioEssence[1]	
 :	
 AudioSamples
compression[0..1]	
 :	
 rational	
 =	
 0
gain[0..1]	
 :	
 integer	
 =	
 0

MonoSourceFragment

Fragment

6

Figure	
 7.	
 AudioSamples.	

2.1.4 MDA ObjectFragment
An MDA ObjectFragment, often referred to as an Audio Object, extends a
MonoSourceFragment by adding (static) positional and other metadata (see Figure 8).

Figure	
 8.	
 ObjectFragment.	

The Position parameter defines the (point) position of the Audio Object in Cartesian coordinates,
with the head of listener at the origin O=(0,0,0), positive x-axis to the right, positive y-axis to the
front and positive z-axis to the ceiling. For the purpose of the current MDA specification, all
Audio Objects are assumed to be at distance 1 from the origin, essentially restricting the
Position parameter to a Direction parameter. Position may also be expressed in spherical
coordinates (azimuth, elevation and radius), where an azimuth value of 0 corresponds to the
positive y-axis and an azimuth value of 90º corresponds to the positive x-axis (see Figure 9).

assetOffset[0..1]	
 :	
 integer	
 =	
 0
assetLocator[1]	
 :	
 URI

AudioSamples

position[0..1]	
 :	
 Position	
 =	
 Position(1,0,0)
aperture[0..1]	
 :	
 real	
 =	
 0
coherent[0..1]	
 :	
 integer	
 =	
 1
renderingExceptions[0..*]	
 :	
 RenderingException
contentKind[0..1]	
 :	
 URI
divergence[0..1]	
 :	
 real	
 =	
 0

ObjectFragment

MonoSourceFragment

7

Figure	
 9.	
 MDA	
 Coordinate	
 System.	

Audio Object may also have spatial extent defined, with divergence indicating horizontal
extent and aperture indicating vertical extent. The coherence parameter indicates whether
an object is rendered diffusively (coherent=0) or coherently (coherent = 1). The
parameter contentKind indicates the kind of content, e.g. dialog
(AudioContentKindDialog).
Finally, an Audio Object may have Rendering Exception metadata attached, indicating that
within the context of a specified target Configuration the reference MDA renderer must be
overridden (see Section 2.1.6).

2.1.5 LFEFragment
An LFEFragment is a trivial extension of a MonoSourceFragment and indicates a Low
Frequency Sound source.

Figure	
 10.	
 LFEFragment.	

2.1.6 Rendering Exceptions
Rendering Exceptions are a powerful tool to better preserve artistic intent when the MDA
reference renderer is deemed insufficient. In addition, rendering exceptions may be used to
emulate a channel-based mix within an MDA Program (see Section 3.1).

LFEFragment

MonoSourceFragment

8

The targetConfigurations property (e.g. a 5.1 channel configuration) indicates the
rendering configuration to which the RenderingException instance applies. An empty
targetConfiguration property indicates that the RenderingException instance
applies to any target rendering configuration. The VBAP reference renderer must always be
configured to a particular configuration, and is therefore able to decide whether or not a
rendering exception applies (see Section 2.3.1).

Two types of rendering exceptions are currently defined, one with respect to position and one
with respect to channels. The PositionRenderingException allows the author to
indicate an alternate position for the object. The ChannelRenderingException allows the
author to explicitly specify the channels to which the object waveform is routed, listing an explicit
gain factor for one or more channels (a channel that is not listed has by convention a gain factor
equal to zero).

Figure	
 11.	
 Rendering	
 Exception.	

2.2 MDA Bitstream
An MDA bitstream is a serialized representation of an MDA Program as defined in the previous
sections. The design of the MDA bitstream closely follows the core specification, with three
additional important properties. Firstly, the bitstream is partitioned in independently decodable
units, referred to as frames. Frames may be decoded without reference to previous and future
frames. This MDA frame structure enables easy random access to any segment of an MDA
program. Secondly, and supporting the first property, the assets associated with a frame may be
(and are typically) included in a frame as an asset as an asset fragment. Thirdly, a frame is
partitioned in fragments, where each bitstream fragment corresponds to a core entity with static
metadata. Note however that within a frame metadata may change from fragment to fragment.
Also note that a bitstream fragment is not a core concept and that an MDA parser may choose
not to (and preferably does not) expose the bitstream fragment structure.

