

Pharmaceutical Applications

Perfect in high-pressure environments

Due to their construction, equipment and accessories, BE reactors are the right choice for many pharmaceutical and high- • Half-coil pipe 89 mm in diameter with a pressure applications. Numerous additional products are available from Pfaudler to satisfy all needs of pharmacology.

Glasslining

Pfauder PharmaGlass, white or blue

Supporting structure

- Legs
- Supporting ring
- Brackets

Supporting structure made of steel or stainless steel

Small radii at the nozzle (option) for small clearance volumes and ease of cleaning.

Heating/Cooling jacket

- Double-jacket design
- 10% larger heat exchange surface than specified in DIN 28128
- · Half-coil pipe 50 mm in diameter

Insulation

Made of steel/stainless steel as required by the customer, various insulating materials available

Agitator flange

- Standard design pursuant to DIN 28137-2
- · As loose flange in ultra-clean design specifically for pharmaceutical applications

Manhole cover

- With fused-in Glasslook® sight glass
- · With Fillook filling hole cover; funnel tube available separately
- · With encapsulated sight glass to DIN 28121, design EC

Cryo-Lock®

And other agitating technologies

Efficient solutions for any agitating task Cryo-Lock® agitating technique

Cryo-Lock® — the flexible agitating technique made by Pfauder. A shaft to which different turbines can be coupled quickly and easily even at different positions, depending on the process requirements. A large number of turbine shapes is available for combination:

CBT — Curved Blade Turbine

The universal agitator with a high shearing effect and radial flow

CBR — Turbine for residual amounts

In connection with an extended shaft, for agitating extremly small residual amounts. The agitating properties are comparable to Considerable increase in gas quantities those of a normal CBT turbine

FBT — Flat Blade Turbine

High shearing effect, purely radial flow

PBT — Pitched Blade Turbine

Average shearing effect, combined radial/ axial flow

TBF — Turbofoil

The efficient turbofoil agitator with high axial flow at comparatively low flow disturbance, low torque, low power input

ANC - Anchor

Anchor-type agitator with high tangential flow for highly viscous products

MXT — Maxflo Turbine

High-performance turbine for agitating substances with an elevated viscosity, or where the effect of the Turbofoil is not sufficient

GST — Gas Dispersion Turbine

for dispersion and transition regime rates compared to a disk-type agitator

Other Parts

For variable functionality

Mechanical seals

- Wet-running mechanical seal (fleXeal UF8, UF8 UC)
- Dry-running, with contact (fleXeal BF7)
- Gas film lubricated dry-running without contact (fleXeal GF7, GF7 UC)
- Mechanical seals specifically for applications in GMP-compliant production. FDA-approved materials on request. (UC)

Measuring technology

- different constructions of probes, including pH, rH, conductivity
- probes

Sampling systems

Standart and Loop systems (Flexampler)

Valves

- Outlet valves in modular design with bellows, gland with optional manual or pneumatic operating mechanism.
 Also available with temperature measurement in valve cone and proximity-type switches. With bellows in compliance with requirements of TA Luft (German Clean Air Act) and TRR.
- · Outlet valves with gland
- Outlet valves with small clearance volumes

Internals

- Flange-type baffle, also with glasslined temperature sensor
- C-baffle (concave baffle) with improved effect
- Quatro-Pipe® baffle, also available with temperature measurement and sampling system
- Immersion tubes
- · Immersion coolers

Pfaudler Fillook®

Clear insight into the process through Glasslook® sight glass, easy product sampling, safe filling using funnel tube made of stainless steel.

Pfaudler Glasslook®

The fracture-proof combination:
Sight glass in a glasslined steel mount or
directly fused into the manhole cover —
resistance to thermal shock, leakage-free,
fracture-proof, always clear sight.

Drive

- Direct drive for BE 630, BE 800 and BE 1000, 1200 mm in diameter (VSO 3)
- Belt drive for BE 1000, 1400mm in diameter (VSO 8/80)
- Other drives according to customer specification

Reactor system BE

Technical data

TYPE	BE 630	BE 800	BE 1000	BE 1000
			diam. 1400	diam. 1200
Nominal volume	630	8001	1000	1000
Total volume	861	1069	1730 I	1474
Jacket volume (double jacket)	210	250 I	280	230
Heat exchange surface	4,3 m²	5,2 m ²	5,5 m ²	$4,97 \text{m}^2$
Operating temperature	-25/+200 °C	-25/+200 °C	-25/+200 °C	-25/+200 °C
adm. operating pressure, reactor	-1/+6 bar	-1/+6 bar	-1/+6 bar	-1/+6 bar
adm. operating pressure, jacket	-1/+6 bar	-1/+6 bar	-1/+6 bar	-1/+6 bar
Total weight approx.	1600 kg	1800 kg	2800 kg	2300 kg
d_{i}	1000 mm	1000 mm	1400 mm	1200 mm
d_2	1100 mm	1100 mm	1500 mm	1300 mm
d_3	480 mm	480 mm	735 mm	480 mm
a_3	180 mm	180 mm	180 mm	180 mm
a	60 mm	60 mm	60 mm	60 mm
Residual quantity	61	61	15 I	61
h_1	1480 mm	1758 mm	1573 mm	1726 mm
h_2	90 mm	90 mm	100 mm	90 mm
h ₃	1310 mm	1590 mm	1400 mm	1560 mm
h ₄ max	1202 mm	1202 mm	1210 mm	1202 mm
h _s	_	_	525 mm	_
h ₆	169 mm	170 mm	236 mm	210 mm
h ₇	90 mm	90 mm	90 mm	90 mm
h ₈	912 mm	1140 mm	776 mm	1012 mm

The operating conditions stated in the proposal or in the confirmation of order are binding.

Nozzle pattern BE 630/800

BE 1000 diam. 1400				
	DN	α°	r,	h _o
N1	500	0	475	125
N2	100	60	575	25
N3	100	95	575	25
N5	200	135	550	50
N6	100	180	575	25
N7	200	225	550	50
N9	100	265	575	25
N10	100	300	575	25
L	100	0		
R	150	_	0	80
K	100	_	0	_

BE 1000 diam. 1200					
	DN	α°	r,	h ₉	
N1	350 x 450	0	440	125	
N2	100	67.5	500	30	
N3	100	95	500	30	
N5	200	137.5	450	60	
N6	100	180	500	30	
N7	200	222.5	450	60	
N9	100	265	500	30	
N10	100	292.5	500	30	
L	100	0			
R	125	_	0	70	
K	100	_	0	_	

BE 630/BE 800					
	DN	α°	ß	r _i	h _o
N1	320 x420	0	27	365	143
N2	100	65		380	50
N4	100	120	14	380	90
N6	150	180		380	50
N8	100	240		380	50
N10	100	295		380	50
L	100	0			
R	125	_		0	70
K	100	_		0	_

