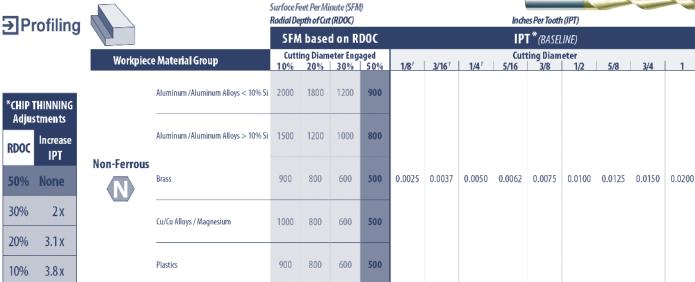
TRAVERS TECHNICAL RESOURCE GUIDE | ALUMINUM MILLING SPEEDS & FEEDS

We've compiled aluminum milling speed & feed charts from AB Tools, Korloy, Promax and Rushmore USA Tools, and created this PDF guide to put this invaluable reference readily at your fingertips. For additional recommendations, contact our technical advisors at tech@travers.com or via phone at 800.234.9985

**** **RUSHMORE** USA Milling Applications


CHECK O BLOG & F Your source videos on m SIMPLY SC

Milling Speed & Feed Recommendations For Rushmore 3 Flute Solid Carbide 37° Helix ZrN Single End Mills For Aluminum & Rushmore 3 Flute Solid Carbide 37° Helix ZrN Ball End Mills For Aluminum

		Material	Axial	Radial	SFM	1/8	3	1/4	ŀ	5/1	6	3/8	3	1/3	2	5/8	3	3/4	ł
		wateria	¥	→	→ ""	RPM	IPM	RPM	IPM	RPM	IPM	RPM	IPM	RPM	IPM	RPM	IPM	RPM	IPM
		Aluminum,	.5 x D	1 x D	600	18336	66	9168	66	7334	79	6112	79	4584	83	3667	80	3056	80
	Brass, Copper 6061, 7050,	1.25 x D	.3 x D	720	22003	99	11002	96	8801	115	7334	115	5501	121	4401	116	3667	116	
	N	7075	1.5 X D	.1 x D	1200	36672	220	18336	193	14669	231	12224	231	9168	243	7334	233	6112	233
OUT OUR SOLUTIONS RESOURCE CENTER! ce for exclusive articles &	N	High Silicon Aluminun	.5 x D	1 x D	600	18336	55	9168	55	7334	66	6112	66	4584	69	3667	67	3056	67
	articles & 4% - 13% nd machining! A242, A319,	4% - 13%	1.25 x D	.3 x D	720	22003	79	11002	79	8801	95	7334	95	5501	100	4401	96	3667	96
metalworking and machining! SCAN THIS QR CODE		1.5 X D	.1 x D	1200	36672	176	18336	165	14669	198	12224	198	9168	208	7334	200	6112	200	

Milling Speed & Feed Recommendations For Rushmore 2 Flute Solid Carbide 45° Helix Single End Mills For Aluminum

*1/4" AND SMALLER DIAMETERS: Use caution when Profiling more than 50% or Slotting more than 25% Surface Feet Per Minute (SFM) Inches Per Tooth (IPT) Radial Depth of Cut (RDOC) ⇒Slotting SFM IPT **Cutting Diameter Engaged Cutting Diameter** Workpiece Material Group 1/8^f 3/16[†] 1/4[†] 5/16 3/4 25% 50% 100% 3/8 5/8 Aluminum /Aluminum Allovs < 10% Si 2000 1500 1000 0.0012 0.0018 0.0025 0.0032 0.0037 0.0050 0.0065 0.0100 0.0075 Aluminum /Aluminum Allovs > 10% Si 1500 1200 800 **Non-Ferrous** 600 500 Brass 400 Cu/Cu Alloys / Magnesium 400 0.0037 0.0050 0.0120 0.0018 0.0025 0.0032 0.0065 0.0075 0.0100 Plastics 1200 1000 800

