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foreword
Apache Pulsar in Action is the missing guide that will walk you through your journey
with Apache Pulsar. It is a book that I’d recommend to anyone, from developers start-
ing to explore pub-sub messaging, to someone with messaging experience, up to
experienced Pulsar power users. 

 The Apache Pulsar project was started at Yahoo! around 2012 with the mission of
experimenting with a new architecture that would be able to solve the operational
challenges of existing messaging platforms. This was also a time when some significant
shifts in the world of data infrastructure were starting to become more visible. Appli-
cation developers started to look more and more at scalable and reliable messaging as
the core component for building the next generation of products. At the same time,
companies started to see large-scale real-time streaming data analytics as an essential
component and business advantage.

 Pulsar was designed from the ground up with the objective of bridging these two
worlds, pub-sub messaging and streaming analytics, that are too often isolated in dif-
ferent silos. We worked toward creating an infrastructure that would represent a next
generation of real-time data platforms, where one single system would be able to sup-
port all the use cases throughout the entire life cycle of data events.

 Over time, that vision has expanded further, as can be clearly seen from the wide
range of components described in this book. The project has added support for light-
weight processing with Pulsar Functions, the Pulsar IO connectors framework, support
for data schema, and many other features. What has not changed is the ultimate goal
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of creating the most scalable, flexible, and reliable platform for real-time data, and
allowing any user to process the data stored in Pulsar in the most convenient form.

 I have known and worked with this book’s author, David Kjerrumgaard, for several
years. Throughout this time, I’ve seen his passion for working with the Pulsar commu-
nity. He is always able to help users make sense of technical issues, as well as to show
them how Pulsar fits into the bigger picture of solving their data problem.

 I particularly appreciate how Pulsar in Action is able to seamlessly mix the theory
and abstract concepts with the clarity of practical step-by-step examples, and how
these examples are rooted in common use cases and messaging design patterns that
will surely resonate with many readers. There is truly something for everyone, and
everyone will be able to get acquainted with all the aspects and the possibilities that
Pulsar offers.

—MATTEO MERLI

CTO AT STREAMNATIVE

CO-CREATOR AND PMC CHAIR OF APACHE PULSAR
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preface
Back in 2012, the Yahoo! team was looking for a global, geo-replicated platform that
could stream all of Yahoo!’s messaging data between various apps such as Yahoo Mail
and Yahoo Finance. At the time, there were generally two types of systems to handle
in-motion data: message queues that handled mission-critical business events in real-
time, and streaming systems that handled scalable data pipelines at scale. But there
wasn’t a platform that provided both capabilities that Yahoo required. 

 After vetting the messaging and streaming landscape, it became clear that existing
technologies were not able to serve their needs, so the team at Yahoo! started working
on building a unified messaging and streaming platform for in-motion data named
Pulsar. After 4 years of operation across 10 datacenters processing billions of messages
per day, Yahoo! decided to open source its messaging platform under the Apache
license in 2016.

 I first encountered Pulsar in the fall of 2017. I was leading the professional services
team at Hortonworks focused on the streaming data platform known as Hortonworks
Data Flow (HDF) that comprised Apache NiFi, Kafka, and Storm. It was my job to
oversee the deployment of these technologies into a customer’s infrastructure and
help them get started developing streaming applications.

 The greatest challenge we faced when working with Kafka was helping our custom-
ers administer it properly, and specifically determining the proper number of parti-
tions for a given topic to achieve a proper balance of speed and efficiency while
allowing for future data growth. Those of you that are familiar with Kafka are painfully
aware of the fact that this seemingly simple decision has a profound impact on the
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scalability of your topics, and the process of changing this value (even from 3 to 4)
necessitates a rebalancing process that is slow and results in the rebalancing topic
being unavailable for reading or writing during the entire process.

 This rebalancing requirement was universally disliked by all the customers who
were using HDF, and rightfully so, because they saw it as a clear impediment to their
ability to scale the Kafka cluster as their data volumes grew. They knew from experi-
ence just how difficult it was to scale their messaging platform up and down. Even
worse was the fact that we could not simply “drop in” a few more nodes to add com-
puting capacity to our customer’s existing cluster without also reconfiguring the top-
ics to use them by assigning more partitions to the existing topics to have the data
redistributed onto the recently added nodes. This inability to horizontally scale out
their streaming capacity without manual (or heavily scripted) intervention was in
direct conflict with most of our customers’ desires to move their messaging platforms
to the cloud and capitalize on the elastic computing capability the cloud provides.

 That is when I discovered the Apache Pulsar platform and found its claim to be
“cloud-native” especially appealing because it addressed both scalability pain points.
While HDF had allowed my customers to get started quickly, they found it difficult to
manage and not architected to run in the cloud. I realized that Apache Pulsar was a
much better solution than what we were currently offering to our customers and tried
to convince our product team to consider replacing Kafka with Pulsar in our HDF
product. I even went so far as to write connectors that allowed it to work with the
Apache NiFi component of our stack to facilitate that adoption, but to no avail.

 When I was approached by the original developers of Apache Pulsar in January of
2018 and offered the opportunity to join a small start-up called Streamlio, I immedi-
ately jumped at the chance to work with them. Pulsar was a young project back then,
having just been placed into the Apache incubation program, and we spent the next
15 months working to get our fledgling “podling” through the incubation process and
promoted to top-level project status. 

 This was during the height of the streaming data hype, and Kafka was the domi-
nant player in the space, so naturally everyone considered the terms interchangeable.
The consensus was that Kafka was the only data-streaming platform available. I knew
better from my prior experiences and took it upon myself to relentlessly evangelize
what I knew to be a technologically superior solution—a lonely voice shouting in the
proverbial wilderness.

 By the spring of 2019, the Apache Pulsar community had experienced tremendous
growth in terms of contributors and users, but there was a profound lack of reliable
documentation on the technology. So, when the prospect of writing Apache Pulsar in
Action was first proposed to me, I immediately seized upon it as an opportunity to
address the glaring need within the Pulsar community. While I was never able to con-
vince my colleagues to join me in this endeavor, they were an invaluable source of
guidance and information throughout the process and have used this book as a means
of transferring some of their knowledge to you.
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 This book is targeted to individuals who are brand new to Pulsar, and is a combina-
tion of the information I gathered while working directly with the project founders
when they were actively developing Pulsar, along with experience gained from work-
ing directly with organizations that have adopted Apache Pulsar in production. 

 It is intended to provide guidance over the stumbling blocks and pitfalls that others
have encountered during their journeys with Pulsar. Above all, this book will give you
the confidence to develop stream processing applications and microservices employ-
ing Pulsar using the Java programming language. Even though I have chosen to use
Java for most of the code samples throughout the book due to my familiarity with the
language, I have also created a similar set of code using Python and have uploaded it to
my GitHub account for those of you who prefer coding in that language.
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about this book
Apache Pulsar in Action was written as an introduction to the stream processing world
and to help you become familiar with the terminology, semantics, and considerations
one must take when adopting the stream processing paradigm while coming from a
batch-processing background. It starts with a historical review of the evolution of mes-
saging systems over the past 40 years and shows how Pulsar sits at the top of this evolu-
tionary cycle. 

 After a brief introduction to common messaging terminology and a discussion of
the two most common message consumption patterns, it covers the architecture of
Pulsar from a physical perspective focusing on its cloud-native design, as well as from
its logical structuring of data and its support for multi-tenancy.

 The remainder of the book is focused on how you can use Pulsar’s built-in computing
platform known as Pulsar Function to develop applications using a simple API. This is
demonstrated by implementing an order-processing use case: a fictional food delivery
microservices application based solely on Pulsar Functions, complete with a delivery
time estimation machine learning model deployment.

Who should read this book
Apache Pulsar in Action is primarily intended for Java developers who have an interest in
working with streaming data, or microservice developers who are looking for an alter-
native message-based framework that can be used for event sourcing. DevOps teams
who are looking to deploy and operate Pulsar within their organizations will find this
book useful as well. One of the primary criticisms of Apache Pulsar is an overall lack of
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documentation and blog posts available online, and although I fully expect that to
change in the near future, I hope that this book will help fill that gap in the interim
and will benefit anyone wanting to learn more about stream processing in general and
Apache Pulsar in particular.

How this book is organized: A roadmap
This book consists of 12 chapters that are spread across three different parts. Part 1
starts with a basic introduction to Apache Pulsar and where it fits in the 40-year evolu-
tion of messaging systems by comparing it to and contrasting it with the various mes-
saging platforms that have come before it:

■ Chapter 1 provides a historical perspective on messaging systems and where
Apache Pulsar fits into the 40-year evolution of messaging technology. It also
previews some of Pulsar’s architectural advantages over other systems and why
you should consider using it as your single messaging platform of choice.

■ Chapter 2 covers the details of Pulsar’s multi-tiered architecture, which allows
you to dynamically scale up the storage or serving layers independently. It also
describes some of the common message consumption patterns, how they are
different from one another, and how Pulsar supports them all.

■ Chapter 3 demonstrates how to interact with Apache Pulsar from both the com-
mand line as well as by using its programming API. After completing this chap-
ter, you should be comfortable running a local instance of Apache Pulsar and
interacting with it.

Part 2 covers some of the more basic usage and features of Pulsar, including how to
perform basic messaging and how to secure your Pulsar cluster, along with more
advanced features such as the schema registry. It also introduces the Pulsar Functions
framework, including how to build, deploy, and test functions:

■ Chapter 4 introduces Pulsar’s stream native computing framework called Pulsar
Functions, provides some background on its design and configuration, and
show you how to develop, test, and deploy functions.

■ Chapter 5 introduces Pulsar’s connector framework that is designed to move
between Apache Pulsar and external storage systems, such as relational data-
bases, key-value stores, and blob storage such as S3. It teaches you how to
develop a connector in a step-by-step fashion.

■ Chapter 6 provides step-by-step details on how to secure your Pulsar cluster to
ensure that your data is secured while it is in transit and while it is at rest.

■ Chapter 7 covers Pulsar’s built-in schema registry, why it is necessary, and how it
can help simplify microservice development. We also cover the schema evolu-
tion process and how to update the schemas used inside your Pulsar Functions.

Part 3 focuses on the use of Pulsar Functions to implement microservices and demon-
strates how to implement various common microservice design patterns within Pulsar
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Functions. This section focuses on the development of a food delivery application to
make the examples more realistic and addresses more-complex use cases including
resiliency, data access, and how to use Pulsar Functions to deploy machine learning
models that can run against real-time data:

■ Chapter 8 demonstrates how to implement common messaging routing pat-
terns such as message splitting, content-based routing, and filtering. It also
shows how to implement various message transformation patterns such as value
extraction and message translation.

■ Chapter 9 stresses the importance of having resiliency built into your microser-
vices and demonstrates how to implement this inside your Java-based Pulsar
Functions with the help of the resiliency4j library. It covers various events that
can occur in an event-based program and the different patterns you can use to
insulate your services from these failure scenarios to maximize your application
uptime.

■ Chapter 10 focuses on how you can access data from a variety of external sys-
tems from inside your Pulsar functions. It demonstrates various ways of acquir-
ing information within your microservices and considerations you should take
into account in terms of latency.

■ Chapter 11 walks you through the process of deploying different machine
learning model types inside of a Pulsar function using various ML frameworks.
It also covers the very important topic of how to feed the necessary information
into the model to get an accurate prediction

■ Chapter 12 covers the use of Pulsar Functions within an edge computing envi-
ronment to perform real-time analytics on IoT data. It starts with a detailed
description of what an edge computing environment looks like and describes
the various layers of the architecture before showing how to leverage Pulsar
Functions to process the information on the edge and only forward summaries
rather than the entire dataset.

Finally, two appendices demonstrate more advanced operational scenarios including
deployment within a Kubernetes environment and geo-replication:

■ Appendix A walks you through the steps necessary to deploy Pulsar into a
Kubernetes environment using the Helm charts that are provided as part of the
open source project. It also covers how to modify these charts to suit your envi-
ronment.

■ Appendix B describes Pulsar’s built-in geo-replication mechanism and some of
the common replication patterns that are used in production today. It then
walks you through the process of implementing one of these geo-replication
patterns in Pulsar.
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About the code
This book contains many examples of source code both in numbered listings and in
line with normal text. In both cases, source code is formatted in a fixed-width font
like this to separate it from ordinary text. Sometimes code is also in bold to high-
light code that has changed from previous steps in the chapter, such as when a new
feature adds to an existing line of code. 

 In many cases, the original source code has been reformatted; we’ve added line
breaks and reworked indentation to accommodate the available page space in the
book. In rare cases, even this was not enough, and listings include line-continuation
markers (➥). Additionally, comments in the source code have often been removed
from the listings when the code is described in the text. Code annotations accompany
many of the listings, highlighting important concepts.

 This book is first and foremost a programming book designed to be used as a
hands-on guide for learning how to develop microservices using Pulsar Functions.
Therefore, I have provided multiple source code repositories that I often refer to
throughout the course of the book. I encourage you to download the code from the
publisher’s website at https://www.manning.com/books/apache-pulsar-in-action, or
from my personal GitHub account:

■ This GitHub repository contains the code examples for chapters 3 through 6 as
well as chapter 8: https://github.com/david-streamlio/pulsar-in-action

■ The code for the food delivery microservices application can be found in the
following GitHub repository: https://github.com/david-streamlio/GottaEat

■ The code for the IoT Analytics application discussed in Chapter 12 can be
found here: https://github.com/david-streamlio/Pulsar-Edge-Analytics

■ For those of you looking for Python-based examples, you can find them in the fol-
lowing repository: https://github.com/david-streamlio/pulsar-in-action-python

Other online resources
Need additional help?

■ The Apache Pulsar project website, https://pulsar.apache.org, is a good source
of information about the configuration settings of various components of the
Apache Pulsar software, as well as various cookbooks on how to implement spe-
cific features of the software, and it will have the most current information.

■ The Apache Pulsar Slack channel, apache-pulsar.slack.com, is an active forum
where members of the Apache Pulsar community from around the world meet
to exchange advice, share best practices, and provide troubleshooting advice to
people who are experiencing problems with Pulsar. It is a great place to go for
advice if you get stuck.

■ In my current capacity as a Developer Advocate, I will continue to develop addi-
tional educational content including blog posts and code examples that will be
made readily available online at my company’s website, streamnative.io.

https://www.manning.com/books/apache-pulsar-in-action
https://github.com/david-streamlio/pulsar-in-action
https://github.com/david-streamlio/GottaEat
https://github.com/david-streamlio/Pulsar-Edge-Analytics
https://github.com/david-streamlio/pulsar-in-action-python
https://pulsar.apache.org
https://streamnative.io/
https://apache-pulsar.slack.com/
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liveBook discussion forum
Purchase of Apache Pulsar in Action includes free access to a private web forum run by
Manning Publications where you can make comments about the book, ask technical
questions, and receive help from the author and from other users. To access the forum,
go to https://livebook.manning.com/#!/book/apache-pulsar-in-action/discussion. You
can also learn more about Manning’s forums and the rules of conduct at https://
livebook.manning.com/#!/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of
the author, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest you try asking the author some challenging questions lest his interest stray! The
forum and the archives of previous discussions will be accessible from the publisher’s
website as long as the book is in print.

https://livebook.manning.com/#!/book/apache-pulsar-in-action/discussion
https://livebook.manning.com/#!/discussion
https://livebook.manning.com/#!/discussion
https://livebook.manning.com/#!/discussion
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about the cover illustration
The figure on the cover of Apache Pulsar in Action is captioned “Cosaque,” or a Cossack
man. The illustration is taken from a collection of dress costumes from various coun-
tries by Jacques Grasset de Saint-Sauveur (1757–1810), titled Costumes civils actuels de
tous les peuples connus, published in France in 1788. Each illustration is finely drawn
and colored by hand. The rich variety of Grasset de Saint-Sauveur’s collection reminds
us vividly of how culturally apart the world’s towns and regions were just 200 years ago.
Isolated from each other, people spoke different dialects and languages. In the streets
or in the countryside, it was easy to identify where they lived and what their trade or
station in life was just by their dress.

 The way we dress has changed since then and the diversity by region, so rich at the
time, has faded away. It is now hard to tell apart the inhabitants of different conti-
nents, let alone different towns, regions, or countries. Perhaps we have traded cultural
diversity for a more varied personal life—certainly for a more varied and fast-paced
technological life.

 At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
Grasset de Saint-Sauveur’s pictures.



Part 1

Getting started
 with Apache Pulsar

Enterprise messaging systems (EMS) are designed to promote loosely cou-
pled architectures that allow geographically distributed systems to communicate
with one another by exchanging messages via a simple API that supports two basic
operations: publish a message and subscribe to a topic (read messages). Over the
course of their 40+ year history, enterprise messaging systems have given rise to
several important distributed software architectural styles, including

 Remote-procedure-call (RPC) programming, using technologies such as
COBRA and Amazon Web Services, which enables programs developed in
different languages to directly interact with one another.

 Messaging-oriented middleware (MOM) programming for enterprise
application integration, as exemplified by Apache Camel, which allows
different systems to exchange information using a common message for-
mat using XML or a similar self-describing format.

 Service-oriented-architecture (SOA), which promotes a modular
programming-by-contract style that allowed applications to be composed
of services that were combined in a specific way to perform the necessary
business logic.

 Event-driven-architecture (EDA), which promotes the production and
detection of and reaction to individual changes in state, referred to as events,
and writing code that detects and reacts to these individual events. This style
was adopted in part to address the need to process continuous streams of
internet-scale data, such as server logs and digital events like clickstreams.
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The EMS plays a key role in each of these architectural styles, as it serves as the under-
lying technology that allows these distributed components to communicate with one
another by storing the intermediate messages and distributing to all the intended con-
sumers in a timely manner. The key differentiator between communication via an
EMS and some other network-only-based communication mechanisms is that an EMS
is designed to guarantee message delivery. If an event is published to an EMS, it will be
stored and forwarded to all the intended recipients, as opposed to a HTTP-based
inter-microservices call that can be lost in the event of a network failure.

 These retained messages on an EMS have also proven to be valuable sources of
information for organizations, which they can analyze to extract more business value.
Consider the treasure trove of information on customer behavior that a company’s
click stream provides them. Processing these types of data sources is referred to as
stream processing because you are literally processing an unbounded stream of data.
This is why there is great interest in processing these streams with analytical tools,
such as Apache Flink or Spark.

 The first part of this book provides an evolutionary overview of the EMS with a focus
on the core capabilities that were added at each evolutionary step. Having this back-
ground will help you better understand how various messaging systems compare with
one another by knowing each generation’s strengths and weaknesses and the capabili-
ties the next generation added along the way. At the end, I hope you understand why
Apache Pulsar is an evolutionary step forward in the EMS lineage and worthy of your
consideration as a critical piece of your company’s infrastructure.

 Chapter 1 provides a basic introduction to Apache Pulsar and where it fits in the
40-year evolution of messaging systems by comparing it to and contrasting it with the
various messaging platforms that have come before it. Next, chapter 2 dives into the
details of Pulsar’s physical architecture and how its multitiered architecture allows its
storage and computing layers to scale independently of one another. It also describes
some of the common message consumption patterns, how they are different from one
another, and how Pulsar supports them all. Finally, chapter 3 demonstrates how to
interact with Apache Pulsar from both the command line as well as by using its pro-
gramming API. After completing this chapter, you should be comfortable running a
local instance of Apache Pulsar and interacting with it.



3

Introduction
 to Apache Pulsar

Developed by Yahoo! in 2013, Pulsar was first open sourced in 2016, and only 15
months after joining the Apache Software Foundation’s incubation program, it
graduated to top-level project status. Apache Pulsar was designed from the ground
up to address the gaps in current open source messaging systems, such as multi-
tenancy, geo-replication, and strong durability guarantees.

This chapter covers
 The evolution of the enterprise messaging system

 A comparison of Apache Pulsar to existing 
enterprise messaging systems 

 How Pulsar’s segment-centric storage differs from 
the partition-centric storage model used in 
Apache Kafka

 Real-world use cases where Pulsar is used for 
stream processing, and why you should consider 
using Apache Pulsar
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 The Apache Pulsar site describes it as a distributed pub–sub messaging system that
provides very low publish and end-to-end latency, guaranteed message delivery, zero
data loss, and a serverless, lightweight computing framework for stream data process-
ing. Apache Pulsar provides three key capabilities for processing large data sets:

 Real-time messaging—Enables geographically distributed applications and sys-
tems to communicate with one another in an asynchronous manner by
exchanging messages. Pulsar’s goal is to provide this capability to the broadest
audience of clients via support for multiple programming languages and binary
messaging protocols.

 Real-time compute—Provides the ability to perform user-defined computations
on these messages inside of Pulsar itself and without the need for an external
computational system to perform basic transformational operations, such as
data enrichment, filtering, and aggregations.

 Scalable storage—Pulsar’s independent storage layer and support for tiered stor-
age enable the retention of your message data for as long as you need. There is
no physical limitation on the amount of data that can be retained and accessed
by Pulsar.

1.1 Enterprise messaging systems
Messaging is a broad term that is used to describe the routing of data between produc-
ers and consumers. Consequently, there are several different technologies and proto-
cols that have evolved over the years that provide this capability. Most people are
familiar with messaging systems such as email, text messaging, and instant messaging
applications, including WhatsApp and Facebook Messenger. Messaging systems within
this category are designed to transmit text data and images over the internet between
two or more parties. More-advanced instant messaging systems support Voice over IP
(VoIP) and video chat capabilities as well. All of these systems were designed to sup-
port person-to-person communication over ad hoc channels. 

 Another category of messaging system that people are already familiar with is video
on demand streaming services, such as Netflix or Hulu, that stream video content to
multiple subscribers simultaneously. These video streaming services are examples of
one-way broadcast (one message to many consumers) transmissions of data to con-
sumers that subscribe to an existing channel in order to receive the content. While
these types of applications might be what comes to mind when using the terms messag-
ing systems or streaming, for the purposes of this book, we will be focusing on enterprise
messaging systems.

 An enterprise messaging system (EMS) is the software that provides the implementation
of various messaging protocols, such as data distribution service (DDS), advanced mes-
sage queuing protocol (AMQP), Microsoft message queuing (MSMQ), and others.
These protocols support the sending and receiving of messages between distributed sys-
tems and applications in an asynchronous fashion. However, asynchronous communi-
cation wasn’t always an option, particularly during the earliest days of distributed
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computing when both client/server and remote procedure call (RPC) architectures
were the dominant approach. Prime examples of RPC were the simple object access
protocol (SOAP) and representational state transfer (REST) based web services that
interacted with one another through fixed endpoints. Within both of these styles, when
a process wanted to interact with a remote service, it needed to first determine the ser-
vice’s remote location via a discovery service and then invoke the desired method
remotely, using the proper parameters and types, as shown in figure 1.1. 

The calling application would then have to wait for the called procedure to return
before it could continue processing. The synchronous nature of these architectures
made applications based upon them inherently slow. In addition, there was the possi-
bility that the remote service was unavailable for a period of time, which would
require the application developer to use defensive programming techniques to iden-
tify this condition and react accordingly.

 Unlike the point-to-point communication channels used in RPC programming,
where you had to wait for the procedure calls to provide a response, an EMS allows
remote applications and services to communicate with one another via an intermedi-
ate service rather than directly with one another. Rather than having to establish a
direct network communication channel between the calling/receiving applications
over which the parameters are exchanged, an EMS can be used to retain these param-
eters in message form, and they are guaranteed to be delivered to the intended recip-
ient for processing. This allows the caller to send its request asynchronously and await
a response from the service they were trying to invoke. It also allows the service to
communicate its response back in an asynchronous manner as well by publishing its
result to the EMS for eventual delivery to the original caller. This decoupling
promotes asynchronous application development by providing a standardized,
reliable intra-component communication channel that serves as a persistent buffer
for handling data, even when some of the components are offline, as you can see in
figure 1.2.

 An EMS promotes loosely coupled architectures by allowing independently devel-
oped software components that are distributed across different systems to communi-
cate with one another via structured messages. These message schemas are usually
defined in language-neutral formats, such as XML, JSON, or Avro IDL, which allows

Application A

method A {

   ...  

   int result = ServiceB.methodB(x,y,z);

    ...

}

Service B

method B(int x, float y, String z) {

   ...  

   return value;  

}

Network

Figure 1.1 Within an RPC architecture, an application invokes a procedure on a service that is running on a 
different host and must wait for that procedure call to return before it can continue processing.
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the components to be developed in any programming language that supports those
formats.

1.1.1 Key capabilities

Now that we have introduced the concept of enterprise message systems and provided
some context for the types of problems they have been used to solve, let’s further
refine the definition of what an EMS is, based upon the capabilities it provides.