2.2.1 Packets
An MDA Bitstream consists of a recursive sequence of packets. As illustrated in Figure 12, each
packet consists of a payload preceded by a packet header, minimally identifying the nature of
the packet (Kind) and the length of the packet (Length). Using the Length property,
implementations may ignore and skip packets. In addition packet header may include a
synchronization property, enabling random access.

targetConfiguration[0..1]	
 :	
 URI

RenderingException

gains[*]	
 :	
 ChannelGain

ChannelRenderingException

position[1]	
 :	
 Position

PositionRenderingException

9

Figure	
 12.	
 MDA	
 Packet.	

2.2.2 Frames
An MDA program uses a single global time line. This timeline is partitioned in frames, which
each frame further partitioned into fragments. Correspondingly, as depicted in Figure 13, an
MDA program consists of a sequence of frame structures, each containing the metadata and
(references to) audio samples required for a specified interval (frame) within its timeline. The
(references to) audio samples are contained in an asset structure that may contain additionally
metadata pertaining to pre-processing of the audio samples (e.g. gain, DRC, and others, see
Section 2.1.3). Each frame structure contains sufficient information allowing playback to start on
any frame structure boundary without requiring access to prior or future frames. An MDA
program contains an MDA program header (Section 2.1.1), identifying the MDA program. Each
frame in an MDA bitstream represents this header as to enable independent playback.

Figure	
 13.	
 MDA	
 Bitstream	
 Structure.	

Frame Frame Frame Frame

Program	
 Entities	
 (timeline)Program
Header

10

2.2.3 Fragments

Figure	
 14.	
 Frame	
 Structure.	

As illustrated in Figure 14, frame structures are further segmented into fragment structures.
Each fragment structure contains a set of MDA entities, where entities correspond to
(aggregates of) audible components of the sound field that the MDA program is specifying
(Section 2.1.2). Fragment structures differ from frame structures in that they are not
independently decodable, relying on metadata that pertain to the whole frame. Fragment
structures are further restricted in that its metadata are constant for the duration of the frame,
e.g. the position of a point source entity may not change for the duration of a fragment.

Figure	
 15.	
 Frames,	
 Fragments	
 and	
 Assets.	

11

Frames may (and typically do) include the audio samples referred to by the entities encoded in
a fragment. This allows local retrieval of audio samples without reference to other frames. Note
however that the MDA syntax allows the entities to refer to assets that are not contained within
a frame (e.g. a ZIP file or a server).

Figure	
 16.	
 Frame	
 Time	
 Positioning.	

Frame structures and fragment structures contain sufficient metadata to position the
corresponding frame and fragment intervals on the program timeline (see Figure 16).

2.3 MDA reference Renderer
The MDA Reference renders an MDA Program on set of speakers (channels) according the
Vector Base Amplitude Panning principle [VBAP]. The two main ingredients in the MDA
reference renderer are configuration and gain calculation. Given a configuration, the MDA
reference renderer computes for each MonoSourceFragment a set of channel gain values for its
audioEssence that best preserve the artistic intent of the content creator. See Figure 17 for an
overview of the MDA reference renderer.

12

Figure	
 17.	
 MDA	
 Reference	
 Rendering.	

2.3.1 Configuration
The configuration process provides the MDA Reference renderer with the necessary information
to render MonoSourceFragments to the loudspeakers. The following information is provided, the
first four by means of a configuration file.

1. Sound Field – this corresponds to the targetConfiguration property of a
Rendering Exception, and used by the Reference Renderer to determine whether or not
to override the VBAP engine. See Section 2.1.6.

2. Normal Speakers – for each normal speaker the following information is provided:
a. Name – the name of the speaker.
b. Position – the position of the speaker on the unit sphere.
c. Mix Coefficients – MDA allows a post-processing step to render speaker output

on other speakers. Currently there are only two options allowed: either a speaker

Add	
 to	
 Correlated	

Speaker	
 Feeds

Add	
 to	
 Diffuse	
 Speaker	

Feeds

Apply	
 Decorrelation Add	
 to	
 Output	
 Speaker	
 Feeds

Apply	
 Transient	
 Removal

Fragment	
 kind?

coherent

yes

no

LFEFragment

List	
 of	
 MonoSourceFragment instances
For	
 each
instance

Render	
 LFEFragment

Dynamic	
 Range	

Reduction?

Apply	
 compression

Apply	
 gain

Render	
 ObjectFragment

ObjectFragment

yes

no

Configuration

LFE	
 exists?Apply	
 Bass	
 Management no

Add	
 to	
 LFE	
 Feed

yes

13

does not render on any other speaker, or a speaker renders completely on other
speakers. The latter case is referred to as a virtual speaker, whereas the former
is referred to as a real speaker. The mix coefficients specify the coefficients for
rendering on other speakers.