TRAVERS

PROMAX Premium → Milling Applications

Milling Speed & Feed Recommendations For Promax Series 109 Single End Mills For Aluminum

Series 109 - Aluminum Alloys & Non-Ferrous Materials										
						Chip	Load Pe	r Tooth [inch]	
Material Designation		SFM [ft/min]	ae max. [inch]	ap max [inch]	1/8"	3/16" 1/4" 5/16"	3/8" 7/16"	1/2" 5/8"	3/4"	1"
Aluminium	Non-Alloy	1230	0.05xø	1.4xø	0.0008	0.0016	0.002	0.0041	0.0048	0.0055
	Wrought Alloy Non-Hardened	1230	0.05xø	1.4xø	0.0008	0.0016	0.002	0.0041	0.0048	0.0055
	Wrought Alloy Hardened	1230	0.05xø	1.4xø	0.0008	0.0016	0.002	0.0041	0.0048	0.0055
	Casting Alloy < 6% Si	984	0.05xø	1.4xø	0.0008	0.0016	0.002	0.0041	0.0048	0.0055
	Casting Alloy 6-12% Si	738	0.05xø	1.4xø	0.0006	0.0008	0.0012	0.0034	0.0041	0.0048
	Casting Alloy > 6% Si	517	0.05xø	1.4xø	0.0006	0.0008	0.0012	0.0034	0.0041	0.0048
Magnesium	Wrought Alloy	492	0.05xø	1.4xø	0.0006	0.0008	0.0012	0.0034	0.0041	0.0048
	Casting Alloy	418	0.05xø	1.4xø	0.0006	0.0008	0.0012	0.0034	0.0041	0.0048
Copper	Non-Alloy	369	0.05xø	1.4xø	0.0006	0.0008	0.0012	0.0034	0.0041	0.0048
	Wrought Alloy Non-Hardened	344	0.05xø	1.4xø	0.0006	0.0008	0.0012	0.0034	0.0041	0.0048
	Wrought Alloy Hardened	271	0.05xø	1.4xø	0.0006	0.0008	0.0012	0.0034	0.0041	0.0048
	CuNi-Alloy	320	0.05xø	1.4xø	0.0006	0.0008	0.0012	0.0034	0.0041	0.0048
	CuNiZn-Alloy Long-Chipping	271	0.05xø	1.4xø	0.0006	0.0008	0.0012	0.0034	0.0041	0.0048
	CuNiZn-Alloy Short-Chipping	320	0.05xø	1.4xø	0.0006	0.0008	0.0012	0.0034	0.0041	0.0048
CuZn (Brass)	Long-Chipping	369	0.05xø	1.4xø	0.0006	0.0008	0.0012	0.0034	0.0041	0.0048
	Short-Chipping	517	0.05xø	1.4xø	0.0006	0.0008	0.0012	0.0034	0.0041	0.0048
CuSn (Bronze)	Long-Chipping	320	0.05xø	1.4xø	0.0006	0.0008	0.0012	0.0034	0.0041	0.0048
	Short-Chipping	344	0.05xø	1.4xø	0.0006	0.0008	0.0012	0.0034	0.0041	0.0048
CuAIFe (Ampco)	Long-Chipping	148	0.05xø	1.4xø	0.0006	0.0008	0.0012	0.0034	0.0041	0.0048
	Short-Chipping	172	0.05xø	1.4xø	0.0006	0.0008	0.0012	0.0034	0.0041	0.0048

Milling Speed & Feed Recommendations For Promax Series 102 Single End Mills For Aluminum Milling Speed & Feed Recommendations For Promax Series 119 Single End Mills For Aluminum