ASYNCHRONOUS COMMUNICATION

Messaging systems allow services and applications to communicate with one another in
a non-blocking manner, meaning that the message sender and receiver are not required
to interact with the messaging system (or one another) at the same time. A messaging
system will retain the messages until all of the intended recipients consume it.

MESSAGE RETENTION

Unlike network-based messaging in which the messages only exist on the network,
such as RPC, messages published to a messaging system are retained on disk until they
are delivered. Undelivered messages can be held for hours, days, or even weeks, and
most messaging systems allow you to specify the retention policy. 

ACKNOWLEDGMENT

Messaging systems are required to retain messages until all of the intended recipients
receive it; therefore, a mechanism by which the message consumers can acknowledge
the successful delivery and processing of the message is required. This allows the mes-
saging system to purge all successfully delivered messages and to retry message deliv-
ery to those consumers who have not yet received it. 

MESSAGE CONSUMPTION

Obviously, a messaging system isn’t particularly useful if it doesn’t provide a mecha-
nism by which the intended recipients can consume messages. First and foremost, an

Service B

EMS

Application A

method A {
   ...  
   ems.send("serviceB-in",
                 new message(x,y,z));
    ...
   msg = ems.receive("serviceB-out");
   int result = msg.getValue();
}

Service B

method B() {
   msg = ems.recevie("serviceB-in");

   ems.publish("serviceB-out", value);  
}

Results

Figure 1.2 An EMS allows distributed applications and services to exchange information in an asynchronous 
fashion.
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EMS must guarantee that all the messages it receives get delivered. Oftentimes, a mes-
sage might be intended for multiple consumers, and the EMS must maintain the
information along with which messages have been delivered and to whom.

1.2 Message consumption patterns
With an EMS, you have the option of publishing messages to either a topic or a queue,
and there are fundamental differences between the two. A topic supports multiple
concurrent consumers of the same message. Any message published to a topic is auto-
matically broadcast to all of the consumers who have subscribed to the topic. Any num-
ber of consumers can subscribe to a topic in order to receive the information being
sent—like any number of users can subscribe to Netflix and receive their streaming
content.

1.2.1 Publish–subscribe messaging

In publish and subscribe messaging, producers publish messages to named channels,
known as topics. Consumers can then subscribe to those topics to receive the incoming
messages. A publish–subscribe (pub–sub) message channel receives incoming mes-
sages from multiple producers and stores them in the exact order that they arrive.
However, it differs from message queuing on the consumption side because it sup-
ports multiple consumers receiving each message in a topic via a subscription mecha-
nism, as shown below in figure 1.3. 

Publish–subscribe messaging systems are ideally suited for use cases that require mul-
tiple consumers to receive each message or those in which the order in which the mes-
sages are received and processed is crucial for maintaining a correct system state.
Consider the case of a stock price service that can be used by a large number of sys-
tems. Not only is it important that these services receive all the messages, but it is also
equally important that the price changes arrive in the correct order.

1.2.2 Message queuing

Queues, on the other hand, provide first in, first out (FIFO) message delivery seman-
tics to one or more competing consumers, as shown in figure 1.4. With queues, the
messages are delivered in the order they are received, and only one message con-
sumer receives and processes an individual message, rather than all of them. These

Mn M1M2M3. . .

Subscription 1

Subscription 2

Subscription N

.
.

.

M0

Topic

M0

M0

Figure 1.3 With pub–sub message 
consumption, each message is delivered 
to each and every subscription that has 
been established on the topic. In this 
case, message M0 was delivered to 
subscriptions through N inclusive.
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are perfect for queuing up messages that represent events that trigger some work to
be performed, such as orders into a fulfillment center for dispatch. In this scenario,
you want each order processed just once. 

 Message queues can easily support higher rates of consumption by scaling up the
number of consumers in the event of a high number of backlogged messages. To
ensure that a message is processed exactly once, each message must be removed from
the queue after it has been successfully processed and acknowledged by the consumer.
Due to its exactly-once processing guarantees, message queuing is ideal for work
queue use cases.

In the event of consumer failures (meaning no acknowledgment is received within a
specified timeframe), the message will be resent to another consumer. In such a sce-
nario, the message will most likely be processed out of order. Therefore, message
queues are well suited for use cases where it is critical that each message is processed
exactly once, but the order in which the messages are processed is not important. 

1.3 The evolution of messaging systems
Now that we have clearly defined what constitutes an EMS along with the core capabil-
ities it provides, I would like to provide a brief historical review of messaging systems
and how they have evolved over the years. Messaging systems have been around for
decades and have been effectively used within many organizations, so Apache Pulsar
isn’t some brand-new technology that emerged on the scene but rather another step
in the evolution of the messaging system. By providing some historical context, my
hope is that you will be able to understand how Pulsar compares to existing messaging
systems.

1.3.1 Generic messaging systems

Before I jump into specific messaging systems, I wanted to present a simplified repre-
sentation of a messaging system in order to highlight the underlying components that
all messaging systems have. Identifying these core features will provide a basis for com-
parison between messaging systems over time. 

 
 
 

Mn M3M4M5. . .

Consumer 1

Consumer 2

Consumer N
.

.
.

M0

M1

M2

Queue

Figure 1.4 With queue-based message 
consumption, each message is delivered to 
exactly one consumer. In this case, message 
M0 was consumed by consumer 1, M1 by 
consumer 2, etc.
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 As you can see in figure 1.5, every messaging sys-
tem consists of two primary layers, each with its own
specific responsibilities that we will explore next.
We will examine the evolution of messaging systems
across each of these layers in order to properly cate-
gorize and compare different messaging systems,
including Apache Pulsar.

SERVING LAYER

The serving layer is a conceptual layer within an
EMS that interacts directly with the message pro-
ducers and consumers. Its primary purpose is to
accept incoming messages and route them to one
or more destinations. Therefore, it communicates
via one or more of the supported messaging proto-
cols, such as DDS, AMQP, or MSMQ. Consequently, this layer is heavily dependent on
network bandwidth for communication and CPU for message protocol translation.

STORAGE LAYER

The storage layer is the conceptual layer within an EMS that is responsible for the
persistence and retrieval of the messages. It interacts directly with the serving layer to
provide the requested messages and is responsible for retaining the proper order of
the messages. Consequently, this layer is heavily dependent on the disk for message
storage.

1.3.2 Message-oriented middleware

The first category of messaging systems is often referred to as message-oriented mid-
dleware (MOM), which was designed to provide inter-process communication and
application integration between distributed systems running on different networks
and operating systems. One of the most prominent MOM implementations was IBM
WebSphere MQ, which debuted in 1993.

 The earliest implementations were designed to be deployed on a single machine
that was often located deep within the company’s datacenter. Not only was this a single
point of failure, it also meant that the scalability of the system was limited to the physi-
cal hardware capacity of the host machine because this single server was responsible
for handling all client requests and storing all messages, as shown in figure 1.6. The
number of concurrent producers and consumers these single-server MOM systems
could serve was limited by the bandwidth of the network card, and the storage capac-
ity was limited by the physical disk on the machine. 

 
 
 
 

Producer Consumer

Serving layer

Storage layer

Figure 1.5 Every messaging 
system can be separated into two 
distinct architectural layers.
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To be fair, these limitations were not limited to just IBM, but are rather a limitation of
all messaging systems that were designed to be hosted on a single machine, including
RabbitMQ and RocketMQ, among many others. In fact, this limitation wasn’t limited
to just messaging systems of this era, but rather was pervasive across all types of enter-
prise software that were designed to run on one physical host.

CLUSTERING

Eventually these scalability issues were addressed though the addition of clustering
capabilities to these single-server MOM systems. This allowed multiple single-service
instances to share the processing of the messages and provide some load balancing, as
shown in figure 1.7. Even though the MOM was clustered, in reality it just meant that
each single-service instance was responsible for serving and storing messages for a sub-
set of all the topics. A similar approach, called sharding, was taken by relational data-
bases during this period to address this scalability issue.

MOM server All topics

Producer Consumer

Figure 1.6 Message-oriented middleware was 
designed to be hosted on a single server and 
therefore hosted all of the message topics and 
handled requests from all clients.

Server-0 Server-1 Server-N

Load balancer

Topics A–F Topics G–J Topics W–Z

. . .

Producer Consumer

Figure 1.7 Clustering allowed the load to be spread across multiple servers instead of just 
one. Each server in the cluster was responsible for handling only a portion of the topics.
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In the event of topic “hot-spots,” the unlucky server assigned that particular topic
could still become a bottleneck or potentially run out of storage capacity as well. In
the event that any one of these servers in the cluster were to fail, it would take all of
the topics it was serving down with it. While this did minimize the impact of the failure
on the cluster as a whole (i.e., it continued to run) it was a single point of failure for
the particular topics/queues it was serving.

 This limitation required organizations to meticulously monitor their message dis-
tribution in order to align their topic distribution to match their underlying physical
hardware and ensure that the load was evenly distributed across the cluster. Even
then, there was still the possibility that a single topic could be problematic. Consider
the scenario where you work for a major financial institution, and you want a single
topic to store all the trade information for a particular stock and provide this informa-
tion to all the trade desk applications within your organization. The sheer number of
consumers and volume of data for this one topic could easily overwhelm a single
server that was dedicated to serving just that topic. What was needed in such a sce-
nario was the ability to distribute the load of a single topic across multiple machines,
which, as we shall see, is exactly what distributed messaging systems do.

1.3.3 Enterprise service bus

Enterprise service buses (ESB) emerged during the early part of this century when
XML was the preferred message format used for implementing service-oriented
architecture (SOA) applications using SOAP-based web services. The core concept of
ESBs was the message bus, as shown in figure 1.8, which served as a communication
channel between all applications and services. This centralized architecture is in direct
contrast to the point-to-point integration previously used by other message-oriented
middleware. 

Message bus

Service A

Application B

Application C

Figure 1.8 The core concept of ESBs is the use of a message bus in order to eliminate 
the need for point-to-point communication. Service A merely publishes its message to the 
bus, and it is automatically routed to applications B and C.
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With an ESB, each application or service would send and receive all its messages over
a single communication channel, rather than having to specify the specific topic
names they wanted to publish and consume from. Each application would register
itself with the ESB and specify a set of rules used to identify which messages it was
interested in, and the ESB would handle all of the logic necessary to dynamically
route messages from the bus that matched those rules. Similarly, each service was no
longer required to know the intended target(s) of its messages beforehand and could
simply publish its messages to the bus and allow it to route the messages. 

 Consider the scenario where you have a large XML document that contains hun-
dreds of individual line items within a single customer order, and you want to route
only a subset of those items to a service based upon some criteria within the message
itself (e.g., by product category or department). An ESB provided the capability to
extract those individual messages (based on the results of an XQuery) and route them
to different consumers based on the content of the message itself. 

 In addition to these dynamic routing capabilities, ESBs also took the first evolu-
tionary step down the road of stream processing by emphasizing the capabilities to pro-
cess the messages inside the messaging system itself, rather than having the
consuming applications perform this task. Most ESBs provided message transforma-
tion services, often via XSLT or XQuery, which handled the translation of message for-
mats between the sending and receiving services. They also provided message
enrichment and processing capabilities into the message system itself, which up until
that point had been performed by the applications receiving the messages. This was a
fundamentally new way of thinking about messaging systems that had previously been
used almost exclusively as a transportation mechanism. 

 One could argue that the ESB was the first category of EMS to introduce a third
layer to the basic architecture of messaging systems, as shown in figure 1.9. In fact,
today most modern ESBs support more advanced computing capabilities, including
process choreography for managing business process flows, complex event processing
for event correlation and pattern matching, and out-of-the-box implementations of
several enterprise integration patterns.

Producer Consumer

Serving layer

Storage layer

Compute layer

• Dynamic routing
• Transformation (often via XSLT or XQuery)
• Message enrichment from other sources
• Message processing

Figure 1.9 The ESB’s emphasis on dynamic routing and 
message processing represented the first time stream 
processing capabilities were added to a messaging 
system. This introduced a whole new architectural layer 
to the base messaging system architecture.
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The ESB’s other significant contribution to the evolution of the messaging system was
its focus on integration with external systems, which forced messaging systems to sup-
port a wide variety of non-messaging protocols for the first time. While ESBs still fully
support AMQP and other pub–sub messaging protocols, a key differentiator of ESB
was its ability to move data onto and off of the bus from non-message-oriented sys-
tems, such as email, databases, and other third-party systems. In order to do this, ESBs
provided software development kits (SDKs) that allowed developers to implement
their own adapters to integrate with their system of choice.

As you can see in figure 1.10, this allowed data to be more readily exchanged between
systems, which simplified the integration of a variety of systems. In this role, the ESB
served as both the message-passing infrastructure as well as the mediator between the
systems that provided the protocol transformation.

 While ESBs undoubtedly pushed the EMS forward with these innovations and fea-
tures and are still very popular today, they are centralized systems that are designed to
be deployed on a single host. Consequently, they suffer from the same scalability
issues as their MOM predecessors. 

1.3.4 Distributed messaging systems

A distributed system can be described as a collection of computers working together to
provide a service or feature, such as a filesystem, key-value store, or database, that acts
as though they are running on a single computer to the end user. That is to say, the end
user isn’t aware of the fact that the service is being provided by a collection of machines
working together. Distributed systems have a shared state, operate concurrently, and

Message bus

Analytics 
service

Database

Third-party
system

Custom 
application

Figure 1.10 ESBs supported the integration of non-message-based systems into the 
message bus, thereby expanding the messaging capabilities beyond applications and 
into third-party applications, such as databases.
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are able to tolerate hardware failures without affecting the availability of the system
as a whole.

 When the distributed computing paradigm started becoming widely adopted, as
popularized by the Hadoop computing framework, the single-machine constraint was
lifted. This ushered in an era where new systems were developed that distributed the
processing and storage across multiple machines. One of the biggest benefits of dis-
tributed computing is the ability to scale the system horizontally, simply by adding new
machines to the system. Unlike their non-distributed predecessors that were con-
strained to the physical hardware capacity of a single machine, these newly developed
systems could now leverage the resources from hundreds of machines easily and cost
effectively.

 As you can see in figure 1.11, messaging systems, just like databases and computa-
tion frameworks, have also made the transition to the distributed computing para-
digm as well. Newer messaging systems, with Apache Kafka being the first and, more
recently, Apache Pulsar, have adopted the distributed computing model in order to
provide the scalability and performance required by modern enterprises. 

Within a distributed messaging system, the contents of a single topic are distributed
across multiple machines in order to provide horizontally scalable storage at the mes-
sage layer, which is something that was not possible with previous messaging systems.
Distributing the data across several nodes in the cluster also provides several advan-
tages, including redundancy and high availability of the data, increased storage capac-
ity for messages, increased message throughput due to the increased number of
message brokers, and the elimination of a single point of failure within the system.

 
 
 

Serving layer

Storage layer

Node-0

Serving layer

Storage layer

Node-1

Serving layer

Storage layer

Node-N

Producer Consumer

Figure 1.11 Within a distributed messaging system, several nodes act together to behave 
as a single logic system from the perspective of the end user. Internally, the data storage and 
message processing are distributed across all the nodes.
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 The key architectural difference between a distributed messaging system and a
clustered single-node system is the way in which the storage layer is designed. In the
previous single-node systems, the message data for any given topic was all stored
together on the same machine, which allowed the data to be served quickly from a
local disk. However, as we mentioned earlier, this limited the size of the topic to the
capacity of the local disk on that machine. Within a distributed messaging system, the
data is distributed across several machines within the cluster. This distribution of data
across multiple machines allowed us to retain messages within an individual topic that
exceeded the storage capacity of an individual machine. The key architectural abstrac-
tion that makes this distribution of data possible is the write-ahead log, which treats the
contents of a message queue as a single append-only data structure that messages can
be stored in. 

 As you can see in figure 1.12, from a logical perspective, when a new message is
published to the topic, it is appended to the end of the log. However, from a physical
perspective, the message can be written to any server within the cluster. 

Append-only log

Messages

New
messages

. . . 50,000 123. . .50,001

Logical view

Server-0

2

Server-1

1

Server-N

The messages are distributed
across multiple servers in the
clusters and stored on local disk.

...

Physical view

Horizontally
scalable3

Figure 1.12 The key architectural concept underlying distributed messaging systems is the append-only 
log (aka the write-ahead log). From a logical perspective, the messages within a topic are all stored 
sequentially, but are stored in a distributed fashion across multiple servers.
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This provides distributed messaging systems with a far more scalable storage capacity
layer than the previous generations of messaging systems. Another benefit of the dis-
tributed messaging architecture is the ability of more than one broker to serve the
messages for any given topic, which increases the message production and consump-
tion throughput by spreading the load across multiple machines. For example, mes-
sages published to the topic shown in figure 1.12 would be handled by three separate
servers, each with its own write path to disk. This would result in a higher write rate,
since the load is spread across multiple disks rather than just a single disk, as it was in
the previous generation of messaging systems. There are two distinct approaches
taken when it comes to how the data is distributed across the nodes in the cluster:
partition-based and segment-based.

PARTITION-CENTRIC STORAGE IN KAFKA

When using the partition-based strategy within a messaging system, the topic is divided
into a fixed number of groupings known as partitions. Data that is published to the topic
is distributed across the partitions, as shown in figure 1.13, with each partition receiving
a portion of the messages published to the topic. The total storage capacity of the topic
is now equal to the number of partitions in the topic times the size of each partition.
Once this limit is reached, no more data can be added to the topic. Simply adding more
brokers to the cluster will not alleviate this issue because you will also need to increase
the number of partitions in the topic, which must be performed manually. Furthermore,
increasing the number of partitions also requires a rebalance to be performed, which,
as I will discuss, is an expensive and time-consuming process.

 Within a partition-centric storage-based system, the number of partitions is speci-
fied when the topic is created, as this allows the system to determine which nodes will
be responsible for storing which partition, etc. However, predetermining the number
of partitions has a few unintended side effects, including the following:

 A single partition can only be stored on a single node within the cluster, so the
size of the partition is limited to the amount of free disk space on that node.

 Since the data is evenly distributed across all partitions, each partition is limited
to the size of the smallest partition in the topic. For instance, if a topic is distrib-
uted across three nodes with 4 TB, 2 TB, and 1 TB of free disk, respectively,
then the partition on the third node can only grow to 1 TB in size, which in
turn means all partitions in the topic can only grow to 1 TB as well.

 Although it isn’t strictly required, each partition is usually replicated multiple
times to different nodes to ensure data redundancy. Therefore, the maximum
partition size is further restricted to the size of the smallest replica.

In the event that you run into one of these capacity limitations, your only remedy is to
increase the number of partitions in the topic. However, this capacity expansion pro-
cess requires rebalancing the entire topic, as shown in figure 1.14. During this rebal-
ancing process, the existing topic data is redistributed across all of the topic partitions
in order to free up disk space on the existing nodes. Therefore, when you add a
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fourth partition to an existing topic, each partition should have approximately 25% of
the total messages once the rebalancing process has completed. 

 This recopying of data is expensive and error prone, as it consumes network band-
width and disk I/O directly proportional to the size of the topic (e.g., rebalancing a
10 TB topic would result in 10 TB of data being read from disk, transmitted over the
network, and written to disk on the target brokers). Only after the rebalancing pro-
cess has completed can the previously existing data be deleted and the topic resume
serving clients. Therefore, it is advisable to choose your partition sizing wisely, as the
cost to rebalance cannot be easily dismissed.

 In order to provide redundancy and failover for the data, you can configure the
partitions to be replicated across multiple nodes. This ensures that there is more than
one copy of the data available on disk even in the event of a node failure. The default
replica setting is three, which means that the system will retain three copies of each
message. While this is a good trade-off in terms of space for redundancy, you need to
account for this additional storage requirement when you size your Kafka cluster. 
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Figure 1.13 Message storage in a partition-based messaging system
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SEGMENT-CENTRIC STORAGE IN PULSAR

Pulsar relies upon the Apache BookKeeper projects to provide the persistent storage of
its messages. BookKeeper’s logical storage model is based on the concept of boundless
stream entries stored as a sequential log. As you can see in figure 1.15, within Book-
Keeper each log is broken down into smaller chunks of data, known as segments, which
in turn are comprised of multiple log entries. These segments are then written across
a number of nodes, known as bookies, in the storage layer for redundancy and scale. 

 As you can see from figure 1.15, the segments can be placed anywhere on the stor-
age layer that has sufficient disk capacity. When there isn’t sufficient storage capacity
in the storage layer for new segments, new nodes can be easily added and used imme-
diately for storing data. One of the key benefits of segment-centric storage architec-
ture is true horizontal scalability as segments can be created indefinitely and stored
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anywhere, unlike partition-centric storage which imposes artificial limitations to both
vertical and horizontal scaling based on the number of partitions. 

1.4 Comparison to Apache Kafka
Apache Kafka and Apache Pulsar are both distributed messaging systems that have
similar messaging concepts. Clients interact with both systems via topics that are logi-
cally treated as unbounded, append-only streams of data. However, there are some
fundamental differences between Apache Pulsar and Apache Kafka when it comes to
scalability, message consumption, data durability, and message retention.

1.4.1 Multilayered architecture

Apache Pulsar’s multilayered architecture completely decouples the message-serving
layer from the message-storage layer, allowing each to scale independently. Traditional
distributed messaging technologies, such as Kafka, have taken the approach of
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co-locating data processing and data storage on the same cluster nodes or instances.
That design choice offers a simpler infrastructure and some performance benefits
due to reducing the transfer of data over the network, but at the cost of a lot of
tradeoffs that impact scalability, resiliency, and operations.

Pulsar’s architecture takes a very different approach—one that’s starting to gain trac-
tion in a number of cloud-native solutions and that is made possible in part by the sig-
nificant improvements in network bandwidth that are commonplace today: namely the
separation of compute and storage. Pulsar’s architecture decouples data serving and
data storage into separate layers: data serving is handled by stateless broker nodes, while
data storage is handled by bookie nodes, as shown in figure 1.16. This decoupling has sev-
eral benefits, including dynamic scalability, zero downtime upgrades, and infinite stor-
age capacity upgrades, just to name a few. Further, this design is container-friendly,
making Pulsar the ideal technology for hosting a cloud-native streaming system. 

DYNAMIC SCALING

Consider the case where we have a service that is CPU-intensive and whose perfor-
mance starts to degrade when the requests exceed a certain threshold. In such a sce-
nario, we need to horizontally scale the infrastructure to provide new machines and
instances of the application to distribute the load when the CPU usage goes above
90% on the current machine. Rather than relying on a monitoring tool to alert your
DevOps team to this condition and having them perform this process manually, it
would be preferable to have the entire process automated. 

 Autoscaling is a common feature of all public cloud providers, such as AWS, Micro-
soft Azure, Google Cloud, and Kubernetes. It allows autoscaling of the infrastructure
horizontally based on resource utilization metrics, such as CPU/memory, without any
human interaction. While it is true that this capability is not exclusive to Pulsar and
can be leveraged by any other messaging platforms to scale up during high traffic con-
ditions, it is much more useful in a multitiered architecture such as Pulsar’s for two
reasons we will discuss. 
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Figure 1.16 Monolithic distributed architectures co-locate the serving and storage layers, while Pulsar uses 
a multilayer architecture that decouples the storage and serving layers from one another, which allows them 
to scale independently.
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 Pulsar’s stateless brokers in the serving layer also enable the ability to scale the infra-
structure down once the spike has passed, which translates directly into cost savings in
a public cloud environment. Other messaging systems that use a monolithic architec-
ture cannot scale down the nodes due to the fact that the nodes contain data on their
attached hard drives. Removal of the excess nodes can only be done once that data has
been completely processed or has been moved to another node that will remain in the
cluster. Neither of these can be performed in an automated fashion easily.

 Secondly, in a monolithic architecture, such as Apache Kafka, the broker can only
serve requests for data that is stored on an attached disk. This limits the usefulness of
autoscaling the cluster in response to traffic spikes, because the newly added nodes to
the Kafka cluster will not have any data to serve and, therefore, will not be able to han-
dle any incoming requests to read existing data from the topics. The newly added
nodes will only be able to handle write requests.

 Lastly, in a monolithic architecture such as Apache Kafka, horizontal scaling is
achieved by adding new nodes that have both storage and serving capacity, regardless
of which metric you are tracking and responding to. Therefore, when you scale up
your serving capacity in response to high CPU usage, you are also scaling up your stor-
age capacity whether you actually need additional storage or not and vice-versa

AUTO-RECOVERY

Before you move your messaging platform into production, you will need to under-
stand how to recover from various failure scenarios, starting with a single node failure.
In a multitiered architecture such as Pulsar, the process is very straightforward. Since
the broker nodes are stateless, they can be replaced by spinning up a new instance of
the service to replace the one that failed without a disruption of service or any other
data replacement considerations. At the storage layer, multiple replicas of the data are
distributed across multiple nodes, which can be easily replaced with new nodes in the
event of a failure. In either scenario, Pulsar can rely on cloud-provider mechanisms,
such as autoscaling groups, to ensure that a minimum number of nodes are always
running. Monolithic architectures, such as Kafka, will suffer again from the fact that
newly added nodes to the Kafka cluster will not have any data to serve and, therefore,
will only be able to handle incoming write requests.