3. LFE Speakers – speakers that render low frequency effects.
4. Patches – triplets of speakers that define the operation of the VBAP engine. If T is a

triplet, let P(T) be the plane defined by T, and let H(T) be the half space bounded by
P(T) that contains the origin. Patches are defined as triplets T such that all other
speakers (not in the triplet T) lie in H(T).

5. Virtual Sources – a (dense) uniform grid of points on the unit sphere. A gain vector is
associated with each Virtual Source, specifying the gains with which a Virtual Source will
be rendered on the normal speakers. The VBAP point source renderer is used to
compute Virtual Sources (using the information in the configuration file).

2.3.2 Point Source Rendering
Point source rendering applies the principles of generalized VBAP rendering as defined in
[VBAP]. Given a point source with position S, the render process computes a set of gain values,
one gain value per normal speaker. The rendering process consist of the following steps:

1. Find the patch T such that the vector OS intersect T. Let P be the intersection point.
2. Compute the barycentric coordinates {g} of P with respect to T.
3. Normalize {g} such that P is extended to S.
4. Normalize {g} to unit L2 norm.
5. Output the gain values for {g} for the three speakers making up T. Other gain values are

set to zero.

Figure	
 18.	
 Point	
 Source	
 Rendering.	

The rendering process optionally includes post processing for diffuse and coherent rendering as
well as for transient smoothing. The specifics of these two post-processing steps are not
specified in the MDA Reference Renderer specification (see Figure 17).

2.3.3 Extended Source Rendering
To render an extended source all virtual sources in the extent are enumerated and the
associated gain values (per normal speaker) are summed. As a final step the gain values are
normalized to unit L2 norm. Post-processing is similar as for point source rendering.

S1

S2

S3
O

14

2.4 MDA Example
Figure 19 depicts a sample MDA program. It consists of 4 audio objects: LFE, FX1, FX2 and
Dialog. The LFE object starts at Program time t=0, and ends at Program time t = 2 (arbitrary
time units). The objects FX1 and FX2 represent two point source objects, starting at t=1 and
ending at t=3, each object referring to a single asset (but with different offsets for its two
fragments). The two objects are logically grouped, allowing sharing of common metadata. The
Dialog object start at time t=0 and ends at time t=2. The Dialog object is marked as dialog using
the contentKind parameter, potentially allowing special processing (e.g. dialog
enhancement).

Figure	
 19.	
 Sample	
 MDA	
 Program.	

3 MDA Considerations
In this section we explore some existing and prospective features of MDA.

3.1 Channel-based beds in MDA
It is important that MDA can peacefully coexist with channel-based audio. Fortunately, MDA is
easily able to emulate channel-based audio using the MDA concepts of Group and Rendering
Exceptions. For example, a 5.1 bed is included as an MDA group consisting of 6 elements. The

FX2	
 object

FX1	
 object

Group	
 Id=1

Dialog	
 object
ObjectFragment

ID	
 =	
 1
renderingException	
 =	
 C
assetLocator	
 =	
 AAA

ObjectFragment
ID	
 =	
 1

renderingException	
 =	
 C
assetLocator	
 =	
 AAA

ObjectFragment
ID	
 =	
 2

position	
 =	
 (1,0.1,0)
assetLocator	
 =	
 BBB

ObjectFragment
ID	
 =	
 2

position	
 =	
 (1,0,0)
assetLocator	
 =	
 BBB

LFE	
 object
LFEFragment

ID	
 =	
 4
assetLocator	
 =	
 DDD

LFEFragment
ID	
 =	
 4

assetLocator	
 =	
 DDD

LFEFragment
ID	
 =	
 4

assetLocator	
 =	

DDD

ObjectFragment
ID	
 =	
 3

position	
 =	
 (1,-­‐0.1,0)
assetLocator	
 =	
 CCC

ObjectFragment
ID	
 =	
 3

position	
 =	
 (1,0,0)
assetLocator	
 =	
 CCC

Group	
 Id=1

Asset	
 (URI	
 =	
 AAA)	

Asset	
 (URI	
 =	
 BBB)	

Asset	
 (URI	
 =	
 CCC)	

Asset	
 (URI	
 =	
 DDD)	

t	
 =	
 0 t	
 =	
 T1 t	
 =	
 T2 t	
 =	
 T3

Program	
 timeline

15

LFE channel is the bed is obviously represented by an LFEFragment. The normal channels are
each represented by an ObjectFragment. Each of these these ObjectFragments are associated
with a a Rendering Exception for a 5.1 targetConfiguration, with each exception being
configured for the appropriate channel. For example, an ObjectFragment for the left channel is
excepted with a gain value equal to 1 for the left channel and a gain value equal to 0 for all the
other channels in the 5.1 configuration.