Series 102 / 119 -	Aluminum Alloys & Non-Ferrous Ma	terials								
						Chip	Load Pe	r Tooth [inch]	
Material Designation		SFM [ft/min]	ae max. [inch]	ap max [inch]	1/8"	3/16" 1/4" 5/16"	3/8" 7/16"	1/2" 5/8"	3/4"	1"
Aluminium	Non-Allov	1230	1xø	1xø	0.001	0.0017	0.0028	0.0035	0.0047	0.0055
	Wrought Alloy Non-Hardened	1230	1xø	1xø	0.001	0.0017	0.0028	0.0035	0.0047	0.0055
	Wrought Alloy Hardened	1230	1xø	1xø	0.001	0.0017	0.0028	0.0035	0.0047	0.0055
	Casting Alloy < 6% Si	984	1xø	1xø	0.001	0.0017	0.0028	0.0035	0.0047	0.0055
	Casting Alloy 6-12% Si	738	1xø	1xø	0.0008	0.0014	0.0028	0.0047	0.0067	0.0083
	Casting Alloy > 6% Si	517	1xø	1xø	0.0008	0.0014	0.0028	0.0047	0.0067	0.0083
Magnesium	Wrought Alloy	492	1xø	1xø	0.0008	0.0014	0.0028	0.0047	0.0067	0.0083
	Casting Alloy	418	1xø	1xø	0.0008	0.0014	0.0028	0.0047	0.0067	0.0083
Copper	Non-Alloy	369	1xø	1xø	0.0006	0.0011	0.0024	0.0031	0.0047	0.0055
	Wrought Alloy Non-Hardened	344	1xø	1xø	0.0006	0.0011	0.0024	0.0031	0.0047	0.0055
	Wrought Alloy Hardened	271	1xø	1xø	0.0006	0.0011	0.0024	0.0031	0.0047	0.0055
	CuNi-Alloy	320	1xø	1xø	0.0006	0.0011	0.0024	0.0031	0.0047	0.0055
	CuNiZn-Alloy Long-Chipping	271	1xø	1xø	0.0006	0.0011	0.0024	0.0031	0.0047	0.0055
	CuNiZn-Alloy Short-Chipping	320	1xø	1xø	0.0006	0.0011	0.0024	0.0031	0.0047	0.0055
CuZn (Brass)	Long-Chipping	369	1xø	1xø	0.0006	0.0011	0.0024	0.0031	0.0047	0.0055
	Short-Chipping	517	1xø	1xø	0.0006	0.0011	0.0024	0.0031	0.0047	0.0055
CuSn (Bronze)	Long-Chipping	320	1xø	1xø	0.0006	0.0011	0.0024	0.0031	0.0047	0.0055
	Short-Chipping	344	1xø	1xø	0.0006	0.0011	0.0024	0.0031	0.0047	0.0055
CuAlFe (Ampco)	Long-Chipping	148	1xø	1xø	0.0006	0.0011	0.0024	0.0031	0.0047	0.0055
	Short-Chipping	172	1xø	1xø	0.0006	0.0011	0.0024	0.0031	0.0047	0.0055

Series US376 - Aluminum Alloys & Non-Ferrous Materials										
			Chip Load Per Tooth [inch]							
Material Designation		SFM	ae max	ap max	1/8"	3/16"	3/8"	1/2"	3/4"	1"
		[ft/min]	[inch]	[inch]		1/4"	7/16"	5/8"		
						5/16"				
Aluminium	Non-Alloy	1640	0.05xø	2xø	0.0008	0.0016	0.0020	0.0024	0.0028	0.0031
	Wrought Alloy Non-Hardened	1640	0.05xø	2xø	0.0008	0.0016	0.0020	0.0024	0.0028	0.0031
	Wrought Alloy Hardened	1640	0.05xø	2xø	0.0008	0.0016	0.0020	0.0024	0.0028	0.0031
	Casting Alloy < 6% Si	1312	0.05xø	2xø	0.0008	0.0016	0.0020	0.0024	0.0028	0.0031
	Casting Alloy 6-12% Si	984	0.05xø	2xø	0.0006	0.0008	0.0012	0.0020	0.0024	0.0028
	Casting Alloy > 6% Si	689	0.05xø	2xø	0.0006	0.0008	0.0012	0.0020	0.0024	0.0028

* Feeds and speeds are starting points for overall lengths of 4" and shorter. For end mills with overal lengths of over 4", decrease the feeds and speeds

Phone: **1.800.221.0270** | Fax: **1.800.722.0703** | Web: www.travers.com

Aluminum Milling Tests

AB Tools is a US based tool manufacture out of Lincoln, CA. Their Indexable 'Shear-Hog' tool-line has built a name in the industry for their performance in aluminum and other nonferrous materials. The tool's wide pocket design, unique cutting to shank diameter ratio, high shear insert design & multiple insert radii combine for maximum MRR (metal removal rate). even on smaller foot print machines.