1.4.2 Message consumption
Reading messages from a distributed messaging system is a bit different from reading
them from a legacy messaging system, as distributed messaging systems were designed
to support a large number of concurrent consumers. The way in which the data is con-
sumed is driven in large part by the way it is stored inside the system itself, with both
partition-centric and segment-centric systems having their own unique way of support-
ing pub–sub semantics for consumers.

MESSAGE CONSUMPTION IN KAFKA

Within Kafka, all consumers belong to what is referred to as a consumer group, which
forms a single logical subscriber for a topic. Each group is composed of many consumer
instances for scalability and fault tolerance, so if one instance fails, the remaining
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consumers will take over. By default, a new consumer group is created whenever an
application subscribes to a Kafka topic. An application can leverage an existing con-
sumer group by providing the group.id as well.

 According to the Kafka documentation, “The way consumption is implemented in
Kafka is by dividing up the partitions in the log over the consumer instances so that
each instance is the exclusive consumer of a ‘fair share’ of partitions at any point in
time” (https://docs.confluent.io/5.5.5/kafka/introduction.html). In layman’s terms,
this means that each partition within a topic can only have one consumer at a time,
and the partitions are distributed evenly across the consumers within the group. As
shown in figure 1.17, if a consumer group has less members than partitions, then
some consumers will be assigned to multiple partitions, but if you have more consum-
ers than partitions, the excess consumers will remain idle and only take over in the
event of a consumer failure.

 One important side effect of creating exclusive consumers is that within a con-
sumer group, the number of active consumers can never exceed the number of parti-
tions in the topic. This limitation can be problematic, as the only way of scaling data
consumption from a Kafka topic is by adding more consumers to a consumer group.
This effectively limits the amount of parallelism to the number of partitions, which in
turn limits the ability to scale up data consumption in the event that your consumers
cannot keep up the topic producers. Unfortunately, the only remedy to this is to
increase the number of topic partitions, which as we discussed earlier, is not a simple,
fast, or cheap operation.
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Figure 1.17 Kafka’s consumer groups are closely tied to the partition concept. This limits the number of 
concurrent topic consumers to the number of topic partitions.
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You can also see in figure 1.17 that all of the individual consumers’ messages are com-
bined and sent back to the Kafka client. Therefore, message ordering is not main-
tained by the consumer group. Kafka only provides a total order over records within a
partition, not between different partitions in a topic.

 As I mentioned earlier, consumer groups act as a cluster to provide scalability and
fault tolerance. This means they dynamically adapt to the addition or loss of consum-
ers within the group. When a new consumer is added to the group, it starts consuming
messages from partitions previously consumed by another consumer. The same thing
happens when a consumer shuts down or crashes; it leaves the group, and the parti-
tions it used to consume will be consumed by one of the remaining consumers. This
shuffling of partition ownership with a consumer group is referred to as rebalancing,
and can have some undesirable consequences, including the potential for data loss if
consumer offsets aren’t saved before the rebalancing occurs.

 It is very common to have multiple applications that need to read data from the
same topic. In fact, this is one of the primary features of a messaging system. Conse-
quently, topics are shared resources among multiple consuming applications that may
have very different consumption needs. Consider a financial services company that
streams in real time stock market quote information into a topic named “stock
quotes” and wants to share that information across the entire enterprise. Some of
their business-critical applications, such as their internal trading platforms, algorith-
mic trading systems, and customer-facing websites, will all need to process that topic
data as quickly as it arrives. This would require a high number of partitions in order to
provide the necessary throughput to meet these tight SLAs. 

 On the other hand, the data science team may want to feed the stock topic data
through some of their machine learning models in order to train or validate their
models using real stock pricing data. This would require processing the records in
exactly the order they were received, which requires a single partition topic to ensure
global message ordering. 

 The business analytics team will develop reports using KSQL that join the stock
topic data with other topic(s) based on a particular key, such as the stock ticker, which
would benefit from having the topic partitioned by the ticker symbol. 

 Efficiently providing the stock topic data for these applications with such vastly dif-
ferent consumption patterns would be difficult, if not impossible, given how to depen-
dent the consumer groups are tied to the partition number, which is a fixed decision
that cannot be easily changed. Typically, in such a scenario, your only realistic option
is to maintain multiple copies of the data in different topics, each configured with the
correct number of partitions for the application. 

1.4.3 Data durability

Within the context of messaging systems, the term data durability refers to the guaran-
tees that messages that have been acknowledged by the system will survive even in the
event of a system failure. In a distributed system with many nodes, such as Pulsar or
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Kafka, failures can occur at many levels; therefore, it is important to understand how
the data is stored and what durability guarantees the system provides.

 When a producer publishes a message, an acknowledgment is returned from the
messaging system to indicate that the message on the topic was received. This
acknowledgment signals to the producer that the message is safe, and that the pro-
ducer can discard it without worrying about it getting lost. As we shall see, the strength
of these guarantees is much greater in Pulsar than Kafka.

DATA DURABILITY IN KAFKA

As we discussed earlier, Apache Kafka takes a partition-centric storage approach to
message storage. In order to ensure data durability, multiple replicas of each partition
are maintained within a cluster to provide a configurable level of data redundancy.

When Kafka receives an incoming message, a hashing function is applied to the
message to determine which of the topic’s partitions the message should be written to.
Once that has been determined, the message contents are written to the page cache
(not the disk) of the partition leader replica. Once the message has been acknowledged
by the leader, each of the follower replicas are responsible for retrieving the message
contents from the partition leader in a pull manner (i.e., they act as consumers and
read the messages from the leader), as shown in figure 1.18. This overall approach is
what is referred to as an eventually consistent strategy in which there is one node in a
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distributed system that has the most recent view of the data, which is eventually
communicated to other nodes until they all achieve a consistent view of the data. While
this approach has the advantage of decreasing the amount of time required to store an
incoming message, it also introduces two opportunities for data loss; first, in the event
of a power outage or other process termination event on the leader node, any data that
was written to the page cache that had not been persisted to local disk will be lost. The
second opportunity for data loss is when the current leader process fails and another
one of the remaining followers is selected as the new leader. In the leader failover
scenario, any messages that were acknowledged by the previous leader but not yet
replicated to the newly elected leader replica will be lost as well.

 By default, messages are acknowledged once the leader has written it to memory.
However, this behavior can be overridden to withhold the acknowledgment until all of
the replicas have received a copy of the message. This does not impact the underlying
replication mechanism in which the followers must pull the information across the net-
work and send a response back to the leader. Obviously, this behavior will incur a per-
formance penalty, which is often hidden in most published Kafka performance
benchmarks, so you are advised to do your own performance testing with this configu-
ration in order to get a better understanding of what the expected performance will be.

 The other side effect of this replication strategy is that only the leader replica can
serve both producers and consumers, as it is the only one guaranteed to have the most
recent and correct copy of the data. All of the follower replicas are passive nodes that
cannot alleviate any of the load from the leader during traffic spikes.

DATA DURABILITY IN PULSAR

When Pulsar receives an incoming message, it saves a copy in memory and also writes
the data to a write-ahead log (WAL), which is forced onto disk before an acknowledg-
ment is sent back to the message publisher, as shown in figure 1.19. This approach is
modelled after traditional database atomicity, consistency, isolation, and durability
(ACID) transaction semantics, which ensures that the data is not lost even if the
machine fails and comes back online in the future. 

 The number of replicas required for a topic can be configured in Pulsar based on
your data replication needs, and Pulsar guarantees that the data that has been
received and acknowledged by a quorum of servers before an acknowledgment is sent
to the producer. This design ensures that data can only be lost in the highly unlikely
event of simultaneous fatal errors occurring on all bookie nodes to which the data was
written. This is why is it recommended to distribute the bookie nodes across multiple
regions and use rack-aware placement policies to ensure a copy of the data is stored in
more than one region or data center.

 More importantly, this design eliminates the need for a secondary replication pro-
cess that is responsible for ensuring that the data is kept in sync between replicas and
eliminates any data inconsistency issues due to any lag in the replication process.
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1.4.4 Message acknowledgment

Within a distributed messaging system, failures are to be expected. In a distributed
message system such as Pulsar, both the consumers consuming the messages and the
message brokers serving the messages can fail. When such a failure occurs, it is imper-
ative to resume consumption from exactly the point where the consumers left off
once everything recovers to ensure that messages aren’t skipped or reprocessed. This
point from which the consumer should resume consumption is often called the topic
offset. Kafka and Pulsar take different approaches with respect to maintaining these
offsets, which have a direct impact on data durability.

MESSAGE ACKNOWLEDGMENT IN KAFKA

The resume point is referred to as the consumer offset in Apache Kafka, which is con-
trolled entirely by the consumer. Typically, a consumer increments its offset in a sequen-
tial manner as it reads records from the topic to indicate message acknowledgment.
However, keeping this offset solely in the consumer’s memory is dangerous. Therefore,
these offsets are also stored as messages in a separate topic named __consumer_offsets.
Each consumer commits a message containing its current position into that topic at peri-
odic intervals, which is every five seconds if you use Kafka’s auto-commit capability. While
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this strategy is better than keeping the offsets solely in memory, there are consequences
to this periodic update approach.

 Consider a single-consumer scenario where automatic commits occur every five
seconds and a consumer dies exactly three seconds after the most recent commit to
the offset topic. In this case, the offset read from the topic will be three seconds old, so
all the events that arrived in that three-second window will be processed twice. While it
is possible to configure the commit interval to a smaller value and reduce the window
in which records will be duplicated, it is impossible to completely eliminate them.

 The Kafka consumer API provides a method that enables committing the current
offset at a point that makes sense to the application developer rather than based on a
timer. Therefore, if you really wanted to eliminate duplicate messaging processing,
you could use this API to commit the offset after every successfully consumed mes-
sage. However, this pushes the burden of ensuring accurate recovery offsets onto the
application developer and introduces additional latency to the message consumers
who now have to commit each offset to a Kafka topic and await an acknowledgment.

MESSAGE ACKNOWLEDGMENT IN PULSAR

Apache Pulsar maintains a ledger inside of Apache BookKeeper for each subscriber
that is referred to as the cursor ledger for tracking message acknowledgments. When
a consumer has read and processed a message, it sends an acknowledgment to the
Pulsar broker. Upon receipt of this acknowledgment, the broker immediately updates
the cursor ledger for that consumer’s subscription. Since this information is stored on
a ledger in BookKeeper, we know that it has been fsynced to disk and multiple copies
exist across multiple bookie nodes. Keeping this information on disk ensures that the
consumers will not receive the message again even if they crash and restart at a later
point in time.

 In Apache Pulsar, there are two ways that messages can be acknowledged: selec-
tively or cumulatively. With cumulative acknowledgment, the consumer only needs to
acknowledge the last message it receives. All the messages in the topic partition up to
and including the given message ID will be marked as acknowledged and will not be
redelivered to the consumer again. Cumulative acknowledgment is effectively the
same as offset update in Apache Kafka. 

 The differentiating feature of Apache Pulsar over Kafka is the ability of consumers
to acknowledge messages individually (i.e., selective acknowledgment). This capability
is critical in supporting multiple consumers per topic because it allows for message
redelivery in the event of a single consumer failure.

 Let’s consider the single-consumer failure scenario again where the consumer
individually acknowledges messages after it has successfully processed them. During
the time leading up to the failure, the consumer was struggling to process some of the
messages while successfully processing others. Figure 1.20 shows an example where
only two of the messages (4 and 7) were successfully processed and acknowledged.
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Given the fact that Kafka’s offset concept treats consumer groups’ offsets as a high-
water mark that marks the point up to which all messages are considered acknowl-
edged, in this scenario the offset would have been updated to seven, since that is the
highest number message ID that was acknowledged. When the Kafka consumer is
restarted on that topic it would start at message 8 and continue onward, skipping mes-
sages 1–3, 5, and 6, making them effectively lost because they are never processed.

 Under the same scenario with Pulsar’s selective acks, all of the unacknowledged
messages would be redelivered, including messages 1–3, 5, and 6, when the consumer
is restarted, thereby avoiding message loss due to consumer offset limitations.

1.4.5 Message retention 

In contrast to legacy messaging systems, such as ActiveMQ, messages are not immedi-
ately removed from distributed messaging systems after they have been acknowledged
by all consumers. These legacy systems took such an approach as a way to immediately
reclaim as much of the local disk capacity as possible, since it was a constrained
resource. While distributed messaging systems such as Kafka and Pulsar have allevi-
ated this constraint to some degree by horizontally scalable message storage, both of
these systems still provide a mechanism for reclaiming disk space. It is important to
understand exactly how automated message deletion is handled by both systems, as it
can lead to accidental data loss if not properly configured.

MESSAGE RETENTION IN KAFKA

Kafka retains all messages published to a topic for a configurable retention period.
For instance, if the retention policy is set to seven days, then for the seven days imme-
diately after a message has been published to the topic, it is available for consumption.
Once the retention period has elapsed, the message will be discarded to free up space.
This deletion occurs regardless of whether or not the message has been consumed
and acknowledged. Obviously, this presents the opportunity for data loss in the event
that the retention period is less than the time it takes for all consumers to consume
the message, such as a long-term outage of the consuming system. The other draw-
back to this time-based approach is that there is a high probability that you will be
retaining messages much longer than necessary (i.e., after they have been consumed
by all relevant consumers), which is an inefficient use of your storage capacity.

MESSAGE RETENTION IN PULSAR

In Pulsar, when a consumer has successfully processed a message, it needs to send an
acknowledgment to the broker so that the broker can discard the message. By default,
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Pulsar immediately deletes all messages that have been acknowledged by all the
topic’s consumers and retains all unacknowledged messages in a message backlog. In
Pulsar, messages can only be deleted after all the subscriptions have already consumed
it. Pulsar also allows you to keep messages for a longer time even after all subscriptions
have already consumed them by configuring a message retention period, which I will
discuss in more depth in chapter 2.

1.5 Why do I need Pulsar?
If you are just getting started with messaging or streaming data applications, you
should definitely consider Apache Pulsar as a core component of your messaging
infrastructure. However, it is worth noting that there are several technology options
that you can choose from, many of which have become entrenched in the software
community. In this section, I will attempt to bring to light some of the scenarios in
which Apache Pulsar shines above the rest, as well as clear up some common miscon-
ceptions about existing systems and point out some of the challenges users of these
systems face. 

 Within adoption cycles there are often several misconceptions about the
entrenched technology that are perpetuated throughout the user community for a
multitude of reasons. It is often an uphill battle to convince yourself and others that you
need to replace a technology that sits at the very core of your architecture. It was not
until we had the benefit of hindsight that we saw that our traditional database systems
were fundamentally incapable of scaling to meet the demands imposed by our ever-
increasing data and that we needed to rethink the way we stored and processed data
with a framework such as Hadoop. Only after we had transitioned our business analytics
platforms from traditional data warehouses to Hadoop-based SQL engines, such as
Hive, Tez, and Impala, did we realize that those tools had inadequate response times for
the end users who were used to subsecond response times. This gave rise to the rapid
adoption of Apache Spark as the technology of choice for big data processing.

 I wanted to highlight these two recent technologies to remind us that we cannot let
our affinity for the status quo blind us to issues lurking within our core architectural
systems and put forth the notion that we need to rethink our approach to messaging
systems, as the incumbent technologies in this space, such as RabbitMQ and Kafka,
suffer from key architectural flaws. The team that developed Apache Pulsar at Yahoo!
could have easily chosen to adopt one of the existing solutions, but after careful con-
sideration they decided not to do so because they needed a messaging platform that
provided capabilities that weren’t available in the existing monolithic technologies
that we will discuss in the following sections.

1.5.1 Guaranteed message delivery

Because of the data durability mechanism within the platform that we have already
covered, Pulsar provides guaranteed message delivery for applications. If a message
successfully reaches a Pulsar broker, it will be delivered to all of the topic consumers.
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To provide such a guarantee requires that non-acknowledged messages are stored in a
durable manner until they can be delivered to and acknowledged by consumers. This
mode of messaging is commonly called persistent messaging. In Pulsar, a configurable
number of copies of all messages is stored and synced on disk.

 By default, Pulsar message brokers ensure that incoming messages are persisted to
disk on the storage layer before acknowledging receipt of the message. These mes-
sages are kept in Pulsar’s infinitely scalable storage layer until they are acknowledged,
thereby ensuring message delivery.

1.5.2 Infinite scalability

In order to better understand the scalability of Pulsar, let’s look at a typical Pulsar
installation. As you can see from figure 1.21, a Pulsar cluster is composed of two layers:
a stateless serving layer, which is made up of a set of brokers for handling client
requests, and a stateful persistence layer, which is made up of a set of bookies for per-
sisting the messages. 

 This architectural pattern, which separates the storage of the messages from the
layer that serves the messages, differs significantly from traditional messaging systems
which have historically chosen to co-locate these two services. This decoupled
approached has several advantages when it comes to scalability. For starters, making
the brokers stateless allows you to dynamically increase or decrease the number of
brokers to meet the demands of the client applications. 

SEAMLESS CLUSTER EXPANSION

Any bookies that are added to the storage layer are automatically discovered by the
brokers, which will then immediately begin to utilize them for message storage. This is
unlike Kafka, which requires repartitioning the topics to distribute the incoming mes-
sages to the newly added brokers.

UNBOUNDED TOPIC PARTITION STORAGE

Unlike Kafka, the capacity of a topic partition is not limited by the capacity of any
smallest node. Instead, topic partitions can scale up to the total capacity of the storage

Pulsar brokers

Broker-1 Broker-2 Broker-N...

Bookie-1 Bookie-2 Bookie-N...

BookKeeper bookies

Producer Consumer

Figure 1.21 A typical Pulsar cluster
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layer, which itself can be scaled up by simply adding additional bookies. As we dis-
cussed earlier, partitions within Kafka have several limitations on their size, whereas
no such restrictions apply to Pulsar.

INSTANT SCALING WITHOUT DATA REBALANCING

Because message serving and storage are separated into two layers, moving a topic
partition from one broker to another can happen almost instantly and without any
data rebalancing (recopying the data from one node to the other). This characteristic
is crucial to many things, such as cluster expansion and fast failure reaction to broker
and bookie failures.

1.5.3 Resilient to failure

Pulsar’s decoupled architecture also provided enhance resiliency by ensuring that
there is no single point of failure within the system. By isolating the serving and stor-
age layers, Pulsar is able to limit the impact of a failure within the system while making
the recovery process seamless.

SEAMLESS BROKER FAILURE RECOVERY

Brokers form the stateless serving layer in Apache Pulsar. The serving layer is stateless
because brokers don’t actually store any message data locally. This makes Pulsar resil-
ient to broker failures. When Pulsar detects that a broker is down, it can immediately
transfer the incoming producers and consumers to a different broker. Since the data
is kept in a separate layer, there is no need to recopy data as you would in Kafka.
Because Pulsar doesn’t have to recopy the data, the recovery happens instantly with-
out sacrificing the availability of any of the data on the topic. 

 Kafka, in contrast, directs all client requests to the leader replica, so it will always
have the latest data. The leader is also responsible for propagating the incoming data
to the other followers in the replica set, so the data will eventually be available on
those nodes in the event of a failure. However, due to the inherent lag between the
leader and the replica, data can be lost before it is copied over.

SEAMLESS BOOKIE FAILURE RECOVERY

The stateful persistence layer utilized by Pulsar consists of Apache BookKeeper book-
ies to provide segment-centric storage, as we mentioned previously. When a message is
published to Pulsar, the data is persisted to disk on all N replicas before it is acknowl-
edged. This design ensures that the data will be available on multiple nodes and, thus,
will survive N-1 node failures before the data is lost.

 Pulsar’s storage layer is also self-healing, and if there is a node or disk failure that
causes a particular segment to be under-replicated, Apache BookKeeper will automat-
ically detect this and schedule a replica repair to run in the background. The replica
repair in Apache BookKeeper is a many-to-many fast repair at the segment level,
which is a much finer granularity than recopying the whole topic partition, which is
required in Kafka.
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1.5.4 Support for millions of topics

Consider a scenario in which you want to model your application around some entity,
such as a customer, and for each one of these you want to have a different topic. Dif-
ferent events would be published for that entity; the customer is created, places an
order, makes a payment, returns some items, changes their address, etc. 

 By placing these events in a single topic, you are guaranteed to process them in the
correct chronological order and can quickly scan the topic to determine the correct
state of the customer’s account, etc. However, as your business grows you will need
support for millions of topics, and traditional messaging systems cannot support this
requirement. There is a high cost associated with having many topics, including
increased end-to-end latency, file descriptors, memory overhead, and recovery time
after a failure. 

 In Kafka, as a rule of thumb you should keep your total number of topic partitions
in the hundreds if you care about latency performance. There are several guides for
how to restructure your Kafka-based applications in order to avoid hitting this limita-
tion. If you don’t want a platform limitation affecting your application design with
respect to how you structure your topics, then you should consider Pulsar.

 Pulsar has the ability to support up to 2.8 million topics while continuing to pro-
vide consistent performance. The key to scaling the number of topics lies in how the
underlying data is organized in the storage layer. If the topic data is stored in dedi-
cated files or directories, as it is in traditional messaging systems such as Kafka, then
the ability to scale will be limited because the I/O will be scattered across the disk as
the number of topics increases, which leads to disk thrashing and results in very low
throughput. In order to prevent this behavior, messages from different topics are
aggregated, sorted, and stored in large files and then indexed in Apache Pulsar. This
approach limits the proliferation of small files that leads to performance problems as
the number of topics increases.

1.5.5 Geo-replication and active failover

Apache Pulsar is a messaging system that supports both synchronous geo-replication
within a single Pulsar cluster and asynchronous geo-replication across multiple clus-
ters. It has been deployed globally in more than 10 data centers at Yahoo! since 2015
with full 10 x 10 mesh replication for mission critical services, such as Yahoo! Mail and
Finance.

 Geo-replication is a common practice used to provide disaster recovery capabilities
for enterprise systems by distributing a copy of the data to different geographical loca-
tions. This ensures that your data, and the systems that rely upon it, will be able to
withstand any unforeseen disasters, such as natural disasters. The geo-replication
mechanisms used in different data systems can be classified as either synchronous or
asynchronous. Apache Pulsar allows you to easily enable asynchronous geo-replication
using just a few configuration settings. 
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With asynchronous geo-replication, the producer doesn’t wait for an acknowledgment
from the other data centers that they have received the message. Instead, the produc-
ing client receives an acknowledgment immediately after the message has been suc-
cessfully persisted within the local BookKeeper cluster. The data is then replicated
from the source cluster to the other data centers in an asynchronous fashion, as
shown in figure 1.22.

 Asynchronous geo-replication provides lower latency because the client doesn’t
have to wait for responses from the other data centers. However, it also results in
weaker consistency guarantees due to asynchronous replication. Since there is always
a replication lag in asynchronous replication, there is always some amount of data that
hasn’t been replicated from source to destination.

 Synchronous geo-replication is a bit more complicated to achieve with Apache Pul-
sar than asynchronous, as it requires some manual configuration to properly ensure
that a message will only be acknowledged when a majority of the data centers have
issued a confirmation that the message data has been persisted to disk. While I will
save the details of exactly how synchronous geo-replication can be achieved with
Apache Pulsar for appendix B, I can tell you that it is made possible due to Pulsar’s
two-tiered architecture design and the ability for an Apache BookKeeper cluster to be
composed of both local and remote nodes, particularly ones in different geographical
regions, as shown in figure 1.23. 

US-West-region US-East-region

Pulsar cluster

M1M2M3
. . .

Mn

Client 

Pulsar cluster

M1M2M3
. . .

BookKeeper cluster

Mn MnMn

Mn

BookKeeper cluster

Pulsar asynchronously
forwards the message
to the cluster in the
other region.

Once a sufficient number
of copies of the message
have been stored, an ack 
is sent to the client.

Figure 1.22 When using asynchronous geo-replication in Apache Pulsar, the message is stored locally within 
the BookKeeper cluster running in the same region that receives the message. The message is asynchronously 
forwarded in the background to the Pulsar cluster in the other region.
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Synchronous geo-replication provides the highest availability, where all of your physi-
cally available data centers form a global logical instance for your data system. Your
applications can run everywhere at any data center and still be able to access the data.
It also guarantees stronger data consistency between different data centers, which
your applications can easily rely on without any manual operations involved when data
center failures occur.