Note: The emulation of channel-based audio in MDA has resulted in request for additional
metadata, enriching the semantics of the MDA. In particular, the addition of a groupKind
property to the group construct is currently under consideration.

3.2 MDA for digital cinema
On September 9, 2013, DCI released an DCI Object-Based Audio Addendum [4]. The
Addendum introduces a “specification for packaging, distribution and theatrical playback of
object-based motion picture D-Cinema audio content that exceeds the delivery capability of the
Digital Cinema Package (DCP) audio track file as defined in DCI’s Digital Cinema System
Specification”. The specification defines Object-Based Audio Essence (OBAE) as PCM audio
essence enriched with descriptive metadata, including temporal and spatial metadata. An OBAE
format compliant with DCI is required to be standardized by SMPTE, interoperable with OBAE
rendering systems, and generalically compatible with the Digital Cinema System Specification
(DCSS), in particular with respect to packaging and security.

A number of key companies and organizations in the Digital Cinema ecosystem have come
together to develop and integrate MDA tools and work flow from creation to delivery. Also, the
MDA format has beeb being proposed to SMPTE TC-25CSS for standardization. Because of
the work done by this MDA supporters group on tools, work flow and SMPTE standardization,
we feel confident that MDA can be offered as in the near future as an OBAE format meets the
criteria of the DCI object-based audio addendum.

3.3 MDA tools
The MDA specification is supported by an evolving set of tools, allowing creation, reading and
playback of MDA files. This toolset includes source code for packing and parsing of MDA files.
The set also includes a sample mixer tool as a plug-in for ProTools (binary) and a simple
playback engine (binary). In addition, tools are available for reframing (changing MDA bitstream
frame size), and exporting and importing of assets. These latter three tools are mainly being
used in the context of digital cinema, testing an end-to-end system from content creation, to
cinema server, to cinema processor to B-chain (see Section 3.2).

4 Conclusion
We have presented MDA, a flexible and open format for object audio. We have argued that
MDA is at the same time expressive and simple, and is able to serve as standard model for
object-based sound scenes.

5 Acknowledgement
MDA is an effort by a large number of people and organizations. MDA, and by implication this
paper, would not have been were it not for their continued involvement and support. In
particular we would like to thank our colleagues at DTS and the members of the MDA
supporters group. In particular we would like to highlight the contributions of Pierre-Anthony
Lemieux without whom MDA would not have been possible.

16

6 References

1. Pulkki, Ville, “Virtual Sound Source Positioning Using Vector Base Amplitude Panning”,

Journal of the AES, Volume 45, Issue 6, pp. 456-466, June 1997.
2. IETF RFC39886, “Uniform Resource Identifier (URI): Generic Syntax”, January 2005,

http://tools.ietf.org/html/rfc3986.
3. ISO/IEC/JTC1/SC29/WG11, “Open Object-Based Audio Master Format”, Input Document

(information) MPEG2013/M28914, April 2013, Incheon, Korea.
4. DCI, “Digital Cinema Object-Based Audio Addendum”, September 9, 2013.
5. J.-M. Jot, “Real-time Spatial Processing of Sounds for Music, Multimedia and Interactive

Human-Computer Interfaces,” ACM Multimedia Systems J. 7(1): 55-69 (1999 Jan.).
6. OpenAL cross-platform 3D audio API, www.openal.org.
7. R. Väänänen and J. Huopaniemi, “Advanced AudioBIFS: Virtual Acoustics Modeling in

MPEG-4 Scene Description,” IEEE Trans. Multimedia 6(5): 661-675 (2004 Oct.).
8. G. Potard, 3D-Audio Object-Oriented Coding, PhD thesis, Univ. of Wollongong (2006).
9. F. Rumsey, Spatial Audio (Focal Press, 2001).
10. K. Hamasaki et al., “The 22.2 Multichannel Sound System and Its Application,” 118th Conv.

Audio Eng. Soc. (2005 May).