You'll get higher CIM with smaller cutters, (assuming you're rough milling with cutters about one inch in diameter and larger). On tests 5, 6 and 8, with full diameter cuts, the one inch gets 46 CIM, the 1-1/4 gets 42 CIM and the two inch gets 37 CIM.

You'll get higher CIM with a cut width that is about 3/4 of the cutter diameter than with a full diameter cut width, (a long accepted machinist's rule).

Compare Tests 1 versus 3 and 6 versus 7. You can get the same CIM with fewer flutes, plus reduced insert costs; see Test 8.


All tests were run on a recent model Haas VF1 based on the highest inches per minute possible with the load meter showing 100%. Haas estimates 7.5 actual spindle HP at 6500 RPM.

Cutter Dia.	
	Cut Depth
Cut Width	

Milling Speed & Feed Recommendations For AB Tools End Mills Milling Speed & Feed Recommendations For AB Tools Face Mills

Test No.	Cutter	Cutter Dia.	RPM	Cut Width	Cut Depth	IPM Feed	No. Flutes	IPT Chip	CIM
1.	SH750	.750	7500	.750	.375	150	1	.020	42
2.	*below	.750	7500	.750	.375	130	2	.008	36
3.	SH750	.750	7500	.600	.250	315	1	.042	46
4.	*below	.750	7500	.600	.250	275	2	.018	41
5.	SH100	1.0	6500	1.0	.125	370	1	.057	46
6.	SH125	1.25	6500	1.25	.125	275	2	.027	42
7.	SH125	1.25	6500	1.0	.250	375	2	.037	47
8.	SH200	2.0	6500	2.0	.250	75	2&3	.006/.004	37
	* A major l	brand soli	d carbide	e, 2 flute e	nd mill, w	ith High F	ake for a	luminum.	

TRAVERS

(A) KORLOY Pro-X Mill

Korloy Inc is a top worldwide tool manufacture that produces tooling solutions for many aluminum heavy industries such as the automobile, marine and aerospace industries. Their Pro-X Mill series is one of their most capable aluminum specific milling solutions. Some of the features of these tools include a long cutting edge, (< 0.700"), multiple radii, indents in the back of the insert to help secure the inserts during high speed machining and one of the hardest carbide grades (HO1) on the market for extra-long tool life.

Max. RPM as per Cutting Diameter

Recommended Cutting Conditions

Cutting	5000	type	6000 type				
diameter ØD(inch)	n(min⁻¹)	vc(sfm)	n(min⁻¹)	vc(sfm)			
3/4	14,000	879	-	-			
1	28,000	2,199	15,000	1,178			
1 1/4	25,000	2,513	23,000	2,312			
1 1/2	22,000	2,764	20,000	2,513			
2	20,000	3,141	18,000	2,827			
2 1/2	18,000	3,562	16,000	3,166			
3	16,000	4,021	14,000	3,518			
4	14,000	4,398	13,000	4,084			
5	13,000	5,105	11,000	4,319			

Workp	iece	Cutting Speed vc(sfm)	Feed fz(ipt)
	Rm280 < MPa	3,960	0.012
Aluminum alloy	Rm280 > MPa	3,300	0.010
Copper alloy	Long chipping	1,320	0.008
Thermo plastic	-	1,150	0.006
	Si <12%	3,300	0.010
Aluminum alloy	Si≥12%	990	0.009
Copper alloy	Short chipping	1,650	0.008
Magnesium alloy	-	1,480	0.008
Duroplastics	-	680	0.006
Magnesium alloy	Short chipping - -	1,480	0.008

* In case of actual machining, accidental insert or tool breakage could happen even under the suggested RPM. A special cover or door is necessary to prevent damage from broken insert or broken tool.