 Unlike other messaging systems that rely on external services, Pulsar offers geo-
replication as a built-in feature. Users can easily enable replication of message data
between Pulsar clusters in different geographical regions. Once replication is config-
ured, data is continuously replicated to the remote clusters without any interaction on
the part of the producers or consumers. I cover to how configure geo-replication in
greater detail in appendix B. 

1.6 Real-world use cases
If you are a product manager whose product includes a requirement for operating on
massive amounts of data to deliver a meaningful new experience or dataset to your
users in real time, then Apache Pulsar is the key to unlocking the real-time potential
of your data. The beauty of Pulsar is that there are several specific scenarios in which it
can excel. Before we dive further into the technical details, it might be informative to
discuss at a high level some of the use cases in which Pulsar has already been proven.

US-West-region US-East-region

Pulsar cluster

M1M2M3
. . .Client 

Pulsar cluster

M1M2M3
. . .

BookKeeper cluster

Mn Mn

Mn

BookKeeper cluster

Mn

Once a sufficient number of
copies of the message have been
stored, an ack is sent to the client.

BookKeeper requires that at least one
copy of the message is stored in the
other region before an ack is sent.

Figure 1.23 You can exploit BookKeeper’s ability to use remote nodes in order to achieve synchronous geo-
replication to ensure that a copy of the message is stored in the remote region.
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1.6.1 Unified messaging systems

You are probably familiar with the mnemonic “keep it simple, stupid,” which is often
used to remind architects that there is great value in simple designs and solutions. A
system that comprises fewer technologies is easier to deploy, maintain, and monitor.
As mentioned earlier, there are two common messaging patterns, and until now, if you
wanted to support both messaging styles within your infrastructure, you were required
to deploy and maintain two completely different systems. 

 As a bilingual job board, Zhaopin.com has one of the largest selections of job
vacancies in China, including both prominent local and foreign companies. The com-
pany has over 2.2 million clients and average daily page views of over 68 million. As
the company grew, the challenges of maintaining two separate messaging systems,
RabbitMQ for queuing and Apache Kafka for pub–sub, became increasingly difficult.
By replacing them both with a single unified messaging platform based on Apache
Pulsar, they were able to reduce their operational overhead, infrastructure footprint,
and ongoing support costs by half, while meeting their requirements of high durabil-
ity, high throughput, and low latency. 

1.6.2 Microservices platforms

Narvar provides a supply chain management and customer care platform for
e-commerce customers around the world, including order tracking and notifications
and seamless returns and customer care. Narvar’s platform helps retailers and brands
by processing data and events to ensure timely and accurate communication with
their customers to 400 million consumers worldwide.

 Prior to Apache Pulsar, Narvar’s platform had been built using a variety of messag-
ing and processing technologies over time—from Kafka to Amazon SQS, Kinesis
Streams to Kinesis Firehose, and RabbitMQ to AWS Lambda. As its traffic grew, it
became apparent that the growing amount of DevOps and developer support
required to maintain and scale these systems was unsustainable. Many of them were
not containerized, making infrastructure configuration and management burden-
some and requiring frequent manual intervention. 

 Systems like Kafka—while reliable, popular, and open source—had significant
maintenance overhead as they scaled. Increasing throughput required increasing par-
titions, tuning consumers, and a large amount of manual intervention by developers
and DevOps. Similarly, cloud-native solutions like Kinesis Streams and Kinesis Fire-
hose were not cloud-agnostic, making it hard to decouple the choice of cloud solu-
tions from functionality and making it difficult to leverage technologies in other
clouds and to support customers who needed to run on other public clouds.

 Narvar decided to transition its microservice-based platform over to Apache Pulsar
because like Kafka, Pulsar was reliable, cloud-agnostic and open source. Unlike Kafka,
Pulsar entailed very little maintenance overhead and scaled with minimal manual
intervention. Pulsar was containerized and built on Kubernetes from the outset,
making it much more scalable and maintainable. Most importantly for Narvar was
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Pulsar Functions, which allowed Narvar to develop microservices that consumed and
processed the incoming events directly on the messaging system itself, eliminating the
need for expensive Lambda functions or standing up additional services.

 In a microservices architecture, each microservice is designed as an atomic and
self-sufficient piece of software. These independent software components run as
multiple processes distributed across multiple servers. A microservices-based
application requires the interaction of multiple services via some sort of inter-process
communication. The two most commonly used communication protocols are HTTP
request/response and lightweight messaging. Pulsar was a perfect candidate for
providing the lightweight messaging system that supports asynchronous messaging
required by Narvar.

1.6.3 Connected cars

A major North American auto manufacturer has built a connected car service based
on Apache Pulsar that collect data from computing devices within its 12 million
connected vehicles. Billions of pieces of data are collected daily and used to provide
real-time visibility and remote diagnostics across the world. This data is then used to
provide better insights into how vehicles are performing and to identify potential
problems before they occur, so the manufacturer can provide customers with proac-
tive alerts.

1.6.4 Fraud detection

As China’s largest mobile payment platform, Orange Financial must analyze 50 mil-
lion transactions per day for financial fraud on behalf of it 500 million registered
users. Orange Financial faces threats from financial fraud every day, including identity
theft, money laundering, affiliate fraud, and merchant fraud. The company runs
thousands of fraud detection models against each transaction to combat these threats
in its risk management system.

 The company was seeking a solution that would unify the data store, computing
engine, and programing language for decision development in its risk control system.
From an end-user perspective, the fraud detection scanning could not impact the
latency of the applications; therefore, they needed a platform that allowed them to
process the data as quickly as possible. Apache Pulsar allowed the transactional data to
be accessed directly in the messaging layer and processed in parallel using Pulsar
Functions, thereby reducing the processing latency introduced from having to move
the data to a secondary system for processing.

 While some of the fraud detection processing has been offloaded to the Pulsar
functions framework, Orange Financial was still able to leverage its more complex
fraud detection algorithms that were developed in Spark, using Pulsar’s built-in con-
nector for the Spark computing engine. This allows the company to choose the best
processing framework for its models on a case-by-case basis.
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Additional resources
Pulsar has a vibrant and growing community and graduated from the Apache Incuba-
tor in August of 2018. Current documentation for the project can be found on the
official project website at http://pulsar.apache.org. 

 Other resources for information on Apache Pulsar include blogs (such as http://
mng.bz/PXE9 and https://streamnative.io/blog) and tutorials (such as http://mng
.bz/J600). Lastly, I would be remiss if I didn’t mention the Apache Pulsar slack channel,
apache-pulsar.slack.com, which I and several of the project committers monitor on a
daily basis. The heavily used channel contains a wealth of information for beginners and
a concentrated community of developers who are actively using Apache Pulsar on a daily
basis. 

Summary
 Apache Pulsar is a modern messaging system that provides both high-performance

streaming and traditional queuing messaging.
 Apache Pulsar provides a lightweight computing engine, Pulsar Functions,

which allows developers to implement simple processing logic that is executed
against each message and published to a given topic.

 The benefits of Pulsar’s decoupled storage and serving layers include infinite
scalability and zero data loss.

 Specific use cases where Pulsar has been used in production include IoT analyt-
ics, inter-microservice communication, and unified messaging.

http://mng.bz/PXE9
http://mng.bz/PXE9
http://mng.bz/PXE9
http://mng.bz/J600
http://mng.bz/J600
http://mng.bz/J600
http://pulsar.apache.org
https://streamnative.io/blog
http://apache-pulsar.slack.com
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Pulsar concepts
 and architecture

Now that you have been introduced to the Pulsar messaging platform and how it
compares to other messaging systems, we will drill down into the low-level architec-
tural details and cover some of the unique terminology used by the platform. If you
are unfamiliar with messaging systems and distributed systems, then it might be dif-
ficult to wrap your head around some of Pulsar’s concepts and terminology. I will
start with an overview of Pulsar’s physical architecture before diving into how Pul-
sar logically structures messages.

This chapter covers
 Pulsar’s physical architecture

 Pulsar’s logical architecture

 Message consumption and the subscription types 
provided by Pulsar

 Pulsar’s message retention, expiration, and 
backlog policies



39Pulsar’s physical architecture

2.1 Pulsar’s physical architecture
Other messaging systems consider the cluster the highest level from an administrative
and deployment perspective, which necessitates managing and configuring each clus-
ter as an independent system. Fortunately, Pulsar provides an even higher level of
abstraction known as a Pulsar instance, which is comprised of one or more Pulsar clus-
ters that act together as a single unit and can be administered from a single location,
as shown in figure 2.1. 

 One of the biggest reasons for using a Pulsar instance is to enable geo-replication.
In fact, only clusters within the same instance can be configured to replicate data
amongst themselves.

A Pulsar instance employs an instance-wide ZooKeeper cluster called the configuration
store to retain information that pertains to multiple clusters, such as geo-replication
and tenant-level security policies. This allows you to define and manage these policies
in a single location. In order to provide resiliency to the configuration store, each of
the nodes within the Pulsar instance’s ZooKeeper ensemble should be deployed
across multiple regions to ensure its availability in the event of a region failure. 

 It is important to note that the availability of the ZooKeeper ensemble used by the
Pulsar instance for the configuration store is required by the individual Pulsar clusters
to operate even when geo-replication is enabled. When geo-replication is enabled, if
the configuration store is down, messages published to the respective clusters will be
buffered locally and forwarded to the other regions when the ensemble becomes
operational again.

2.1.1 Pulsar’s layered architecture

As you can see in figure 2.2, each Pulsar cluster is made up of a stateless serving layer
of multiple Pulsar message broker instances, a stateful storage layer of multiple Book-
Keeper bookie instances, and an optional routing layer of multiple Pulsar proxies. When

Pulsar instance

Configuration
store

Pulsar
cluster

Pulsar
cluster

Pulsar
cluster

. . .
Local ZK clusters; stores
ledger metadata

Global ZK cluster; stores
administrative metadata,
such as data security and
replication policies

Figure 2.1 A Pulsar instance can consist of multiple geographically dispersed clusters.
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hosted inside a Kubernetes environment, this decoupled architecture enables your
DevOps team to dynamically scale the number of brokers, bookies, and proxies to
meet peak demand and to scale down to save cost during slower periods. Message traf-
fic is spread across all the available brokers as evenly as possible to provide maximum
throughput.

When a client accesses a topic that has not yet been used, a process is triggered to
select the broker best suited to acquire ownership of the topic. Once a broker assumes
ownership of a topic, it is responsible for handling all requests for that topic, and any
clients wishing to publish to or consume data from the topic need to interact with the
corresponding broker that owns it. Therefore, if you want to publish data to a particu-
lar topic, you will need to know which broker owns that topic and connect to it. How-
ever, the broker assignment information is only available in the ZooKeeper metadata
and is subject to change based on load rebalancing, broker crashes, etc. Consequently,
you cannot connect directly to the brokers themselves and hope that you are commu-
nicating with the one you want. This is exactly why the Pulsar proxy was created—to
act as an intermediary for all the brokers in the cluster.

Bookie Bookie Bookie...

Broker Broker Broker...

Proxy Proxy...

ZK
ZK

ZK

Pulsar 
clients

Intelligent 
routing layer

Stateless 
serving layer

Stateful 
storage layer

Load balancer

Metadata 
storage

Pulsar cluster

Proxy

Figure 2.2 A Pulsar cluster consists of multiple layers: an optional proxy layer that routes incoming 
client requests to the appropriate message broker, a stateless serving layer consisting of multiple 
brokers that serve client requests, and a stateful storage layer consisting of multiple bookies that 
retains multiple copies of the messages.
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THE PULSAR PROXY

If you are hosting your Pulsar cluster inside of a private and/or virtual network envi-
ronment, such as Kubernetes, and you want to provide inbound connections to your
Pulsar brokers, then you will need to translate their private IP addresses to public IP
addresses. While this can be accomplished using traditional load balancing technolo-
gies and techniques such as physical load balancers, virtual IP addresses, or DNS-
based load balancing that distributes client requests across a group of brokers, it is not
the best approach for providing redundancy and failover capabilities for your clients.

 The traditional load-balancer approach is not efficient, as the load-balancer will
not know which broker is assigned to a given topic and instead will direct the request
to a random broker in the cluster. If a broker receives a request for a topic it isn’t serv-
ing, it will automatically reroute the request over to the appropriate broker for pro-
cessing, but this incurs a nontrivial penalty in terms of time. This is why it is
recommended to use the Pulsar proxy instead, which acts as an intelligent load bal-
ancer for Pulsar brokers.

 When using the Pulsar proxy, all client connections will first travel through the
proxy, rather than directly to the brokers themselves. The proxy will then use Pulsar’s
built-in service discovery mechanism to determine which broker is hosting the topic
you are trying to reach and automatically route the client request to it. Furthermore,
it will cache this information in memory for future requests to streamline the lookup
process even more. For performance and failover purposes, it is recommended to run
more than one Pulsar proxy behind a traditional load balancer. Unlike the brokers,
Pulsar Proxies can handle any request, so they can be load balanced without any issue.

2.1.2 Stateless serving layer

Pulsar’s multi-layered design ensures that message data is stored separately from the
brokers, which guarantees that any broker can serve data from any topic at any time.
This also allows the cluster to assign ownership of a topic to any broker in the cluster
at any time, unlike other messaging systems that co-locate the broker and the topic
data they are serving. Hence, we use the term “stateless” to describe the serving layer,
since there is no information stored on the brokers themselves that is necessary to
handle client requests.

 The stateless nature of the brokers not only allows us to dynamically scale them up
and down based on demand, but also makes them cluster-resilient to multiple broker
failures. Lastly, Pulsar has an internal load-shedding mechanism that rebalances the
load amongst all the active brokers based on the ever-changing message traffic.

BUNDLES

The assignment of a topic to a particular broker is done at what is referred to as the
bundle level. All the topics in a Pulsar cluster are assigned to a specific bundle with
each bundle assigned to a different broker, as shown in figure 2.3. This helps ensure
that all topics in a namespace are evenly distributed across all the brokers.
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The number of bundles created is controlled by the defaultNumberOfNamespace-
Bundles property inside the broker configuration file, which has a default value of 4.
You can override this setting on a per-namespace level when you create the name-
space by providing a different value when you create the namespace using the Pulsar
admin API. In general, you want the number of bundles to be a multiple of the num-
ber of brokers to ensure that they are evenly distributed. For instance, if you have
three brokers and four bundles, then one of the brokers will be assigned two of the
bundles, while the others only get one each.

LOAD BALANCING

While the message traffic might initially be spread as evenly as possible across the
active brokers, several factors can change over time, resulting in the load becoming
unbalanced. Changes in the message traffic patterns might result in a broker serving
several topics with heavy traffic, while others aren’t being utilized at all. When an exist-
ing bundle exceeds some preconfigured thresholds defined by the following proper-
ties in the broker configuration file, the bundle will be split into two new bundles with
one of them being offloaded to a new broker:

 loadBalancerNamespaceBundleMaxTopics

 loadBalancerNamespaceBundleMaxSessions

 loadBalancerNamespaceBundleMaxMsgRate

 loadBalancerNamespaceBundleMaxBandwidthMbytes

This mechanism identifies and corrects scenarios when some bundles are experienc-
ing a heavier load than others by splitting these overloaded bundles in two. Then one
of these bundles can be offloaded to a different broker in the cluster. 
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Bundle

Topic
Topic
Topic 1

Topic

Bundle

Topic
Topic
Topic 500

Topic

Bundle

Topic
Topic
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Figure 2.3 From a serving perspective, each broker is assigned a set of bundles that contain 
multiple topics. Bundle assignment is determined by hashing the topic name, which allows us to 
determine which bundle it belongs to without having to keep that information in ZooKeeper.
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LOAD SHEDDING

The Pulsar brokers have another mechanism to detect when a particular broker is
overloaded, and automatically have it shed or offload some of its bundles to other bro-
kers in the cluster. When a broker’s resource utilization exceeds the preconfigured
threshold defined by the loadBalancerBrokerOverloadedThresholdPercentage

property in the broker configuration file, the broker will offload one or more bundles
to a new broker. This property defines the maximum percentage of the total available
CPU, network capacity, or memory that the broker can consume. If any of these
resources cross this threshold, then the offload is triggered.

 The bundle selected is left intact and assigned to a different broker. This is because
the load shedding process solves a different problem than the load balancing process
does. With load balancing, we are correcting the distribution of the topics across the
bundles because one of them has much more traffic than the others, and we are
attempting to spread that load out across all the bundles. 

 Load shedding, on the other hand, corrects the distribution of the bundles across
the brokers based on the number of resources required to service them. Even though
each broker can be assigned the same number of bundles, the message traffic han-
dled by each broker could be dramatically different if the load is unbalanced across
the bundles. 

 To illustrate this point, consider the scenario where there are 3 brokers and a total
of 60 bundles with each broker serving 20 bundles each. Furthermore, 20 of the
bundles are currently handling 90% of the total message traffic. Now, if most of these
bundles happen to be assigned to the same broker, it could easily exhaust that broker’s
CPU, network, and memory resources. Therefore, offloading some of these bundles to
another broker will help alleviate the problem, whereas splitting the bundles
themselves would only shed approximately half of the message traffic, while leaving
45% of it still on the original broker.

DATA ACCESS PATTERNS

There are generally three I/O patterns in a streaming system: writes, where new data is
written to the system; tailing reads, where the consumer is reading the most recently
published messages immediately after they have been published; and catch-up reads,
where a consumer reads a large number of messages from the beginning of the topic
in order to catch up, such as when a new consumer wants to access data beginning at a
point much earlier than the latest message.

 When a producer sends a message to Pulsar, it is immediately written to Book-
Keeper. Once BookKeeper acknowledges that the data was committed, the broker
stores a copy of the message in its local cache before it acknowledges the message pub-
lication to the producer. This allows the broker to serve tailing read consumers
directly from memory and avoid the latency associated with disk access.

 It becomes more interesting when looking at catch-up reads, which access data from
the storage layer. When a client consumes a message from Pulsar, the message will go
through the steps shown in figure 2.4. The most common example of a catch-up read
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is when a consumer goes offline for an extended period and then starts consuming
again, although any scenario in which a consumer is not directly served from the bro-
ker’s in-memory cache would be considered a catch-up read, such as topic reassign-
ment to a new broker.

2.1.3 Stream storage layer

Pulsar guarantees message delivery for all message consumers. If a message success-
fully reaches a Pulsar broker, you can rest assured it will be delivered to its intended
target. In order to provide this guarantee, all non-acknowledged messages must be
persisted until they can be delivered to and acknowledged by consumers. As I men-
tioned earlier, Pulsar uses a distributed write-ahead log (WAL) system called Apache
BookKeeper for persistent message storage. BookKeeper is a service that provides per-
sistent storage of streams of log entries in sequences called ledgers.

LOGICAL STORAGE ARCHITECTURE

Pulsar topics can be thought of as infinite streams of messages that are stored sequentially
in the order the messages are received. Incoming messages are appended to the end of
the stream, while consumers read messages further up the stream based on the data
access patterns that I discussed earlier. While this simplified view makes it easy for us to
reason about a consumer’s position within the topic, such an abstraction cannot exist in
reality due to the space limitations of storage devices. Eventually this abstract infinite
stream concept must be implemented on a physical system where such a limitation exists. 

 Apache Pulsar takes a dramatically different approach from traditional messages sys-
tems, such as Kafka, when it comes to implementing stream storage. Within Kafka, each

ZooKeeper

Index

Consumer

Bookie

Ledger
cache

Entry log

      Broker

A consumer subscribes to the topic, and the
consumer is up to date and is thus performing tailing 
reads. All new incoming messages are served directly 
from the Pulsar broker cache.

Otherwise, the consumer is in
a catch-up read scenario, and the
broker retrieves the ledger ID of the
next message to be delivered to the
consumer on that subscription.

The retrieved ledger ID is used to
look for the message in the bookie’s
ledger cache, and if the message is
found, it is returned to the consumer.

If the message is not in the ledger
cache, then the index file is used to
quickly identify the entry log and
position of the ledger that contains
the message. The data provided from the index

is used to access the ledger that is
stored on disk in one of the entry 
logs and to position the read cursor 
to return the message.

The message is read from
disk and sent to the broker.

The message is sent
to the consumer.

Figure 2.4 Message consumption steps in Pulsar
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stream is separated into multiple replicas that are each stored entirely on a broker’s
local disk. The great thing about this approach is that it is simple and fast because all
writes are sequential, which limits the amount of disk head movement required to
access the data. The downside to Kafka’s approach is that a single broker must have suf-
ficient storage capacity to hold the partition data, as I discussed in chapter 1.

 So how is Apache Pulsar’s approach different? For starters, each topic is not mod-
eled as a collection of partitions, but rather as a series of segments. Each of these seg-
ments can contain a configurable number of messages, with the default being 50,000.
Once a segment is full, a new one is created to hold new messages. Therefore, a Pulsar
topic can be thought of as an unbounded list of segments with each containing a subset
of the messages, as shown in figure 2.5, which shows both the logical architecture of the
stream storage layer and how it maps to the underlying physical implementation.

A Pulsar topic is nothing more than an addressable endpoint that is used to uniquely
identify a specific topic within Pulsar and is analogous to a URL in the sense that it is
merely used to uniquely identify the resource that the client is attempting to connect
to. The topic name must be decoded by the Pulsar broker to determine the storage
location of the data.

Ledger-N
. . .

Ledger-20Ledger-245

Managed ledger

. . .

ZooKeeper

BookKeeper

persistent://tenant/ns/my-topic

Pulsar

Entries
Contains the actual data, along
with some important metadata

Logical construct that exists in
the BookKeeper layer

Metadata that exists in the
ZooKeeper layer

Logical construct that exists
in the Pulsar layer

Figure 2.5 The data for a Pulsar topic is stored as a sequence of ledgers inside the BookKeeper 
layer. A list of these ledger IDs is stored inside a logical construct known as a managed ledger on 
ZooKeeper. Each ledger holds 50,000 entries that store a copy of the message data. Note that 
persistent://tenant/ns/my-topic will be discussed as a concept later in the book.
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 Pulsar adds an additional layer of abstraction on top of BookKeeper’s ledgers,
known as managed ledgers, that retains the IDs of the ledgers that hold the data pub-
lished to the topic. As we can see in figure 2.5, when data was first published to topic A,
it was written to ledger-20. After 50,000 records had been published to the topic, the
ledger was closed and another one (ledger-245) was created to take its place. This pro-
cess is repeated every 50,000 records to store the incoming data, and the managed
ledger retains this unique sequence of ledger IDs inside of ZooKeeper.

 Later, when a consumer attempts to read the data from topic A, the managed led-
ger is used to locate the data inside of BookKeeper and return it to the consumer. If
the consumer is performing a catch-up read starting at the oldest message, then it
would first get all the data from ledger-20, followed by ledger-245, and so on. The tra-
versal of these ledgers from oldest to youngest is transparent to the end user and cre-
ates the illusion of a single sequential stream of data. Managed ledgers allow this to
happen and retain the ordering of the BookKeeper ledgers to ensure the messages
are read in the same order they were published.

BOOKKEEPER PHYSICAL ARCHITECTURE

In BookKeeper, each unit of a ledger is referred to as an entry. These entries contain
the actual raw bytes from the incoming messages, along with some important meta-
data that is used to track and access the entries. The most critical piece of metadata is
the ID of the ledger to which it belongs, which is kept in the local ZooKeeper
instance, so the message can be retrieved quickly from BookKeeper when a consumer
attempts to read it in the future. Streams of log entries are stored in append-only data
structures, known as ledgers, as shown in figure 2.6. 

Ledgers have append-only semantics, meaning that entries are written to a ledger
sequentially and cannot be modified once they’ve been written to a ledger. From a
practical perspective, this means

 A Pulsar broker first creates a ledger, then appends entries to the ledger, and
finally closes the ledger. There are no other interactions permitted.

 After the ledger has been closed, either normally or because the process
crashed, it can then be opened only in read-only mode.

 Finally, when entries in the ledger are no longer needed, the whole ledger can
be deleted from the system.

Entries

....

Ledger

Producer

Append
only

Ledger no: 123,
Entry no: 22,
Data: “Message”

Figure 2.6 In BookKeeper, incoming 
entries get stored together as ledgers 
on servers known as bookies.
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The individual BookKeeper servers that are responsible for the storage of ledgers
(more specifically, fragments of ledgers) are known as bookies. Whenever entries are
written to a ledger, those entries are written across a subgroup of bookie nodes known
as an ensemble. The size of the ensemble is equal to the replication factor (R) you
specify for your Pulsar topic and ensures that you have exactly R copies of the entry
saved to disk to prevent data loss.

 Bookies manage data in a log-structured way, which is implemented using three
types of files: journals, entry logs, and index files. The journal file retains all of the
BookKeeper transaction logs. Before any update to a ledger takes place, the bookie
ensures that a transaction describing the update is written to disk to prevent data loss.

The entry log file contains the actual data written to BookKeeper. Entries from differ-
ent ledgers are aggregated and written sequentially, while their offsets are kept as
pointers in a ledger cache for fast lookup. An index file is created for each ledger,
which contains several indexes that record the offsets of data stored in entry log files.
The index file is modelled after index files in traditional relational databases and
allows for quick lookups for ledger consumers. When a client publishes a message to
Pulsar the message will go through the steps shown in figure 2.7 to persist it to disk
within a BookKeeper ledger.

 By distributing the entry data across multiple files on different disk devices, book-
ies are able to isolate the effects of read operations from the latency of ongoing write
operations, allowing them to handle thousands of concurrent reads and writes. 

ZooKeeper

Journals

Broker

Producer

Bookie

Ledger
cache

Entry log Both of these operations fsync the
data to disk to ensure that the data 
will not be lost.

Inside the bookie, the message is
appended to an entry log, and a
transaction corresponding to the
message is appended to the journal 
as well. 

The broker stores the <Message
ID, Ledger ID> pair inside its
local ZooKeeper to keep track of
where the messages have been
stored.

The producer sends the message to a Pulsar
broker, which in turn forwards the message to
one of the bookie nodes that has identified itself
as active and available for message storage.

Finally, an acknowledgment is sent to the
producer to confirm that the message was
successfully received, persisted, and
cataloged for future reference.

A response is sent back to the Pulsar
broker, which includes the ledger ID
that the message was written to. 

When the message is committed, it
can be sent directly to all subscribers
attached to that topic and added to a
local cache inside the broker. 

The index of the message is updated in
the ledger cache within the bookie’s
allocated memory so that subsequent
read requests from consumers can be
served more efficiently.

Figure 2.7 Message persistence steps in Pulsar
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2.1.4 Metadata storage

Lastly, each cluster also has its own local ZooKeeper ensemble that Pulsar uses to store
cluster-specific configuration information for tenants, namespaces, and topics, includ-
ing security and data retention policies. This is in addition to the managed ledger
information we discussed earlier.

ZOOKEEPER BASICS

According to the official Apache website, “ZooKeeper is a centralized service for main-
taining configuration information, naming, providing distributed synchronization,
and providing group services” (https://zookeeper.apache.org), which is an elaborate
way of saying it is a distributed data source. ZooKeeper provides a decentralized loca-
tion for storing information, which is crucial within distributed systems, such as Pulsar
or BookKeeper. 

 Apache ZooKeeper solves the fundamental problem of achieving consensus (i.e.,
agreement) that virtually every distributed system must solve. Processes in a distributed
system need to agree on several different pieces of information, such as the current
configuration values and the owner of a topic. This is a problem particularly for
distributed systems due the fact that there are multiple copies of the same component
running concurrently with no real way to coordinate information between them.
Traditional databases are not an option because they introduce a serialization point
within the framework where all the calling services would be blocked waiting for the
same lock on a table, which essentially eliminates all the benefits of distributed
computing.

 Having access to a consensus implementation enables distributed systems to coor-
dinate processes in a more effective manner by providing a compare-and-swap (CAS)
operation to implement distributed locks. The CAS operation compares the value
retrieved from ZooKeeper with an expected value and, only if they are the same,
updates the value. This guarantees that the system is acting based on up-to-date infor-
mation. One such example would be checking that the state of a BookKeeper ledger
is open before writing any data to it. If some other process has closed the ledger, it
would be reflected in the ZooKeeper data, and the process would know not to pro-
ceed with the write operation. Conversely, if a process were to close a ledger, this infor-
mation would be sent to ZooKeeper so that it could be propagated to the other
services, so they would know it is closed before they attempted to write to it.

 The ZooKeeper service itself exposes a file-system-like API so that clients can
manipulate simple data files (znodes) to store information. Each of these znodes
forms a hierarchical structure similar to a filesystem. In the following sections, I will
examine the metadata that is retained within ZooKeeper along with how it is used and
by whom so that you can see for yourself exactly why it is needed. The best way to do
this is by using the zookeeper-shell tool that is distributed along with Pulsar, as
shown in the following listing, to list all the znodes.

 
 

https://zookeeper.apache.org
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/pulsar/bin/pulsar zookeeper-shell                                    B
ls /                                                                  c
[admin, bookies, counters, ledgers, loadbalance, 

➥ managed-ledgers, namespace, pulsar, schemas, stream, zookeeper]    d

B Starts the ZooKeeper shell

c Lists the children znodes under the root level node

d The output of all the znodes used by Pulsar

As you can see in listing 2.1, there are a total of 11 different znodes created inside
ZooKeeper for Apache Pulsar and BookKeeper. These fall into one of four categories
based on what information they contain and how it is used. 

CONFIGURATION DATA

The first category of information is configuration data for tenants, namespaces, sche-
mas, etc. All this information is slow-changing information that is only updated
through the Pulsar administration API when a user creates or updates a new cluster,
tenant, namespace, or schema and includes such things as security policies, message
retention policies, replication policies, and schemas. This information is stored in the
following znodes: /admin and /schemas.

METADATA STORAGE

The managed ledger information for all of the topics is stored in the /managed-ledgers
znode, while the /ledgers znode is used by BookKeeper to keep track of all the ledgers
currently stored across all the bookies within the cluster.

/pulsar/bin/pulsar-managed-ledger-admin print-managed-ledger –

➥ managedLedgerPath /public/default/persistent/topicA 

➥ --zkServer localhost:2181                              B

ledgerInfo { ledgerId: 20 entries: 50000 size: 3417764 timestamp: 1589590969679}
ledgerInfo { ledgerId: 245 timestamp: 0}                  c

B The managed ledger tool allows you to look up the ledgers by topic name.

c This topic has two ledgers: one with 50K entries that is closed and another open one.

As you can see in listing 2.2, there is another tool called pulsar-managed-ledger-
admin that allows you to easily access the managed ledger information that is used by
Pulsar to read and write the data to and from BookKeeper. In this case, the topic data
is stored on two different ledgers: ledgerID-20, which is closed and contains 50,000
entries, and ledgerID-245, which is currently open and where the incoming data will
be published.

DYNAMIC COORDINATION BETWEEN SERVICES

The remaining znodes are all used for distributed coordination across the systems,
including /bookies, which maintains a list of the bookies registered with the Book-

Listing 2.1 Using the ZooKeeper-shell tool to list the znodes

Listing 2.2 Inspecting the managed ledger
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Keeper cluster, and /namespace, which is used by the proxy service to determine which
broker owns a given topic. As we can see in the following listing, the /namespace znode
hierarchy is used to store the bundle IDs for each namespace.

/pulsar/bin/pulsar zookeeper-shell                         B
ls /namespace
[customers, public, pulsar]                                c
ls /namespace/customers
[orders]                                                   d
ls /namespace/customers/orders
[0x40000000_0x80000000]                                    e
get /namespace/customers/orders/0x40000000_0x80000000
{"nativeUrl":"pulsar://localhost:6650",

➥ "httpUrl":"http://localhost:8080","disabled":false}     e

B Starts the ZooKeeper shell

c There is one znode per tenant.

d There is one znode per namespace.

e There is one znode per bundle_id.

As you’ll recall from our earlier discussion, the topic name is hashed by the proxy to
determine the bundle name, which in this case is 0x40000000_0x80000000. The proxy
then queries the /namespace/{tenant}/{namespace}/{bundle-id} znode to retrieve
the URL for the broker that “owns” the topic.

 Hopefully, this gives you some more insight into the role ZooKeeper plays inside a
Pulsar cluster and how it provides a service that can be easily accessed by nodes that
have been dynamically added to the cluster, so they can quickly determine the cluster
configuration and start handling client requests. One such example would be the abil-
ity of newly added brokers to start serving data from a topic by referencing the data in
the /managed-ledgers znode.

2.2 Pulsar’s logical architecture
Like other messaging systems, Pulsar uses the concept of topics to denote message
channels for transmitting data between producers and consumers. However, the way
in which these topics are named is different in Pulsar than in other messaging systems.
In the following sections, I will cover the underlying logical structure that Pulsar uses
for storing and managing topics.

2.2.1 Tenants, namespaces, and topics

In this section we will cover the logical constructs that describe how data is structured
and stored inside the cluster. Pulsar was designed to serve as a multi-tenant system,
allowing it to be shared across multiple departments within your organization by pro-
viding each its own secure and exclusive messaging environment. This design enables
a single Pulsar instance to effectively serve as the messaging platform-as-a-service

Listing 2.3 Metadata used to determine topic ownership
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across your entire enterprise. The logical architecture of Pulsar supports multitenancy
via a hierarchy of tenants, namespaces, and, finally, topics, as shown in figure 2.8.

TENANTS

At the top of the Pulsar hierarchy sit the tenants, which can represent a specific busi-
ness unit, a core feature, or a product line. Tenants can be spread across clusters and
can each have their own authentication and authorization scheme applied to them,
thereby controlling who has access to the data stored within. They are also the admin-
istrative unit at which storage quotas, message time to live, and isolation policies can
be managed. 

NAMESPACES

Each tenant can have multiple namespaces, which are logical grouping mechanisms for
administering related topics via policies. At the namespace level, you can set access
permissions, fine-tune replication settings, manage geo-replication of message data
across clusters, and control message expiry for all the topics in the namespace. 

 Let’s consider how we would structure Pulsar’s namespace for an e-commerce
application. To provide isolation for the sensitive incoming payment data and limit
access to only members of the finance team, you may configure a separate tenant
named E-payments, as shown in figure 2.8, and apply an access policy that restricts full
access to only members of the finance group so they can perform audits and process
credit card transactions.

Pulsar cluster

Tenant-1
(Some app)

Tenant-2
(Marketing)

Tenant-3
(E-payments)

Namespace-1
(Microservice)

Namespace-1
(Clickstream)

Namespace-2
(Campaigns)

Namespace-1
(Fraud detection)

Namespace-2
(Payments)

Topic-1
(Customer)

Topic-1
(Demographic)

Topic-2
(User clustering)

Topic-1
(Television)

Topic-2
(Online ads)

Topic-1
(Risk score)

Topic-1
(Credit card)

Topic-2
(Gift card)

Figure 2.8 Pulsar’s logical architecture consists of tenants, namespaces, and topics.
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 Within the E-payments tenant you might create two namespaces: one named pay-
ments that will hold the incoming payments, including credit card payments and gift
card redemptions, and another named fraud detection, which will contain those
transactions that are flagged as suspicious for further processing. In such a deploy-
ment, you would limit the user-facing application to write-only access to the payments
namespace, while granting read-only access to the fraud detection application, so it
can evaluate them for potential fraud.

 On the fraud detection namespace you would configure write access for the
fraud detection application, so it can place potentially fraudulent payments into the
“risk score” topic. You would also grant read-only access to the e-commerce applica-
tion to the same namespace, so it can be notified of any potential fraud and react
accordingly, such as by blocking the sale.

TOPICS

Topics are the only communication channel type available in Pulsar. All messages are
written to and read from topics. Other messaging systems support more than one
communication channel type (e.g., topics and queues that are differentiated by the
type of message consumption they support). As I discussed in chapter 1, queues sup-
port first in, first out exclusive message consumption, while topics support pub–sub,
one-to-many message consumption. Pulsar makes no such distinction and, instead,
relies on various subscription types to control the message consumption pattern.

 In Pulsar, non-partitioned topics are served by a single broker, which is responsible
for receiving and delivering all the messages for the topic. Therefore, the throughput
of a single topic is bound by the computing power of the broker serving it. 

PARTITIONED TOPICS

Pulsar also supports the notion of partitioned topics that can be served by multiple
brokers, which allows for much higher throughput as the load is distributed across
multiple machines. Behind the scenes, a partitioned topic is implemented as N inter-
nal topics, where N is the number of partitions. The distribution of partitions across
brokers is handled automatically by Pulsar, effectively making the process transparent
to the end user. 

 Implementing partitioned topics as a series of individual topics allows a user to
increase the number of partitions without having to rebalance the entire topic.
Instead, internal topics are created for the new partitions and will be able to receive
incoming messages immediately without impacting the other internal topics at all
(e.g., consumers will still be able to read/write messages to the existing partitions
without interruption).

 From a consumer perspective, these is no difference between partitioned topics and
normal topics. All consumer subscriptions work exactly as they do on non-partitioned
topics. But there is a big difference in what happens when a message is published to a
partitioned topic. The message producer is responsible for determining which internal
topic the message is ultimately published to. If the message has a value in its key meta-
data field, then the producer will hash that value to determine which topic to publish
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to. This ensures that all messages with the same key get stored in the same topic and will
be in the order in which they were published.

 When publishing a message without a key, the producer should be configured with
a routing mode that specifies how to route messages across the partitions in the topic.
The default routing mode is called RoundRobinPartition, which as the name implies,
publishes messages across all partitions in round-robin fashion. This approach evenly
distributes the messages across the partitions, which maximizes the publish through-
put. Alternatively, you could use the SinglePartition routing mode, which ran-
domly selects a single partition to publish all its messages into. This approach can be
used to group messages from a specific producer together to maintain message order-
ing when you don’t have a key value. You can also provide your own routing imple-
mentation as well if you need more control over message distribution across your
partitioned topic.

 Let’s look at the message flow depicted in figure 2.9 in which the producer is con-
figured to use the RoundRobinPartition publish mode. In this scenario, the producer
connects to the Pulsar proxy and expects back the IP address of the broker assigned to
the topic it is writing to. The proxy, in turn refers to the local metastore for this infor-
mation and discovers that the topic is partitioned and needs to translate the specified
partition number into the name of the internal topic that is serving that partition.

 In figure 2.9, the producer’s round-robin routing strategy determined that the
message should be published to partition number 3, which is implemented as internal
topic p3. The proxy can also determine that internal topic p3 is currently being served
by broker-0. Therefore, the message is routed to that broker and written to the p3

ZooKeeper
Pulsar cluster

Physical
topics

Broker-0

Producer

Topic configuration {
   Num partitions: 5
   Internal topics: [
      <partition-0, topic-0>
      <partition-1, topic-1>, ...
   ]
}

The producer uses the provided 
broker address to publish the 
message contents.

The proxy refers to the local metastore to 
determine which broker is serving the topic 
and, based on the partition value provided 
by the producer, determines the address of 
the broker currently serving the given 
partition and returns it to the proxy.

The producer is configured to use 
a specific routing mode (e.g RoundRobin), 
which is used to determine which partition 
a given message is routed to. 

The producer then publishes the message 
like any other by providing the topic name 
(e.g. publish [“partitioned-topic”]).  

Proxy

Broker-1 Broker-2

P0 P3 P1 P4 P2

Figure 2.9 Publishing to a partitioned topic
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topic. Since the routing mode is round robin, a subsequent call by the same producer
will result in the message being routed to the p4 internal topic on broker-1.

2.2.2 Addressing topics in Pulsar

The hierarchical structure of Pulsar’s logical layer is reflected in the naming conven-
tion of endpoints used to access topics within Pulsar. As you can see in figure 2.10,
each topic addressed within Pulsar contains both the tenant and namespace to which
it belongs. The address also contains a persistency prefix that indicates whether the
message contents are persisted to long-term storage or they are only retained in the
bookie’s memory space. If a topic name is created with a prefix of persistent://,
then all messages that have been received but not yet acknowledged will be stored on
multiple bookie nodes, and thus, can survive broker failures.

 Pulsar also supports non-persistent topics, which retain all unacknowledged
messages in the broker memory. Non-persistent topic names begin with the non-
persistent:// prefix to indicate this behavior. When using non-persistent topics,
brokers immediately deliver messages to all
connected subscribers without persisting them. 

 When using non-persistent delivery, any
form of broker failure, or disconnecting a sub-
scriber from a topic, results in all in-transit mes-
sages being lost on the (non-        persistent) topic. This means that the topic
subscribers will never be able to receive those messages even if they reconnect. While
non-persistent messaging is usually faster than persistent messaging because it avoids
the latency associated with persisting the data to disk, it is only advisable to use it if you
are certain that your use case can tolerate the loss of messages. 

2.2.3 Producers, consumers, and subscriptions

Pulsar is built on the publish–subscribe (pub–sub) pattern. In this pattern, producers
publish messages to topics. Consumers can then subscribe to those topics, process
incoming messages, and send an acknowledgment when processing is complete. 

 A producer is any process that connects to a Pulsar broker, either directly or via the
Pulsar proxy, and publishes messages to a topic, while a consumer is any process that
connects to a Pulsar broker to receive messages from a topic. When a consumer has
successfully processed a message, it needs to send an acknowledgment to the broker
so the broker knows that it has been received and processed. If no such acknowledg-
ment is received within a preconfigured timeframe, the broker will redeliver it to con-
sumers on that subscription.

 When a consumer connects to a Pulsar topic, it establishes what is referred to as a
subscription, which specifies how messages will be delivered to a group of one or more
consumers. There are four available subscription modes in Pulsar: exclusive, failover,
key-shared, and shared. Regardless of the subscription type, messages are delivered in
the order they are received.

(non-)persistent://tenant/namespace/topic-name

Figure 2.10 Topic addressing scheme in 
Pulsar
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 Information about these subscriptions is retained in the local Pulsar ZooKeeper
metadata and includes the http addresses of all the consumers, among other things.
Each subscription also has a cursor associated with it that represents the position of
the last message which was consumed and acknowledged for the subscription. To pre-
vent message redelivery, these subscription cursors are retained on the bookies to
ensure they will survive any broker level failures.

 Pulsar supports multiple subscriptions per topic, which allows multiple consumers
to read data from a topic. As you can see in figure 2.11, the topic has two different sub-
scriptions: Sub-A and Sub-B. Consumer-A connected to the topic first and is operating
in exclusive consumer mode, which means that all the messages in the topic will be
consumed by Consumer-A. Thus far, Consumer-A has only acknowledged the first four
messages, so its cursor position for the subscription, Sub-A is currently set to 5.

The subscription named Sub-B was created after the first three messages were pro-
duced; therefore, none of those messages were delivered to the consumers for that
subscription. It is a common misconception that any subscriptions created on a topic
will start at the very first message for that topic, which is why I chose to illustrate that
point here and show that you will only receive messages that are published to the topic
after you subscribe to it. 

 We can also see that, since Sub-B is operating in shared mode, the messages have
been distributed across all the consumers in the group with each message only being
processed by a single consumer in the group. You can also see that Sub-B’s cursor is
farther ahead than Sub-A’s cursor, which is not uncommon when you distribute the
messages across multiple consumers.

123456789101112Producer

Name: Sub-A
Type: Exclusive

Created: 11:08:01
Cursor: 5

Name: Sub-B
Type: Shared

Created: 11:09:37
Cursor: 11

Consumer-A

Consumer-B1

Consumer-B2

1234

4689

5710

Topic

Figure 2.11 Pulsar supports multiple subscriptions per topic, which allows multiple consumers to read the 
same data. Consumer-A has consumed the first four messages on the exclusive subscription named Sub-A, 
whereas messages 4 through 10 have been distributed across the two consumers on the shared subscription 
named Sub-B.
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2.2.4 Subscription types
In Pulsar, all consumers use subscriptions to consume data from a topic. Subscriptions
are just configuration rules that define how messages are delivered to consumers of a
given topic. Pulsar subscriptions can be shared across multiple applications, and in
fact, most subscription types are designed specifically for that usage pattern. Pulsar
supports four different types of subscriptions: exclusive, failover, shared, and key-
shared, as shown in figure 2.12. 

 A Pulsar topic can support multiple subscriptions concurrently, allowing you to use
a single topic to serve applications with vastly different consumption patterns. It is also
important to point out that different subscriptions on the same topic don’t have to be
of the same subscription type. This allows you to use a single topic to serve both queu-
ing and streaming use cases simultaneously.

Each of Pulsar’s subscription types serve a different type of use case, so it is important to
understand them in order to use them properly. Let’s revisit the scenario where a finan-
cial services company that streams stock market quote information in real time into a
topic named stock quotes wants to share that information across the entire enterprise
and see how each of these subscription modes would be used for the same use cases.

EXCLUSIVE

An exclusive subscription only permits a single consumer to the messages for that sub-
scription. If any other consumer attempts to subscribe to a topic using the same sub-
scription, an exception will be thrown, and it won’t be able to connect. This mode is
used when you want to ensure that each message is processed exactly once and by a
known consumer. 
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Figure 2.12 Pulsar’s subscription modes
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 Within our financial services organization, the data science team would use this
type of subscription to feed the stock topic data through their machine learning mod-
els to train or validate them. This would allow them to process the records in exactly
the order they were received to provide a stream of stock quotes in the proper time
sequence. Each model would require its own exclusive subscription, as shown in fig-
ure 2.13, to receive its own copy of the data.

FAILOVER SUBSCRIPTIONS

Failover subscriptions allow multiple consumers to attach to the subscription, but only
one consumer is selected to receive the messages. This configuration allows you to pro-
vide a failover consumer to continue processing the messages in the topic in the event
of a consumer failure. If the active consumer fails to process a message, Pulsar automat-
ically fails over to the next consumer in the list and continues delivering the messages.

 This type of subscription is useful when you want single processing semantics with
high availability of the consumers. This is useful if you want your application to con-
tinue processing messages in the event of a system failure and another consumer to
take over if the first consumer were to fail for any reason. Typically, these consumers
are spread across different hosts and/or data centers to ensure that the application
can survive multiple outages. As you can see in figure 2.14, Consumer-A is the active
consumer, while Consumer-B is the standby consumer that would be the next in line
to receive messages if Consumer-A disconnected for any reason.
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(Exclusive)

Stock
topic

ML model-A

Producer
Producer

Producer
M1M2M3

ML model-BSubscription-B
(Exclusive)

M1M2M3

M1M2M3

Figure 2.13 An exclusive subscription permits only a single consumer to consume the messages.

Figure 2.14 A failover subscription has only one active consumer at a time, but it permits multiple standby 
consumers.
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One such example would be if the data science team from our financial services com-
pany had deployed one of their models using data from the stock quotes topic that
generates market volatility scores that are combined with scores from other models to
produce an overall recommendation for the trading team. It would be critical that
exactly one instance of this model remain up and always running to help the trading
team make informed trading decisions. Having multiple instances running and gener-
ating recommendations could skew the overall recommendation. 

SHARED SUBSCRIPTIONS

Shared subscriptions also allow multiple consumers to attach to the subscription; each
of which can actively receive messages, unlike failover subscriptions that support only
one active consumer at a time. Messages are delivered in a round-robin fashion to all
the registered consumers, and any given message is delivered to only one consumer,
as shown in figure 2.15.

This subscription type is useful for implementing work queues, where message order-
ing isn’t important, as it allows you to scale up the number of consumers on the topic
quickly to process the incoming messages. There are no upper limits on the number
of consumers per shared subscription, which allows you to scale up consumption by
increasing the number of consumers beyond some artificial limit that is imposed by
the storage layer.

 Within our fictitious financial services organization, the business-critical applica-
tions, such as our internal trading platforms, algorithmic trading systems, and customer
facing website would all benefit from such a subscription. Each of these applications
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Figure 2.15 Messages are distributed across 
all consumers of a shared subscription.
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would use their own shared subscription, as shown in figure 2.15, to ensure that they
each received all the messages published to the stock topic. 

KEY-SHARED SUBSCRIPTIONS

The key-shared subscription also permitted multiple concurrent consumers, but
unlike the shared subscription which distributes the messages in a round-robin man-
ner amongst the consumers, it adds a secondary key index, which ensures that mes-
sages with the same key get delivered to the same consumer. This subscription acts as a
distributed GROUP BY in SQL, where data with similar keys is grouped together. This is
particularly useful in cases where you want to presort the data prior to consumption.

 Consider the scenario of the business analytics team needing to perform some ana-
lytics on the data in the stock topic. By having using a key-shared subscription, they
are assured that all the data for a given ticker symbol will be processed by the same
consumer, as depicted in figure 2.16, making it easier for them to join this data with
other data streams.

In summary, exclusive and failover subscriptions allow only one consumer per topic par-
tition per subscription, which ensures that messages are consumed in the order they are
received. They are best applied to streaming use cases where strict ordering is required. 

 Shared subscriptions, on the other hand, allow multiple consumers per topic parti-
tion. Each consumer within the subscription receives only a portion of the messages
published to a topic. Shared subscriptions are best for queuing use cases, where strict
message ordering is not required but high throughput is.

2.3 Message retention and expiration
As a messaging system, Pulsar’s primary function is to move data from point A to point
B. Once the data has been delivered to all the intended recipients, the presumption is
that there is no need to keep it. Consequently, the default message retention policy in
Pulsar does exactly that: when a message is published to a Pulsar topic, it will be stored
until it has been acknowledged by all the topic’s consumers, at which point it will be
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Figure 2.16 Messages are grouped together by the specified key in a shared-key subscription.
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deleted. This behavior is controlled by the defaultRetentionTimeInMinutes and
defaultRetentionSizeInMB configuration properties in the broker configuration file,
which are both set to zero by default to indicate that no acknowledged messages
should be retained.