TRAVERS

TECHNICAL RESOURCE GUIDE | ALUMINUM MILLING SPEEDS & FEEDS

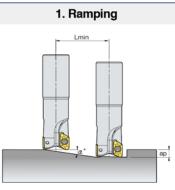
- **(A) KORLOY**
- ➔ Application Examples

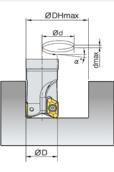
PAXSA5125HR-A

Warkstone	Cutting condition								
Workpiece	vc(sfm)	fz(ipt)	ap(inch)	ae(inch)					
A6061	4290	0.008	0.32	0.5D					

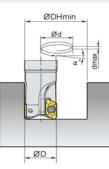
Chip evacuation and good surface roughness

Milling Speed & Feed Recommendations For Korloy Pro-X End Mill Sets Milling Speed & Feed Recommendations For Korloy Pro-X Face Mill Sets


PAXCA5200HR-A


Workpiece	Cutting condition								
	vc(sfm)	fz(ipt)	ap(inch)	ae(inch)					
A6061	4290	0.01	0.4	0.5D					

Long tool life and no built-up edge & chipping


Pro-X Mill Ramping & Helical Cutting Technical Data

2. Blind-hole helical cutting

3. Through-hole helical cutting

(inch)

Designation	an	Ram	ping		Blind-hole h	elical cutting		Through-hole helical cutting		
Designation	ØD	α°(max)	Lmin	ØDHmax	dmax	ØDHmax	dmax	ØDHmax	dmax	
PAXSA5075HR	0.75	9.1	2.47	1.264	0.008	1.185	0.007	0.988	0.006	
PAXSA5100HR	1.00	11.9	1.86	1.764	0.015	1.685	0.014	1.488	0.012	
PAXSA5125HR	1.25	9.0	2.49	2.264	0.014	2.185	0.014	1.988	0.012	
PAXSA5150HR	1.50	7.2	3.11	2.764	0.014	2.685	0.013	2.488	0.012	
PAXCA5200HR	2.00	5.2	4.36	3.764	0.013	3.685	0.013	3.488	0.012	
PAXCA5250HR	2.50	4.0	5.61	4.764	0.013	4.685	0.013	4.488	0.012	
PAXCA5300HR	3.00	3.3	6.86	5.764	0.013	5.685	0.013	5.488	0.012	
PAXCA5400HR	4.00	2.4	9.36	7.764	0.013	7.685	0.013	7.488	0.012	
PAXCA5500HR	5.00	1.9	11.86	9.764	0.013	9.685	0.013	9.488	0.012	
PAXSA6100HR	1.00	9.0	2.48	1.764	0.011	1.685	0.011	1.488	0.009	
PAXSA6125HR	1.25	6.8	3.31	2.264	0.011	2.185	0.010	1.988	0.009	
PAXSA6150HR	1.50	10.8	2.07	2.764	0.021	2.685	0.020	2.488	0.019	
PAXCA6200HR	2.00	7.7	2.91	3.764	0.020	3.685	0.020	3.488	0.019	
PAXCA6250HR	2.50	6.0	3.74	4.764	0.020	4.685	0.019	4.488	0.019	
PAXCA6300HR	3.00	4.9	4.57	5.764	0.020	5.685	0.019	5.488	0.019	
PAXCA6400HR	4.00	3.6	6.24	7.764	0.019	7.685	0.019	7.488	0.019	
PAXCA6500HR	5.00	2.9	7.91	9.764	0.019	9.685	0.019	9.488	0.019	

· Lmin : when ap=0.394inch

· Lmin : Minimum inclination cutting length α° : Max. rampig angle

ap : Depth of cut

 $Lmin = \frac{ap}{\tan \alpha^{\circ}} \text{ (inch)}$