2.3.1 Data retention

However, Pulsar also supports namespace-level retention policies that allow you to
override this default behavior for situations where you want to retain the topic data for
a longer period, such as if you want to access the topic data at a later point in time via
the reader interface or SQL. 

 These retention policies dictate how long you retain messages in persistent storage
after they have been acknowledged as consumed by all the known consumers.
Acknowledged messages that are not covered by the retention policy will be deleted.
Retention policies are defined by a combination of size and time limits and are
applied on a per-topic basis to every topic in that namespace. For instance, if you spec-
ify a size limit of 100 GB, then up to 100 GB worth of data will be retained in each
topic within that namespace, and once this size limit is exceeded, messages will be
purged from the topic (from oldest to newest) until the total data volume is under the
specified limit again. Similarly, if you specify a time limit of 24 hours, then acknowl-
edged messages for all the topics in the namespace will be retained for a maximum of
24 hours based on the time they were received by the broker.

 The retention policies require you to specify both a size and a time limit, which are
applied independently of one another. Thus, if a message violates either of these lim-
its, it will be removed from the topic, regardless of whether or not it complies with the
other policy. 

 If you specify a retention policy with time limit of 24 hours and a size limit of 10 GB
for the E-payments/refunds namespace, as shown in listing 2.4, then when either of
the specified policy limits are reached, the data is deleted. Therefore, it is possible for
messages that are less than 24 hours old to be deleted if the total volume exceeds 10 GB.

./bin/pulsar-admin namespaces set-retention E-payments/payments \
 --time 24h \
 --size -1                  B

./bin/pulsar-admin namespaces set-retention E-payments/fraud-detection \
 --time -1 \
 --size 20G                 c

./bin/pulsar-admin namespaces set-retention E-payments/refunds \
 --time 24h \
 --size 10G                 d

./bin/pulsar-admin namespaces set-retention E-payments/gift-cards \
 --time -1 \
 --size -1                  e

Listing 2.4 Setting various Pulsar retention policies
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B Retains all messages less than 24 hours old with no restriction on the size

c Retains up to 20 GB of messages with no restriction on the time

d Retains up to 10 GB of messages less than 24 hours old

e Retains an infinite number of messages

It is also possible to set infinite size or time by specifying a value of -1 for either of
those settings when you create the retention policy and providing it for both settings,
effectively creating an infinite retention policy for the namespace. Therefore, be care-
ful when using that policy, as the data will never be removed from the storage layer; be
sure you have sufficient storage capacity and/or configure periodic offloading of the
data to tiered storage.

2.3.2 Backlog quotas

Backlog is the term used for all the unacknowledged messages in a topic that must be
stored on bookies until they are delivered to all the intended recipients. By default,
Pulsar retains all unacknowledged messages indefinitely. However, Pulsar supports
namespace-level backlog quota policies that allow you to override this behavior to
reduce the space consumed by these unacknowledged messages in situations where one
or more of the consumers goes offline for an extended period due to a system crash. 

 These backlog quotas are designed to solve a very specific situation in which the
topic producers have sent more messages than the consumer can possibly process
without falling even further behind. Under these circumstances, you would want to
prevent the consumer from getting so far behind that it will never catch up. When this
situation occurs, you need to consider the timeliness of the data that the consumer is
processing and ensure that the consumer abandons older, less-recent data in favor of
more recent messages that can still be processed within the agreed upon SLA. If the
data in your topic becomes “stale” by sitting there for an extended period, then imple-
menting a backlog quota will help you focus your processing efforts on only the more
recent data by limiting the size of the backlog.

Unlike the message retention policies I discussed in the previous section, which are
intended to extend the lifespan of acknowledged messages inside a Pulsar topic, these
backlog quota policies are designed to reduce the lifespan of unacknowledged messages. 

N+1Producer Consumer

Topic’s unacknowledged messages

. . .

Allowable backlog size

123NN+2N+3

N+4

Figure 2.17 Pulsar’s backlog quota allows you to dictate what action the broker should take when the 
volume of unacknowledged messages exceeds a certain size. This prevents the backlog from growing so 
large that the consumer is processing data that is of little or no value.
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 You can limit the allowable size of these message backlogs by configuring a backlog
policy that specifies the maximum allowable size of the topic backlog and the action
to take when this threshold is exceeded, as shown in figure 2.17. There are three dis-
tinct options for the backlog retention policy, which dictate the behavior the broker
should take to alleviate the condition:

 The broker can reject inbound messages by sending an exception to the pro-
ducers to indicate that they should hold off sending new messages by specifying
the producer_request_hold retention policy.

 Rather than requesting that the producers hold off, the broker will forcibly
disconnect any existing producers when the producer_exception policy is specified.

 If you want the broker to discard existing, unacknowledged messages from the
topic, then you should specify the consumer_backlog_eviction policy.

Each of these provide you with three very different approaches to handling the situa-
tion shown in figure 2.17. The first one, producer_request_hold, would leave the
producer connected but throw an exception to slow it down. This policy would be
applicable in a scenario where you want the client application to catch the thrown
exception and resend the message at a later point. So, it would be best to use this pol-
icy when you don’t want to reject any messages sent from the consumer, and the cli-
ents will buffer the rejected messages for a period of time before resending them. 

 The second policy, producer_exception, would forcibly disconnect the producer
entirely, which would stop the messages from getting published and would require the
producer code to detect this condition and reconnect. With this policy there is the dis-
tinct possibility of losing messages sent from the client producers during the period
they are disconnected. This policy is best used when you know the producers aren’t
capable of buffering messages (e.g., they are running inside a resource-constrained
environment, such as an IoT device), and you don’t want Pulsar’s inability to receive
messages to cause the client application to crash.

 The last policy, consumer_backlog_eviction, does not impact the functionality of
the producer whatsoever, and it will continue to produce messages at the current rate.
However, older messages that haven’t been consumed will be discarded, resulting in
message loss. 

2.3.3 Message expiration

As we already discussed, Pulsar retains all unacknowledged messages indefinitely, and
one of the tools we must use to prevent these messages from backing up is backlog
quotas. However, one of the downsides of backlog quotas is that they only allow you to
make your decision on whether to keep a message based on the total space consumed
by the topic’s unacknowledged messages. As you’ll recall, one of the primary reasons
for backlog quotas was to ensure that the consumer was ignoring stale data in favor of
more recent data. Therefore, it would make more sense if there was a way to enforce
exactly that based on the age of messages themselves. This is where message expira-
tion policies come into play. 



63Message retention and expiration

 Pulsar supports namespace-level time-to-live (TTL) policies that allow you to have
messages automatically deleted if they remain unacknowledged after a certain period of
time. Message expiration is useful in situations where it is more important for the appli-
cation consuming the data to be working with more recent data, rather than a complete
history. One such example would be driver location data being displayed for users of a
ride-sharing application while their driver is en route. The customer is more interested
in the most recent location of the driver than they are in where the driver was five min-
utes ago. Therefore, driver location information that is older than five minutes would
no longer be relevant and should be purged to allow the consumers to process only the
more recent data, rather than trying to process messages that are no longer useful.

./bin/pulsar-admin namespaces set-backlog-quota E-payments/payments \
--limit 2G
--policy producer_request-hold        B

./bin/pulsar-admin namespaces set-message-ttl E-payments/payments \
--messageTTL 120                      c

B Defines a backlog quota with a size limit of 2 GB and producer_request_hold policy

c Sets the message TTL to 120 seconds

A namespace can have both a backlog quota and a TTL policy associated with it to
provide even finer control over the retention of unacknowledged messages stored
inside a Pulsar topic, as shown in listing 2.5.

2.3.4 Message backlog vs. message expiration

Message retention and message expiration solve two fundamentally different prob-
lems. As you can see in figure 2.18, message retention policies only apply to acknowl-
edged messages, and those messages that fall within the retention policy are retained.
Message expiration only applies to unacknowledged messages and is controlled by the
TTL setting, meaning any messages that are not processed and acked within that time-
frame are discarded and not processed.

Listing 2.5 Setting backlog quota and message expiration policies

Figure 2.18 The backlog quota applies to messages that have not been acknowledged by all 
subscriptions and is based on the TTL setting, while the retention policy applies to acknowledged 
messages and is based on the volume of data to retain.

Un-acked messages

Outside of 
retention policy

1617181920

Within retention
policy

678

Acked messages

Outside the TTL Within the TTL

111 910 2345

Backlog quota applies Retention policy applies

12131415

Not yet deleted. Can be 
accessed by readers.

Will be deletedRetainedWill be deleted



64 CHAPTER 2 Pulsar concepts and architecture

Message retention policies can be used in conjunction with tiered storage to support
infinite message retention for critical datasets you want to retain indefinitely for
backup/recovery, event sourcing, or SQL exploration.

2.4 Tiered storage
Pulsar’s tiered storage feature allows older topic data to be offloaded to more cost-
effective long-term storage, thereby freeing up disk space inside of the bookies. To the
end user, there is no difference between consuming a topic whose data is stored inside
Apache BookKeeper or one whose data is on tiered storage. The clients still produce
and consume messages in the same way, and the entire process is handled transpar-
ently behind the scenes.

 As we discussed earlier, Apache Pulsar stores topics as an ordered list of ledgers that
are spread across the bookies in the storage layer. Because these ledgers are append-
only, new messages are only written to the final ledger in the list. All the previous led-
gers are sealed, so the data within the segment is immutable. Because the data is
immutable, it can be easily be copied to another storage system, such as cloud storage. 

Once the copy is complete, the managed ledger information can be updated to reflect
the new storage location of the data, as shown in figure 2.19, and the original copy of
the data stored in Apache BookKeeper can be deleted. When a ledger is offloaded to
an external storage system, the ledgers are copied to that storage system one by one,
from oldest to newest. 

Managed ledger

. . .
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persistent://tenant/ns/my-topic

Pulsar

Cloud storage

Ledger-20Ledger-245
. . .

Ledger-304
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Ledger-358

BookKeeper

Ledger-407

Figure 2.19 When using tiered storage, ledgers that have been closed can be copied over to cloud 
storage and removed from the bookies to free up space. The managed ledger entries are updated to 
reflect the new location of the ledgers, which can still be read by the topic consumers.
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 Apache Pulsar currently supports multiple cloud storage systems for tiered storage,
but I will focus on using AWS in this section. Please consult the documentation for
more details on how to use other cloud vendors’ storage systems. 

AWS OFFLOAD CONFIGURATION

The first steps you need to perform are to create the S3 bucket you will be using to
store the offloaded ledgers and to ensure that the AWS account you are going to use
has sufficient permissions to read and write data to the bucket. Once those are com-
pleted, you will need to modify the broker configuration settings again, as shown in
the following listing.

managedLedgerOffloadDriver=aws-s3                          b
s3ManagedLedgerOffloadBucket=offload-test-aws              c
s3ManagedLedgerOffloadRegion=us-east-1                     d
s3ManagedLedgerOffloadRole=<aws role arn>                  e
s3ManagedLedgerOffloadRoleSessionName=pulsar-s3-offload    f

b Specifies the offload driver type as AWS S3

c The S3 bucket name used for ledger storage

d The AWS Region where the bucket is located

e If you want the offloader to assume an IAM role to perform its work, use this property.

f Specify the session name to use when assuming an IAM role.

You will need to add the AWS-specific settings to tell the Pulsar where to store the led-
gers inside of S3. Once these settings are added, you can save the file and restart the
Pulsar brokers for the changes to take effect.

AWS AUTHENTICATION

For Pulsar to offload data to S3, it must authenticate with AWS using a valid set of cre-
dentials. As you may have already noticed, Pulsar doesn’t provide any means of config-
uring authentication for AWS. Instead, it relies on the standard mechanisms
supported by the DefaultAWSCredentialsProviderChain, which searches for AWS
credentials in various predefined locations.

 If you are running your broker on an AWS instance with an instance profile that
provides credentials, Pulsar will use these credentials if no other mechanism is pro-
vided. Alternatively, you can provide your credentials via environment variables. The
easiest way to do this is to edit the conf/pulsar_env.sh file and export the environment
variables AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY by adding the statements
shown in the following listing. 

# Add these at the beginning of the pulsar_env.sh
export AWS_ACCESS_KEY_ID=ABC123456789
export AWS_SECRET_ACCESS_KEY=ded7db27a4558e2ea8bbf0bf37ae0e8521618f366c

Listing 2.6 Configuring AWS tiered storage in Pulsar

Listing 2.7 Providing AWS credentials via environment variables
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# or you can set them here instead.
PULSAR_EXTRA_OPTS="${PULSAR_EXTRA_OPTS} ${PULSAR_MEM} ${PULSAR_GC} 
-Daws.accessKeyId=ABC123456789 
-Daws.secretKey=ded7db27a4558e2ea8bbf0bf37ae0e8521618f366c 
-Dio.netty.leakDetectionLevel=disabled 
-Dio.netty.recycler.maxCapacity.default=1000 
-Dio.netty.recycler.linkCapacity=1024"

You only need to use one of the two methods shown in listing 2.7. Both options work
equally well, so you can take your pick. However, both methods pose a security risk, as
these AWS credentials will be visible in the process if you run a linux ps command. If
you would prefer to avoid that scenario, you can store your credentials in the tradi-
tional location for AWS credentials files, ~/.aws/credentials (shown in listing 2.8),
which can be modified to have read-only permissions for the user account that will be
launching the Pulsar broker (e.g., root). However, this approach does require you to
store your unencrypted credentials on disk, which introduces some security risks, so it
is not recommend for production use.

[default]
aws_access_key_id=ABC123456789
aws_secret_access_key=ded7db27a4558e2ea8bbf0bf37ae0e8521618f366c

CONFIGURING OFFLOAD TO RUN AUTOMATICALLY

Simply because we have configured the managed ledger offloader does not mean that
the offloading will occur. We still need to define a namespace-level policy to have the
data offloaded automatically once a certain threshold is reached. The threshold is
based on the total volume of data that a Pulsar topic has stored in the BookKeeper
storage layer. 

/pulsar/bin/pulsar-admin namespaces set-offload-threshold \
–size 10GB \
E-payments/payments

You can define a policy such as the one shown in listing 2.9, which sets a threshold of
10 GB for all topics in the namespace. Once a topic reaches 10 GB of storage, an off-
load of all closed segments is triggered. Setting the threshold to zero will cause the
broker to offload ledgers as aggressively as it can and can be used to minimize the
amount of topic data stored on BookKeeper. Specifying a negative value for the
threshold effectively disables automatic offloading entirely and can be used for topics
with tight SLA response times that cannot tolerate the additional latency required to
read data from tiered storage.

Listing 2.8 Contents of the ~/.aws/credentials file

Listing 2.9 Configuring automatic offloads to tiered storage
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 Tiered storage should be used when you have a topic for which you want to retain
the data for a very long time. One example would be clickstream data for a customer-
facing website. This information should be retained for a long period of time in case
you want to perform user behavioral analytics on your customer's interactions in
order to detect patterns of behavior.

 While tiered storage is often used in conjunction with topics that have retention
policies that encompass enormous amounts of data, there is no such requirement. It
can, in fact, be used with any topic.

Summary
 We discussed the logical structure of Pulsar’s address space in order to support

multitenancy.
 We discussed the difference between message retention and message expiration

in Pulsar.
 We discussed the low-level details of how Pulsar stores and serves messages.
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Interacting with Pulsar

Now that we have covered the overall architecture and terminology of Apache Pul-
sar, let’s start using it. For local development and testing, I recommend running
Pulsar inside a Docker container on your own machine, which provides an easy way
to get started with Pulsar with a minimal amount of time, effort, and money. For
those of you who would prefer to use a full-size Pulsar cluster, you can refer to
appendix A for more details on how to install and run one inside a containerized
environment, such as Kubernetes. In this chapter, I will walk you through the pro-
cess of sending and receiving messages programmatically using the Java API, start-
ing with the process of creating a Pulsar namespace and topic using Pulsar’s
administrative tools.

This chapter covers
 Running a local instance of Pulsar on your 

development machine

 Administering a Pulsar cluster using its command-
line tools

 Interacting with Pulsar using the Java, Python, and 
Go client libraries

 Troubleshooting Pulsar with its command-line tools
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3.1 Getting started with Pulsar
For the purposes of local development and testing, you can run Pulsar on your devel-
opment machine within a Docker container. If you don’t already have Docker
installed, you should download the community edition (https://www.docker.com/
community-edition) and follow the instructions for your operating system. For those
of you unfamiliar with Docker, it is an open source project for automating the deploy-
ment of applications as portable, self-contained images that can be run from a single
command. Each Docker image bundles all the separate software components neces-
sary to run an entire application together into a single deployment. For example, the
Docker image for a simple web application would include the web server, database,
and application code—in short, everything the application needs to run. Similarly,
there is an existing Docker image that includes a Pulsar broker as well as the necessary
ZooKeeper and BookKeeper components. 

 Software developers can create Docker images and publish them to a central
repository known as Docker Hub. You can specify a tag when uploading an image that
uniquely identifies it. This allows people to quickly locate and download the desired
version of the image to their development machines. 

 To start the Pulsar Docker container, simply execute the command shown in listing
3.1, which will download the container image and start all the necessary components.
Note that we have specified a pair of ports (6650 and 8080) that will be exposed on
your local machine. You will use these ports to interact with the Pulsar cluster later in
the chapter. 

docker pull apachepulsar/pulsar-standalone     B

docker run -d \
  -p 6650:6650 -p 8080:8080 \                  c
  -v $PWD/data:/pulsar/data \                  d
  --name pulsar \                              e
 apachepulsar/pulsar-standalone                f

B Pull down the latest version from DockerHub.

c Configure port forwarding for these ports.

d Retain the data on a local drive.

e Specify the name of the container.

f The tag for the standalone image

If Pulsar has successfully started, you should be able to locate INFO-level messages in
the log file of the Pulsar container indicating that the messaging service is ready, like
those shown in the following listing. You can access the Docker log files via the docker
log command, which allows you to locate any issues if your container fails to start.

 
 

Listing 3.1 Running Pulsar on your desktop

https://www.docker.com/community-edition
https://www.docker.com/community-edition
https://www.docker.com/community-edition
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$docker logs pulsar | grep "messaging service is ready"

20:11:45.834 [main] INFO  org.apache.pulsar.broker.PulsarService - 

➥ messaging service is ready
20:11:45.855 [main] INFO  org.apache.pulsar.broker.PulsarService - 

➥ messaging service is ready, bootstrap service port = 8080, 

➥ broker url= pulsar://localhost:6650, cluster=standalone

These log messages indicate that the Pulsar broker is up and running and accepting
connections on port 6650 of your local development machine. Therefore, all the code
examples in this chapter will use the pulsar://localhost:6650 URL to send and
receive data from the Pulsar broker. 

3.2 Administering Pulsar
Pulsar provides a single administrative layer that allows you to administer the entire
Pulsar instance, including all the subclusters, from a single endpoint. Pulsar’s admin
layer controls authentication and authorization for all tenants, resource isolation poli-
cies, storage quotas, and more, as shown in figure 3.1. 

This administrative interface allows you to create and manage all the various entities
within a Pulsar cluster, such as tenants, namespaces, and topics, and configure their

Listing 3.2 Verifying that the Pulsar cluster is running
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various security and data retention policies. Users can interact with this administrative
interface via the pulsar-admin command-line interface tool or programmatically via a
Java API, as shown in figure 3.1 

 When you start a local standalone cluster, Pulsar automatically creates a public
tenant with a namespace named default that can be used for development purposes.
However, this is not a realistic production scenario, so I will demonstrate how to create
a tenant and namespace.

3.2.1 Creating a tenant, namespace, and topic 

Pulsar provides a command-line interface (CLI) tool called pulsar-admin inside the
bin folder of your Pulsar installation, which in our case is inside the Docker container.
Therefore, to use this command line tool, you must execute the command inside the
running Docker container. Fortunately, Docker provides a method for doing just that
via its docker exec command. Just like the name implies, this command executes the
given statement inside the container itself, rather than on your local machine. You
can start using the pulsar-admin CLI by issuing the sequence of commands shown in
the listing that follows to create a topic named persistent://manning/chapter03/
example-topic that we will use in throughout the chapter. 

docker exec -it pulsar /pulsar/bin/pulsar-admin clusters list                B
"standalone"

docker exec -it pulsar /pulsar/bin/pulsar-admin tenants list                 c
"public"
"sample"

docker exec -it pulsar /pulsar/bin/pulsar-admin tenants create manning       d

docker exec -it pulsar /pulsar/bin/pulsar-admin tenants list                 e
"manning"
"public"
"sample"

docker exec -it pulsar /pulsar/bin/pulsar-admin namespaces                   f
➥ create manning/chapter03  

docker exec -it pulsar /pulsar/bin/pulsar-admin namespaces list manning    
"manning/chapter03"                                                          g

docker exec -it pulsar /pulsar/bin/pulsar-admin topics create 

➥ persistent://manning/chapter03/example-topic                              h

docker exec -it pulsar /pulsar/bin/pulsar-admin topics list manning/chapter03i
"persistent://manning/chapter03/example-topic"

B List all the clusters in the Pulsar instance.

c List all the tenants in the Pulsar instance.

Listing 3.3 pulsar-admin commands
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d Create a new tenant named manning.

e Confirm that the new tenant was created.

f Create a new namespace named chapter03 under the manning tenant

g List the namespaces under the manning tenant.

h Create a new topic.

i List the topic inside the manning/chapter03 namespace.

These commands barely scratch the surface of what you can do with the pulsar-
admin tool, and I highly recommend that you refer to the online documentation
(https://pulsar.apache.org/docs/en/pulsar-admin) for additional details on the CLI
tool and all of its features. We will revisit the pulsar-admin CLI tool later in the chap-
ter to retrieve some performance metrics from the cluster after we have published
some messages. 

3.2.2 Java Admin API

Another way in which you can administer the Pulsar Instance is via the Java Admin
API, which provides a programmable interface for performing administrative tasks.
Listing 3.4 shows how to create the persistent://manning/chapter03/example-
topic topic using the Java API. This API provides an alternative to the CLI tool and is
particularly useful inside of unit tests when you want to create and tear down the nec-
essary Pulsar topics programmatically, rather than relying on an external tool.

import org.apache.pulsar.client.admin.PulsarAdmin;
import org.apache.pulsar.common.policies.data.TenantInfo;

public class CreateTopic {
    public static void main(String[] args) throws Exception {
        PulsarAdmin admin = PulsarAdmin.builder()
          .serviceHttpUrl("http://localhost:8080")                   B
          .build();

        TenantInfo config = new TenantInfo(
          Stream.of("admin").collect(
         Collectors.toCollection(HashSet::new)),                     c
          Stream.of("standalone").collect(
         Collectors.toCollection(HashSet::new)));                    d

        admin.tenants().createTenant("manning", config);             e
        admin.namespaces().createNamespace("manning/chapter03");     f
        admin.topics().createNonPartitionedTopic(
        "persistent://manning/chapter03/example-topic");             g
    }
}

B Create an admin client for the Pulsar cluster running inside Docker.

c Specify the admin roles for the tenant.

d Specify the clusters that the tenant can operate on.

Listing 3.4 Using the Java admin API
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e Create the tenant.

f Create the namespace.

g Create the topic.

3.3 Pulsar clients
Pulsar provides a CLI tool called pulsar-client that allows you to send and receive mes-
sages from a topic in a running Pulsar cluster. This tool also resides inside the bin
folder of your Pulsar installation, and thus, we will need to use the docker exec com-
mand again to interact with this tool.

 Since the topic has already been created, we can start by first attaching a consumer
to it, which will establish a subscription and ensure that no messages are lost. This can
be accomplished by running the command shown in the following listing. The con-
sumer is a blocking script, meaning it will keep consuming messages from the topic until
the script is stopped by you (with Ctrl+C).

$ docker exec -it pulsar /pulsar/bin/pulsar-client consume \
persistent://manning/chapter03/example-topic \             B
--num-messages 0 \                                         c
--subscription-name example-sub \                          d
--subscription-type Exclusive                              e

INFO  org.apache.pulsar.client.impl.ConnectionPool - [[id: 0xe410f77d,

➥ L:/127.0.0.1:39276 - R:localhost/127.0.0.1:6650]] Connected to server
18:08:15.819 [pulsar-client-io-1-1] INFO  

➥ org.apache.pulsar.client.impl.ConsumerStatsRecorderImpl - Starting Pulsar 

➥ consumer perf with config: {                            f
  "topicNames" : [ ],
  "topicsPattern" : null,
  "subscriptionName" : "example-sub",                      g
  "subscriptionType" : "Exclusive",                        h
  "receiverQueueSize" : 1000,
  "acknowledgementsGroupTimeMicros" : 100000,
  "negativeAckRedeliveryDelayMicros" : 60000000,
  "maxTotalReceiverQueueSizeAcrossPartitions" : 50000,
  "consumerName" : "3d7ce",
  "ackTimeoutMillis" : 0,
  "tickDurationMillis" : 1000,
  "priorityLevel" : 0,
  "cryptoFailureAction" : "FAIL",
  "properties" : { },
  "readCompacted" : false,
  "subscriptionInitialPosition" : "Latest",                i
  "patternAutoDiscoveryPeriod" : 1,
  "regexSubscriptionMode" : "PersistentOnly",
  "deadLetterPolicy" : null,
  "autoUpdatePartitions" : true,
  "replicateSubscriptionState" : false,
  "resetIncludeHead" : false
}
...

Listing 3.5 Starting a command-line consumer
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18:08:15.980 [pulsar-client-io-1-1] INFO  

➥ org.apache.pulsar.client.impl.MultiTopicsConsumerImpl – 

➥ [persistent://manning/chapter02/example] [example-sub] Success 

➥ subscribe new topic persistent://manning/chapter02/example in topics 

➥ consumer, partitions: 2, allTopicPartitionsNumber: 2
18:08:47.644 [pulsar-client-io-1-1] INFO  

➥ com.scurrilous.circe.checksum.Crc32cIntChecksum - SSE4.2 CRC32C 

➥ provider initialized

B The name of the topic we are consuming from

c The number of messages to consume; 0 means consume forever.

d The unique name of the subscription

e The type of subscription

f Consumer configuration details

g You can see the subscription name we specified on the command line.

h You can see the subscription type we specified on the command line.

i Start consuming from the latest available message.

In a different shell, we will start a producer by issuing the command shown in the fol-
lowing listing to send two messages containing the text “Hello Pulsar” to the same
topic we just started the consumer on.

$ docker exec -it pulsar /pulsar/bin/pulsar-client produce \
persistent://manning/chapter03/example-topic \               B
--num-produce 2 \                                            c
--messages "Hello Pulsar"                                    d
18:08:47.106 [pulsar-client-io-1-1] INFO  

➥ org.apache.pulsar.client.impl.ConnectionPool - [[id: 0xd47ac4ea, 

➥ L:/127.0.0.1:39342 - R:localhost/127.0.0.1:6650]] Connected to server
18:08:47.367 [pulsar-client-io-1-1] INFO  

➥ org.apache.pulsar.client.impl.ProducerStatsRecorderImpl - Starting 

➥ Pulsar producer perf with config: {                       e
  "topicName" : "persistent://manning/chapter02/example",
  "producerName" : null,
  "sendTimeoutMs" : 30000,
  "blockIfQueueFull" : false,
  "maxPendingMessages" : 1000,
  "maxPendingMessagesAcrossPartitions" : 50000,
  "messageRoutingMode" : "RoundRobinPartition",
  "hashingScheme" : "JavaStringHash",
  "cryptoFailureAction" : "FAIL",
  "batchingMaxPublishDelayMicros" : 1000,
  "batchingMaxMessages" : 1000,
  "batchingEnabled" : true,
  "compressionType" : "NONE",
  "initialSequenceId" : null,
  "autoUpdatePartitions" : true,
  "properties" : { }
}

Listing 3.6 Sending a message using the Pulsar command-line producer
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...
18:08:47.689 [main] INFO  org.apache.pulsar.client.cli.PulsarClientTool - 2 

➥ messages successfully produced                            f

B The name of the topic we are publishing to

c The number of times to send the message

d The message contents

e Producer configuration details

f The publishing of the messages

After executing the producer command in listing 3.6, you should see something like
the code in the following listing inside the shell where you started the consumer. This
indicates that the messages were successfully published by the producer and received
by the consumer.

----- got message -----
key:[null], properties:[], content:Hello Pulsar
----- got message -----
   key:[null], properties:[], content:Hello Pulsar

Congratulations, you have just successfully sent your first messages using Pulsar! Now
that we have confirmed that our local Pulsar cluster is working and capable of sending
and receiving messages, let’s look at some more realistic examples, using various pro-
gramming languages. Pulsar provides a simple and intuitive client API that encapsu-
lates all the broker–client communication details from the user. Due to the popularity
of Pulsar, there are several language-specific implementations of this client, including
Java, Go, Python, and C++, just to name a few. This allows each team in your organiza-
tion to use whatever language they like to implement their services.

 While there are significant discrepancies in the features supported by the official
Pulsar client libraries based on the programming language you chose (please refer to
the official client documentation for details), under the covers they all support trans-
parent reconnection and/or connection failover to brokers, queuing of messages
until acknowledged by the broker, and heuristics, such as connection retries with
backoff. This allows the developer to focus on the messaging logic, rather than having
to handle connection exceptions in their application code.

3.3.1 The Pulsar Java client

In addition to the Java Admin API we looked at earlier in the chapter, Pulsar also pro-
vides a Java client that can be used to create producers, consumers, and message read-
ers. The latest version of the Pulsar Java client library is available in the Maven central
repository. To use the latest version, simply add the Pulsar client library to your build
configuration, as shown in the next listing. Once you have added the Pulsar client
library to your project, you can start using it to interact with Pulsar by creating clients,
producers, and consumers inside your Java code, as we’ll see in the next section.

Listing 3.7 Receipt of messages in consumer shell
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<!-— Inside your pom.xml -->
<properties>
   <pulsar.version>2.7.2</pulsar.version>
</properties>

<dependency>
  <groupId>org.apache.pulsar</groupId>
  <artifactId>pulsar-client</artifactId>
  <version>${pulsar.version}</version>
</dependency>

PULSAR CLIENT CONFIGURATION IN JAVA

When an application wants to create either a producer or a consumer, you first need
to instantiate a PulsarClient object, using code like that shown in the following listing.
In this object, you will provide the URL of the Pulsar broker along with any other con-
nection configuration information that may be required, such as security credentials. 

PulsarClient client = PulsarClient.builder()
        .serviceUrl("pulsar://localhost:6650")      B
        .build();

B The connection URL to the Pulsar broker

The PulsarClient object handles all the low-level details involved in creating a connec-
tion to the Pulsar broker, including automatic retries and connection security if the
Pulsar broker has TLS configured. Client instances are thread safe and can be reused
for creating and managing multiple producers and consumers. 

PULSAR PRODUCERS IN JAVA

In Pulsar, producers are used to write messages to topics. Listing 3.10 shows how you
can create a producer in Java by specifying the name of the topic you are going to
send messages to. While there are several configuration settings that can be used
when creating a producer, all that is required is the topic name itself. 

Producer<byte[]> producer = client.newProducer()
        .topic("persistent://manning/chapter03/example-topic")
        .create();

It is also possible to attach metadata to a given message, as shown in listing 3.11, which
shows how to specify the message key that is used for routing with a key-shared
subscription, along with some message properties. This capability can be used to tag
the message with useful information, such as when the message was sent, who sent the
message, the device ID if the message is from an embedded sensor, and other
information.

Listing 3.8 Adding the Pulsar client library to your Maven project

Listing 3.9 Creating a PulsarClient in Java

Listing 3.10 Creating a Pulsar producer in Java
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Producer<byte[]> producer = client.newProducer()
        .topic("persistent://manning/chapter03/example-topic")
        .create();

producer.newMessage()
    .key("tempurture-readings")                      B
    .value("98.0".getBytes())                        c
    .property("deviceID", "1234")                    d
    .property("timestamp", "08/03/2021 14:48:24.1")
    .send();

B You can specify a message key.

c Send the message content as a byte array.

d You can attach as many properties as you like.

The metadata values you attach to the message will be available to the message con-
sumers who can then use that information when performing their processing logic.
For example, a property containing a timestamp value that represents when the mes-
sage was sent could be used to sort the incoming messages into chronological order of
occurrence or to correlate it with messages from another topic. 

PULSAR CONSUMERS IN JAVA

In Pulsar, the consumer interface is used to listen on a specific topic and process the
incoming messages. After a message has been successfully processed, an acknowledg-
ment should be sent back to the broker to indicate that we are done processing the
message within the subscription. This allows the broker to know which message in the
topic needs to be delivered to the next consumer on the subscription. In Java, you can
create a consumer by specifying a topic and a subscription, as shown in the following
listing.

Consumer consumer = client.newConsumer()
    .topic("persistent://manning/chapter03/example-topic")    B
    .subscriptionName("my-subscription")                      c
    .subscribe();

B Specify the topic you want to consume from.

c You must specify the unique name of your subscription.

The subscribe method will attempt to connect the consumer to the topic using the
specified subscription, which may fail if the subscription already exists and isn’t one of
the shared subscription types (e.g., you attempt to connect to an exclusive subscrip-
tion that already has an active consumer). If you are connecting to the topic for the
first time using the specified subscription name, a subscription is created for you auto-
matically. Whenever a new subscription is created, it is initially positioned at the end
of the topic by default, and consumers on that subscription will begin reading the first

Listing 3.11 Specifying metadata in Pulsar messages

Listing 3.12 Creating a Pulsar consumer in Java
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message created after the subscription was created. If you are connecting to a preexist-
ing subscription, it will begin reading from the earliest unacknowledged message
within the subscription, as shown in figure 3.2. This ensures that you pick up from
where you left off in the event that your consumer is unexpectedly disconnected from
the topic.

One common consumption pattern is to have the consumer listen on the topic inside
a while loop. In listing 3.13, the consumer continuously listens for messages, prints
the contents of any message that’s received, and then acknowledges that the message
has been processed. If the processing logic fails, we use negative acknowledgement to
have the message redelivered at a later point in time. 

while (true) {
  // Wait for a message
  Message msg = consumer.receive();                   B

  try {
      System.out.println("Message received: " + 
                         new String(msg.getData()));  c
      consumer.acknowledge(msg);                      d
  } catch (Exception e) {
      consumer.negativeAcknowledge(msg);              e
  }
}

B Wait for a message.

c Process the message.

d Acknowledge the message so it can be deleted by the broker.

e Mark the message for redelivery.

The message consumer shown in listing 3.13 processes the messages in a synchronous
manner because the receive() method it is using to retrieve messages is a blocking
method (i.e., it waits indefinitely for a new message to arrive). While this might be fine
for some use cases where the message volume is low, or we are not concerned about

Listing 3.13 Consuming Pulsar messages in Java
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Figure 3.2 The consumer starts reading messages immediately after the most recently 
acknowledged message in the subscription. If the subscription is new, then it starts 
reading the messages that are added to the topic after the subscription was created.
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the latency between when a message is published and when it is processed, generally
synchronous processing is not the best approach. A better approach is to process
these messages in an asynchronous manner, which relies on the MessageListener
interface provided by the Java API, as shown in the following listing. 

package com.manning.pulsar.chapter3.consumers;
 
import java.util.stream.IntStream;
 
import org.apache.pulsar.client.api.ConsumerBuilder;
import org.apache.pulsar.client.api.PulsarClient;
import org.apache.pulsar.client.api.PulsarClientException;
import org.apache.pulsar.client.api.SubscriptionType;
 
public class MessageListenerExample {
 
public static void main() throws PulsarClientException {

  PulsarClient client = PulsarClient.builder()              B
        .serviceUrl(PULSAR_SERVICE_URL)
        .build();
 
  ConsumerBuilder<byte[]> consumerBuilder =                 c
     client.newConsumer()
        .topic(MY_TOPIC)
        .subscriptionName(SUBSCRIPTION)
        .subscriptionType(SubscriptionType.Shared)
        .messageListener((consumer, msg) -> {               d
           try {
            System.out.println("Message received: " +  
                 new String(msg.getData()));
             consumer.acknowledge(msg);
          } catch (PulsarClientException e) {
            
          }
    })

  IntStream.range(0, 4).forEach(i -> {                      e
    String name = String.format("mq-consumer-%d", i);
    try {
       consumerBuilder
        .consumerName(name)
        .subscribe();                                       f
   } catch (PulsarClientException e) {
     e.printStackTrace();
   }
 });
 
  ...
  }
}

Listing 3.14 Asynchronous message processing in Java
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B The Pulsar client used to connect to Pulsar

c The consumer factory that will be used to create the consumer instances later

d The business logic to execute when a message is received

e Create five consumers on the topic, each with the same MessageListener implementation.

f Connects the consumer to the topic to start receiving messages

When using the MessageListener interface, as shown in listing 3.14, you pass in the
code that you want executed whenever a message is received. In this case I used a Java
Lambda to provide the code inline, and you can see that I still have access to the con-
sumer that I can use to acknowledge the message. Using the listener pattern allows you
to separate the business logic from the management of the threads because the Pulsar
consumer automatically creates a thread pool for running the MessageListeners
instances and handles all the threading logic for you. Putting this all together, we have
a Java program in the following listing that instantiates a Pulsar client and uses it to cre-
ate a producer and a consumer that exchange messages over the my-topic topic. 

import org.apache.pulsar.client.api.Consumer;
import org.apache.pulsar.client.api.Message;
import org.apache.pulsar.client.api.Producer;
import org.apache.pulsar.client.api.PulsarClient;
import org.apache.pulsar.client.api.PulsarClientException;

public class BackAndForth {

  public static void main(String[] args) throws Exception {
    BackAndForth sl = new BackAndForth();
    sl.startConsumer();
    sl.startProducer();
  }
  private String serviceUrl = "pulsar://localhost:6650";
  String topic = "persistent://manning/chapter03/example-topic";;
  String subscriptionName = "my-sub";

  protected void startProducer() {
      Runnable run = () -> {
        int counter = 0;
        while (true) {
          try {
           getProducer().newMessage()
              .value(String.format("{id: %d, time: %tc}", 
               ++counter, new Date()).getBytes())     
              .send();
            Thread.sleep(1000);
          } catch (final Exception ex) { }
        }};
      new Thread(run).start();
  }

  protected void startConsumer() {
    Runnable run = () -> {

Listing 3.15 Endless Pulsar producer and consumer pair
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      while (true) {
        Message<byte[]> msg = null;  
        try {
          msg = getConsumer().receive();    
          System.out.printf("Message received: %s \n",
          new String(msg.getData()));
       getConsumer().acknowledge(msg);    
    } catch (Exception e) {
      System.err.printf(
        "Unable to consume message: %s \n", e.getMessage()); 
      consumer.negativeAcknowledge(msg);
    }
   }};
   new Thread(run).start();
 }

 protected Consumer<byte[]> getConsumer() throws PulsarClientException {
   if (consumer == null) {
      consumer = getClient().newConsumer()
          .topic(topic)
          .subscriptionName(subscriptionName) 
          .subscriptionType(SubscriptionType.Shared)
          .subscribe();
   }
   return consumer;
 }

 protected Producer<byte[]> getProducer() throws PulsarClientException {
    if (producer == null) {
      producer = getClient().newProducer()
        .topic(topic).create();
    }
    return producer;
 }

 protected PulsarClient getClient() throws PulsarClientException {
    if (client == null) {
      client = PulsarClient.builder()
       .serviceUrl(serviceUrl)   
       .build();
    }
    return client;
  }
}

As you can see, this code creates both a producer and consumer on the same topic
and runs them simultaneously in separate threads. If you run this code, you should
see output like the following listing. 

Message received: {id: 1, time: Sun Sep 06 16:24:04 PDT 2020} 
Message received: {id: 2, time: Sun Sep 06 16:24:05 PDT 2020} 
Message received: {id: 3, time: Sun Sep 06 16:24:06 PDT 2020} 
...

Listing 3.16 Endless Pulsar producer and consumer pair output
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Notice how the first two messages we sent earlier are not included in the output, since
the subscription was created after those messages were published. This is in direct con-
trast to the Reader interface, which we will examine shortly.

DEAD LETTER POLICY

While there are several configuration options for a Pulsar consumer that are
described in the online documentation (https://pulsar.apache.org/docs/en/client-
libraries-java/#configure-consumer), I wanted to highlight the dead-letter-policy con-
figuration, which is useful when you encounter messages that cannot be processed
successfully, such as when you are parsing unstructured messages from a topic. Under
normal processing conditions, these messages would cause an exception to be thrown. 

 At this point you have a couple of options; the first is to trap any exceptions, and
simply acknowledge these messages as successfully processed, which effectively
ignores them. Another option is to have them redelivered by negatively acknowledg-
ing them. However, this approach might result in an infinite redelivery loop for these
messages if the underlying issue with the messages cannot be resolved (e.g., a message
that cannot be parsed will always throw an exception no matter how many times you
process it). A third option is to route these problematic messages to a separate topic,
known as a dead-letter topic. This allows you to avoid the infinite redelivery loop,
while retaining the messages for further processing and/or examination at a later
point in time.

Consumer consumer = client.newConsumer()
    .topic("persistent://manning/chapter03/example-topic")
    .subscriptionName("my-subscription")
    .deadLetterPolicy(DeadLetterPolicy.builder()
       .maxRedeliverCount(10)                                       B
       .deadLetterTopic("persistent://manning/chapter03/my-dlq”))   c
    .subscribe();

B Set the max redelivery count.

c Set the dead-letter topic name.

To configure a dead-letter policy for a particular consumer, Pulsar requires you to
specify a few properties, such as the max redelivery count, when you first build it, as
shown in listing 3.17. When a message exceeds the user-specified maximum redelivery
count, it will be sent to the dead-letter topic and acknowledged automatically. These
messages can then be examined at a later point in time.

PULSAR READERS IN JAVA

The reader interface allows applications to manage the positions from which they will
consume messages. When you connect to a topic using a reader, you must specify which
message the reader will begin consuming messages from when it connects to the topic.
In short, the reader interface provides Pulsar clients with a low-level abstraction that
allows them to manually position themselves within a topic, as shown in figure 3.3.

Listing 3.17 Configure the dead letter topic policy on a consumer

https://pulsar.apache.org/docs/en/client-libraries-java/#configure-consumer
https://pulsar.apache.org/docs/en/client-libraries-java/#configure-consumer
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The reader interface is helpful for use cases like using Pulsar to provide effectively-
once processing semantics for a stream processing system. For this use case, it’s essen-
tial that the stream processing system is able to rewind topics to a specific message and
begin reading there. If you choose to explicitly provide a message ID, your application
will be responsible for knowing this message ID in advance, perhaps fetching it from a
persistent data store or cache. Once you’ve instantiated a PulsarClient object, you can
create a Reader, as shown in the following listing.

Reader<byte[]> reader = client.newReader()
    .topic("persistent://manning/chapter03/example-topic")     B
    .readerName("my-reader")
    .startMessageId(MessageId.earliest)                        c
    .create();

while (true) {
  Message msg = reader.readNext();
  System.out.printf("Message received: %s \n", new String(msg.getData()));
}

B Specify the topic you want to read from.

c Specify that we want to read from the earliest message.

If you run this code, you should see output like the following listing. You would start
reading from the very first messages that were published to the topic, which were the
two “Hello Pulsar” messages we send from the CLI tool.

Message read: Hello Pulsar 
Message read: Hello Pulsar 
Message read: {id: 1, time: Sun Sep 06 18:11:59 PDT 2020} 
Message read: {id: 2, time: Sun Sep 06 18:12:00 PDT 2020} 
Message read: {id: 3, time: Sun Sep 06 18:12:01 PDT 2020} 
Message read: {id: 4, time: Sun Sep 06 18:12:02 PDT 2020} 
Message read: {id: 5, time: Sun Sep 06 18:12:04 PDT 2020} 

Listing 3.18 Creating a Pulsar reader

Listing 3.19 Earliest message reader output
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Figure 3.3 When connecting to a topic, the reader interface enables you to begin with the 
earliest available message, the latest available message, or an application provided message ID.
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Message read: {id: 6, time: Sun Sep 06 18:12:05 PDT 2020} 
Message read: {id: 7, time: Sun Sep 06 18:12:06 PDT 2020}

In the example shown in listing 3.18, a reader is created on the specified topic and iter-
ates over each message in the topic, starting with the oldest message in the topic. There
are several configuration options for a Pulsar reader that are described in the online
documentation (https://pulsar.apache.org/docs/en/client-libraries-java/#reader),
but for most cases the default options are sufficient.

3.3.2 The Pulsar Python client

There is also an officially supported Pulsar client for the Python programming lan-
guage. The latest version of the Pulsar client library can be easily installed using the
pip package manager with the commands shown in the following listing.

pip3 install pulsar-client==2.6.3 –user    B

pip3 list                                  c

Package       Version
------------- ---------
...
pulsar-client 2.6.3                        d

B Install the Pulsar client.

c List all the packages.

d Confirm that the correct version of the Pulsar client has been installed.

Since Python 2.7 has already passed its official end of life, I decided to use Python 3
for all the examples throughout the chapter. Once you have installed the Pulsar client
libraries, you can start using them to interact with Pulsar by creating producers and
consumers inside your Python code.

PULSAR PRODUCERS IN PYTHON

When a Python application wants to create either a producer or a consumer, you first
need to instantiate a client object, using code like that shown in listing 3.21, where
you provide the URL of the Pulsar broker. As was the case for Java-based clients, the
Python client object handles all the low-level details involved in creating a connection
to the Pulsar broker, including automatic retries and connection security if the Pulsar
broker has TLS configured. Client instances are thread safe and can be reused for
managing multiple producers and consumers.

import pulsar

client = pulsar.Client('pulsar://localhost:6650')      B

Listing 3.20 Creating a Pulsar producer in Python

Listing 3.21 Creating a Pulsar producer in Python

https://pulsar.apache.org/docs/en/client-libraries-java/#reader
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producer = client.create_producer(
   'persistent://public/default/my-topic',
   block_if_queue_full=True,
   batching_enabled=True,
   batching_max_publish_delay_ms=10)                   c

for i in range(10):
    producer.send(('Hello-%d' % i).encode('utf-8'),    d
       properties=None)                                e

client.close()                                         f

B Create a Pulsar client by providing the connection URL to the Pulsar broker.

c Use the Pulsar client to create a producer.

d Send the message contents.

e You can attach properties to a message if you want.

f Close the client.

As you can see from listing 3.21, the Python library provides several different configu-
ration options when you create your clients, producers, and consumers, so you should
view the available online documentation (https://pulsar.apache.org/api/python/
2.8.0-SNAPSHOT/) for the Python client to learn more about these options. In our
case, we enabled message batching on the client side, which means that, rather than
sending/receiving each individual message to and from the broker, messages will be
grouped together in batches before being transmitted. This allows us to increase the
overall throughput of the messages at the expense of increased latency on each indi-
vidual message.

PULSAR CONSUMERS IN PYTHON

In Pulsar, the consumer interface is used to listen on a specific topic and process the
incoming messages. After a message has been successfully processed, an acknowledge-
ment should be sent back to the broker to indicate that we are done processing the
message within the subscription. This allows the broker to know which message in the
topic needs to be delivered to the next consumer on the subscription. In Python, you
can create a consumer by specifying a topic and a subscription, as shown in the follow-
ing listing.

import pulsar

client = pulsar.Client('pulsar://localhost:6650')   B

consumer = client.subscribe(                        c
   'persistent://public/default/my-topic',          d
   'my-subscription',                               e
   consumer_type=pulsar.ConsumerType.Exclusive
   initial_position=pulsar.InitialPosition.Latest, 

Listing 3.22 Creating a Pulsar consumer in Python

https://pulsar.apache.org/api/python/2.8.0-SNAPSHOT/
https://pulsar.apache.org/api/python/2.8.0-SNAPSHOT/
https://pulsar.apache.org/api/python/2.8.0-SNAPSHOT/
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   message_listener=None, 
   negative_ack_redelivery_delay_ms=60000)   

while True:
    msg = consumer.receive()                        f
    try:
        print("Received message '%s' id='%s'", 
               msg.data().decode('utf-8'), msg.message_id())
        consumer.acknowledge(msg)                   g
    except:
        consumer.negative_acknowledge(msg)          h

client.close()                                      i

B Create a Pulsar client by providing the connection URL to the Pulsar broker.

c Use the Pulsar client to create a consumer.

d You must specify the topic you want to consume from.

e You must specify the unique name of your subscription.

f Wait for a new message to arrive.

g Once we have successfully processed the message, acknowledge it.

h If we encountered an error, send a negative acknowledgment to have the message resent.

i Close the client.

The subscribe method will attempt to connect the consumer to the topic using the
specified subscription, which may fail if the subscription already exists and it isn’t one
of the shared subscription types (e.g., you attempt to connect to an exclusive subscrip-
tion that already has an active consumer). If you are connecting to the topic for the
first time using the specified subscription name, a subscription is created for you auto-
matically. Whenever a new subscription is created, it is initially positioned at the end
of the topic by default, and consumers on that subscription will begin reading the first
message created after the subscription was created. If you are connecting to a preexist-
ing subscription, it will begin reading from the earliest unacknowledged message
within the subscription, as we saw earlier in figure 3.2. 

 As you can see in listing 3.22, the Python library provides several different configu-
ration options when specifying the subscription, including the subscription type, start-
ing position, and others. I highly recommend that you view the available online
documentation (https://pulsar.apache.org/api/python/2.8.0-SNAPSHOT/) for the
Python client to see the most up-to-date listing of these options.

 The message consumer shown in listing 3.22 processes the messages in a synchro-
nous manner because the receive() method it is using to retrieve messages is a block-
ing method (e.g., it waits indefinitely for a new message to arrive). A better approach
is to process these messages in an asynchronous manner, as shown in listing 3.23.
Using the listener pattern allows you to separate the business logic from the manage-
ment of the threads because the Pulsar consumer automatically creates a thread pool
for running the message listener instances and handles all the threading logic for you.

 

https://pulsar.apache.org/api/python/2.8.0-SNAPSHOT/
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import pulsar

def my_listener(consumer, msg):                         B
    # process message
    print("my_listener read message '%s' id='%s'", 
      msg.data().decode('utf-8'), msg.message_id())     c
    consumer.acknowledge(msg)                           d
    
client = pulsar.Client('pulsar://localhost:6650')   

consumer = client.subscribe(
    'persistent://public/default/my-topic', 
    'my-subscription',
    consumer_type=pulsar.ConsumerType.Exclusive,
    initial_position=pulsar.InitialPosition.Latest,
    message_listener=my_listener,                       e
    negative_ack_redelivery_delay_ms=60000)

  client.close()

B The listener function needs to accept the consumer and the message.

c We can access the message contents.

d We can use the consumer to acknowledge the message.

e Sets a message listener for the consumer

PULSAR READERS IN PYTHON

The Python client also provides a reader interface that enables consumers to manage
the position from which they will consume messages. When you connect to a topic
using a reader, you must specify which message the reader will begin consuming mes-
sages from when it connects to the topic. If you choose to explicitly provide a message
ID, then your application will be responsible for knowing this message ID in advance
and should store that information in a persistent data store somewhere such as a data-
base or cache. The code shown in the following listing connects to the topic, starts
reading messages from the earliest available messages, and outputs their contents. 

import pulsar

client = pulsar.Client('pulsar://localhost:6650')    B

reader = client.create_reader(
   'persistent://public/default/my-topic',           c
    pulsar.MessageId.earliest)                       d

while True:
    msg = reader.read_next()                         e
    print("Read message '%s' id='%s'", 
      msg.data().decode('utf-8'), msg.message_id())
        

client.close()                                       f

Listing 3.23 Asynchronous message processing in Python

Listing 3.24 Creating a Pulsar reader in Python
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B Create a Pulsar client by providing the connection URL to the Pulsar broker.

c Use the Pulsar client to create a reader on the specified topic.

d Specify that we want to read from the earliest message.

e Read the messages.

f Close the client.

3.3.3 The Pulsar Go client

There is also an officially supported Pulsar client for the Golang programming lan-
guage, and the latest version of the Pulsar client library can be installed using the fol-
lowing command: go get -u "github.com/apache/pulsar-client-go/pulsar". Once
you have installed the Pulsar client libraries, you can start using them to interact with
Pulsar by creating producers and consumers inside your Go code. 

CREATING A PULSAR CLIENT WITH GO

When a Go application wants to create either a producer or a consumer, you first
need to instantiate a client object, using code like the following listing. In this code,
you will provide the URL of the Pulsar broker along with any other connection config-
uration information that may be required, such as security credentials. 

import (
    "log"
    "time"
    "github.com/apache/pulsar-client-go/pulsar"      B
)

func main() {
    client, err := pulsar.NewClient(                 c
    pulsar.ClientOptions{                            d
        URL:               "pulsar://localhost:6650",
        OperationTimeout:  30 * time.Second,
        ConnectionTimeout: 30 * time.Second,
    })

    if err != nil {                                  e
        log.Fatalf("Could not instantiate Pulsar client: %v", err)
    }

    defer client.Close()
}

B Import the Pulsar client library.

c Create a new client using the specified client options.

d The client options, including the broker URL, connection timeout, etc.

e Check to see if the client was able to connect.

The client object handles all the low-level details involved in creating a connection to
the Pulsar broker, including automatic retries and connection security if the Pulsar

Listing 3.25 Creating a Pulsar client in Go
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broker has TLS configured. Client instances are thread safe and can be reused for cre-
ating and managing multiple producers and consumers. Once you have created a cli-
ent, you can use it to create producers, consumers, and readers.

PULSAR PRODUCERS IN GO

As you can see from listing 3.26, after you have created a client object, you can use it
to create a producer on any topic you choose. While there are several configuration
options for a Pulsar producer described in the online documentation (https://pkg.go
.dev/github.com/apache/pulsar-client-go/pulsar#ConsumerOptions), I wanted to
highlight the delayed message delivery configuration we used in this example, which
allows us to defer delivery of the messages to the topic consumers for a specified
amount of time.

import (
    "context"
    "fmt"
    "log"
    "time"

    "github.com/apache/pulsar-client-go/pulsar"       B
)

func main() {
  ...                                                 c
  producer, err := client.CreateProducer(pulsar.ProducerOptions{
    Topic: topicName,                                 d
  })

  ctx := context.Background()
  deliveryTime := (time.Minute * time.Duration(1)) + 
       (time.Second * time.Duration(30))              e

  for i := 0; i < 3; i++ {
    msg := pulsar.ProducerMessage{                    f
            Payload: []byte(fmt.Sprintf("Delayed-messageId-%d", i)),
            Key: "message-key",
            Properties: map[string]string{            g
             "delayed": "90sec",
            },
               EventTime: time.Now(),                 h
            DeliverAfter: deliveryTime,               i
           }

    messageID, err := producer.Send(ctx, &msg)        j
    ... 
  }
}

B Import the Pulsar client library.

c Code that creates the Pulsar client

Listing 3.26 Creating a Pulsar producer in Go

https://pkg.go.dev/github.com/apache/pulsar-client-go/pulsar#ConsumerOptions
https://pkg.go.dev/github.com/apache/pulsar-client-go/pulsar#ConsumerOptions
https://pkg.go.dev/github.com/apache/pulsar-client-go/pulsar#ConsumerOptions
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d Create a new producer for the specified topic.

e Calculate the delivery time you want for the message.

f Create the message to send.

g The Go client supports providing both key and properties metadata.

h Provide the event timestamp metadata.

i Specify the delivery time for the message.

j Send the message.

Delayed message delivery is useful if you do not want the message to be immediately
processed but, rather, processed at a future point in time. Consider the scenario
where you receive several messages that contain new subscriptions to your company’s
newsletter, which contains daily specials and promotions. Rather than immediately
sending these customers the previous day’s flier, you want to wait until the new edition
is available. So, if your marketing team has committed to having a fresh version of the
newsletter available every morning at 9 a.m., you can delay the message delivery until
after 9 a.m. to ensure the customers get the latest version of the newsletter. 

PULSAR CONSUMERS

As we have seen, the consumer interface is used to listen on a specific topic and pro-
cess the incoming messages. After a message has been successfully processed, an
acknowledgment should be sent back to the broker to indicate that we are done pro-
cessing the message within the subscription. This allows the broker to know which
message in the topic needs to be delivered to the next consumer on the subscription.
In Go, you can create a consumer by specifying a topic and a subscription, as shown in
listing 3.27.

 The message consumer shown in listing 3.27 processes the messages in a synchro-
nous manner because the receive() method that it is using to retrieve messages is a
blocking method (e.g., it waits indefinitely for a new message to arrive). Unlike the
previous two client libraries I have discussed, the Go client doesn’t currently support
asynchronous message consumption using the message listener pattern. Therefore, if
you want to perform asynchronous processing, you will need to write all the threading
logic yourself.

import (
    "context"
    "fmt"
    "log"
    "time"

    "github.com/apache/pulsar-client-go/pulsar"               B
)

func main() {
  ...                                                         c

Listing 3.27 Creating a Pulsar consumer in Go



91Pulsar clients

  consumer, err := client.Subscribe(pulsar.ConsumerOptions{   d
    Topic:            topicName,
    SubscriptionName: subscriptionName,
  })

  if err != nil {
    log.Fatal(err)
  }

  for {
    msg, err := consumer.Receive(ontext.Background())         e
    if err != nil {
        log.Fatal(err)
       consumer.Nack(msg)                                     f
    } else {
      fmt.Printf("Received message : %v\n", string(msg.Payload()))
    }

    consumer.Ack(msg)                                         g
  }
}

B Import the Pulsar client library.

c Code that creates the Pulsar client

d Create a new consumer for the specified topic.

e Blocking call to receive incoming messages

f Send a negative acknowledgment to have the message redelivered.

g Acknowledge the message so it can be marked as processed.

The subscribe method will attempt to connect the consumer to the topic using the
specified subscription, which may fail if the subscription already exists, and it isn’t one
of the shared subscription types (e.g., you attempt to connect to an exclusive subscrip-
tion that already has an active consumer). If you are connecting to the topic for the
first time using the specified subscription name, a subscription is created for you auto-
matically. Whenever a new subscription is created, it is initially positioned at the end
of the topic by default, and consumers on that subscription will begin reading the first
message created after the subscription was created. If you are connecting to a preexist-
ing subscription, it will begin reading from the earliest unacknowledged message
within the subscription, as we saw earlier in figure 3.2. 

 As you can see from listing 3.27, the Go library provides several different configura-
tion options when specifying the subscription, including the subscription type, starting
position, and others. I highly recommend you view the available online documentation
(https://pkg.go.dev/github.com/apache/pulsar-client-go/pulsar) for the Go client to
view the most up-to-date listing of these options.

PULSAR READERS

The Go client also provides a reader interface that enables consumers to manage the
position from which they will consume messages. When you connect to a topic using a
reader, you must specify which message the reader will begin consuming messages

https://pkg.go.dev/github.com/apache/pulsar-client-go/pulsar
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from when it connects to the topic. If you choose to explicitly provide a message ID,
then your application will be responsible for knowing this message ID in advance and
should store that information in a persistent data store somewhere, such as in a data-
base or cache. The code shown in the following listing connects to the topic, starts
reading messages from the earliest available messages, and outputs their contents. 

import (
    "context"
    "fmt"
    "log"
    "time"

    "github.com/apache/pulsar-client-go/pulsar"              B
)

func main() {
  ...                                                        c

  reader, err := client.CreateReader(pulsar.ReaderOptions{   d
    Topic:          topicName,
    StartMessageID: pulsar.EarliestMessageID(),              e
  })

  for {
    msg, err := reader.Next(context.Background())            f
    if err != nil {
      log.Fatal(err)
    } else {
      fmt.Printf("Received message : %v\n", string(msg.Payload()))
    }
  }
}

B Import the Pulsar client library.

c Code that creates the Pulsar client

d Create a new reader for the specified topic.

e Start at the earliest message available.

f Read the next message.

3.4 Advanced administration 
Pulsar acts as a black box from a producer or consumer perspective (i.e., you simply
connect to the cluster to send and receive messages). While it is good to have the
implementation details hidden from the end user, this can be problematic when you
need to troubleshoot issues with the message delivery itself. For instance, if your con-
sumer isn’t receiving any messages, how do you go about diagnosing the issue? Fortu-
nately, the pulsar-admin CLI tool provides some tools that give you deeper insights
into the inner workings of the Pulsar cluster. 

Listing 3.28 Creating a Pulsar reader in Go
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3.4.1 Persistent topic metrics

Internally, Pulsar collects a lot of topic-level metrics that can help you diagnose and
troubleshoot issues between your producers and consumers, such as your consumer
not receiving any messages, or backpressure when consumers cannot keep pace with
your producers, which would be reflected in the unacknowledged message count
growing. You can access these topic statistics from the pulsar-admin CLI tool we used
earlier to create the tenant, namespace, and topic by issuing the command shown in
the following listing.

$docker exec -it pulsar /pulsar/bin/pulsar-admin topics stats  

➥ persistent://manning/chapter03/example-topic                   B
{
  "msgRateIn" : 137.49506548471038,                               c
  "msgThroughputIn" : 13741.401370605108,                         d
  "msgRateOut" : 97.63210798236112,                               e
  "msgThroughputOut" : 9716.05449008063,                          f
  "bytesInCounter" : 1162174,
  "msgInCounter" : 11538,                                         g
  "bytesOutCounter" : 150009,
  "msgOutCounter" : 1500,                                         h
  "averageMsgSize" : 99.94105113636364,
  "msgChunkPublished" : false,
  "storageSize" : 1161944,                                        i
  "backlogSize" : 1161279,
  "publishers" : [ {
    "msgRateIn" : 137.49506548471038,                             j
    "msgThroughputIn" : 13741.401370605108,
    "averageMsgSize" : 99.0,
    "chunkedMessageRate" : 0.0,
    "producerId" : 0,
    "metadata" : { },
    "producerName" : "standalone-12-6",
    "connectedSince" : "2020-09-07T20:44:45.514Z",                1)
    "clientVersion" : "2.6.1",
    "address" : "/172.17.0.1:40158"                               1!
  } ],
  "subscriptions" : {                                             1@
    "my-sub" : {
      "msgRateOut" : 97.63210798236112,                           1#
      "msgThroughputOut" : 9716.05449008063,
      "bytesOutCounter" : 150009,
      "msgOutCounter" : 1500,                                     1$
      "msgRateRedeliver" : 0.0,
      "chuckedMessageRate" : 0,
      "msgBacklog" : 9458,                                        1%
      "msgBacklogNoDelayed" : 9458,
      "blockedSubscriptionOnUnackedMsgs" : false,
      "msgDelayed" : 0,
      "unackedMessages" : 923,                                    1^
      "type" : "Shared",

Listing 3.29 Retrieving Pulsar topic statistics from the command-line
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      "msgRateExpired" : 0.0,
      "lastExpireTimestamp" : 0,
      "lastConsumedFlowTimestamp" : 1599511537220,
      "lastConsumedTimestamp" : 1599511537452,                    1&
      "lastAckedTimestamp" : 1599511545269,                       1*
      "consumers" : [ {
        "msgRateOut" : 97.63210798236112,
        "msgThroughputOut" : 9716.05449008063,
        "bytesOutCounter" : 150009,
        "msgOutCounter" : 1500,
        "msgRateRedeliver" : 0.0,
        "chuckedMessageRate" : 0.0,
        "consumerName" : "5bf2b",
        "availablePermits" : 0,
        "unackedMessages" : 923,
        "avgMessagesPerEntry" : 6,
        "blockedConsumerOnUnackedMsgs" : false,                   1(
        "lastAckedTimestamp" : 1599511545269,
        "lastConsumedTimestamp" : 1599511537452,
        "metadata" : { },
        "connectedSince" : "2020-09-07T20:44:45.512Z",
        "clientVersion" : "2.6.1",
        "address" : "/172.17.0.1:40160"                           2)
      } ],
      "isDurable" : true,
      "isReplicated" : false
    },
    "example-sub" : {
      "msgRateOut" : 0.0,                                         2!
      "msgThroughputOut" : 0.0,
      "bytesOutCounter" : 0,
      "msgOutCounter" : 0,
      "msgRateRedeliver" : 0.0,
      "chuckedMessageRate" : 0,
      "msgBacklog" : 11528,                                       2@
      "msgBacklogNoDelayed" : 11528,
      "blockedSubscriptionOnUnackedMsgs" : false,
      "msgDelayed" : 0,
      "unackedMessages" : 0,
      "type" : "Exclusive",
      "msgRateExpired" : 0.0,
      "lastExpireTimestamp" : 0,
      "lastConsumedFlowTimestamp" : 1599509925751,
      "lastConsumedTimestamp" : 0,
      "lastAckedTimestamp" : 0,
      "consumers" : [ ],
      "isDurable" : true,
      "isReplicated" : false
    }
  },
  "replication" : { },
  "deduplicationStatus" : "Disabled"
}

B The name of the topic we want statistics from
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c The sum of all local and replication publishers’ rates in messages per second

d The sum of all local and replication publishers’ rates in bytes per second

e The sum of all local and replication consumers’ dispatch rates in messages per second

f The sum of all local and replication consumers’ dispatch rates in bytes per second

g The total number of messages published to the topic

h The total number of messages consumed from the topic

i The total amount of disk space used to store the topic messages in bytes

j Total rate of messages published by the publisher in messages per second

1) Timestamp of when the publisher first connected to the topic

1! The IP address of the producer

1@ A list of all the subscriptions for the topic

1# Total rate of messages delivered on this subscription in bytes per second

1$ Total number of messages delivered on this subscription

1% Number of messages in the subscription backlog that haven’t been delivered yet

1^ Number of messages that have been delivered but haven’t been acknowledged yet

1& Timestamp of when the last message was consumed on this subscription

1* Timestamp of when the last message acknowledgment was received on this subscription

1( Whether or not the consumer is blocked due to too many unacknowledged messages

2) The IP address of the consumer

2! Indicative of a subscription without any active consumers

2@ Number of messages in the subscription backlog

As you can see, Pulsar collects an extensive set of metrics for each persistent topic,
which can be very useful when attempting to diagnose an issue. The metrics returned
include the connected producers and consumers along with all the message produc-
tion and consumption rates, message backlog, and subscriptions. Therefore, if you are
trying to determine why a particular consumer isn’t receiving messages, you can verify
that the consumer is connected and look at the message consumption rate for its cor-
responding subscription.

 All these metrics are published to Prometheus by default and can be easily viewed
through a Grafana dashboard that comes bundled with the Pulsar Kubernetes deploy-
ment defined in a Helm chart inside the open source project. You can configure any
observability tool that works with Prometheus as well.

3.4.2 Message inspection

Sometimes you may want to view the contents of a particular message or group of mes-
sages within a Pulsar topic. Consider the scenario where one of the message producers
changes the output format of its messages by encrypting the message contents. Con-
sumers that are currently subscribed to the topic would suddenly start encountering
exceptions when they attempt to process these encrypted contents, which would result
in the messages not getting acknowledged. Eventually, these messages would accumu-
late on the topic, since they never get acknowledged. If the change to the producer
code was not coordinated with you, then you will be unaware of the underlying issue.
Fortunately, you can use the peek-messages command of the pulsar-admin CLI tool to
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view the raw bytes of the messages inside a given subscription, as shown in the following
listing, which shows the syntax for peeking at the last 10 messages for the subscription
example-sub on the persistent://manning/chapter03/example-topic. 

$ docker exec -it pulsar /pulsar/bin/pulsar-admin \ 
  Topic peek-messages \
  --count 10 \                                                               B
  --subscription example-sub \
  persistent://manning/chapter03/example-topic

Batch Message ID: 19460:9:0                                                  c
Tenants:
{
  "X-Pulsar-num-batch-message" : "1",
  "publish-time" : "2020-09-07T20:20:13.136Z"                                d
}
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 7b 69 64 3a 20 31 30 2c 20 74 69 6d 65 3a 20 4d |{id: 10, time: M|
|00000010| 6f 6e 20 53 65 70 20 30 37 20 31 33 3a 32 30 3a |on Sep 07 13:20:|
|00000020| 31 33 20 50 44 54 20 32 30 32 30 7d             |13 PDT 2020}    |
+--------+-------------------------------------------------+----------------+e

B Request the last 10 messages.

c The message ID 

d The time the message was published by the producer

e The message contents in raw bytes

As you can see, the peek-messages command provides many details about the mes-
sage, including the message ID, publish time, and the message contents as raw bytes
(and as a String). This information should make it easier to determine the issue with
the message contents.

Summary
 Docker is an open source container framework that allows you to bundle entire

applications into a single image and publish them for reuse.
 There is a completely self-contained Docker image of Pulsar that you can use to

run Pulsar on your machine for development.
 Pulsar provides command-line tools that can be used to administer tenants,

namespaces, and topics, including creating, listing, and deleting them.
 Pulsar provides client libraries for several popular programming languages,

including Java, Python, and Go, that allow you to create Pulsar producers, con-
sumers, and readers.

 You can use Pulsar’s command-line tools to retrieve topic statistics that are use-
ful for monitoring and troubleshooting.

Listing 3.30 Peeking at messages inside Pulsar
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Apache Pulsar
 development essentials

Part 2 focuses on Pulsar’s built-in serverless computing framework, known as
Pulsar Functions, and how it can be used to provide stream processing capabili-
ties without requiring an additional computational framework, such as Apache
Flink or Kafka Streams. This type of serverless stream processing is also referred
to as stream-native processing and has a broad range of applications—from real-
time ETL and event-driven programming to microservices development and
real-time machine learning.

 After covering the basics of the Pulsar Functions framework, I spend a good
amount of time focusing on how to properly secure your Pulsar cluster to ensure
that all your data is kept safely away from prying eyes. Lastly, I wrap up the sec-
tion with an introduction to Pulsar’s schema registry, which helps you retain
information about the structure of the messages being held inside your Pulsar
topics in a central location.

 Chapter 4 introduces Pulsar’s stream-native computing framework, called
Pulsar Functions, provides some background on its design and configuration,
and shows you how to develop, test, and deploy the individual functions. Chap-
ter 5 introduces Pulsar’s connector framework, which is designed to move
between Apache Pulsar and external storage systems, such as relational data-
bases, key-value stores, or blob storage. It teaches you how to develop a connec-
tor in a step-by-step fashion.
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 In chapter 6, I provide step-by-step instructions on how to secure your Pulsar clus-
ter to ensure that your data is safe while it is in transit and at rest. Finally, chapter 7
covers Pulsar’s built-in schema registry, why it is necessary, and how it can help simplify
microservice development. We also cover the schema evolution process and how to
update the schemas used inside your Pulsar functions.
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In our previous chapter, we looked at how you can work with Pulsar using some of
the various client libraries. In this chapter, we will look at a stream-native processing
engine known as Pulsar Functions that makes the development of Pulsar-based
applications much simpler. This lightweight processing framework automatically
handles a lot of the boilerplate coding required to set up Pulsar consumers and
producers, allowing you to focus on the processing logic itself, rather than the con-
sumption and processing of the messages.

4.1 Stream processing 
While there isn’t an official definition, the term stream processing generally refers to
the processing of unbounded datasets that stream in continuously from some
source system. There are several datasets that occur naturally as continuous

This chapter covers
 An introduction to the Pulsar Functions framework

 The Pulsar Functions programming model and API

 Writing your first Pulsar function in Java

 Configuring, submitting, and monitoring a Pulsar 
function
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streams, such as sensor events, user activity on a website, and financial trades, which
can be processed in this manner.

 Prior to stream processing, these datasets had to first be stored in a database, file
system, or other persistent storage before they could be analyzed. Often, there was an
additional data processing phase required to extract the information, transform it
into the correct format, and load the data into these systems. Only after the ETL pro-
cess was completed was the data ready to be analyzed using traditional SQL-based or
other tools. As you can imagine, there was a significant latency between the time an
event occurred and when it was available for analysis. The goal of stream processing is
to minimize that latency so critical business decisions can be made against the most
recent data. There are three basic approaches to processing these datasets—batch
processing, micro-batching, and streaming-native processing—and each take different
approaches regarding how and when to process these endless datasets.

4.1.1 Traditional batching

Historically, the vast majority of data processing frameworks have been designed for
batch processing. Traditional data warehouses, Hadoop, and Spark are just a few com-
mon examples of systems that process large datasets in batches. Data is often fed into
these systems via long-running and complex ETL pipelines that cleanse, prepare, and
format the incoming data for consumption. Messaging systems often serve as little
more than intermediate buffers that store and route the data between the various pro-
cessing stages of the pipeline. 

 These long-running data ingestion pipelines were often implemented using
stream processing engines, such as Apache Spark or Flink, that were designed to pro-
cess large datasets efficiently by performing the processing in parallel. Newly arriving
data elements were collected and then processed together at some point in the future
as a batch. To maximize the throughput of these frameworks, the accumulation would
take place over very large time intervals (hours) or until a certain amount of data (10s
GBs) had been collected, which introduced an artificial delay in the data processing
pipeline.

4.1.2 Micro-batching

One technique that was introduced to address the processing latency that plagued
these traditional batch processing engines was to dramatically reduce either the batch
size or the processing interval. In micro-batch processing, newly arriving data ele-
ments are still collected into batches, as shown in figure 4.1, but the size of the batches
is dramatically reduced by adjusting the time interval to a few seconds. Even though
the processing may occur more frequently, the data is still processed one batch at a
time, so it is often referred to as micro-batching and is used by such processing frame-
works as Spark Streaming.

 While this approach does decrease the processing latency between when a data ele-
ment arrives and when it is processed, it still introduces artificial delays into the process
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that compound as the complexity of the data pipeline increases. Consequently, even
micro-batch processing applications cannot rely on consistent response times and need
to account for delays between when the data arrives and when it is processed. This
makes micro-batch processing more appropriate for use cases that do not require hav-
ing the most recent data and can tolerate slower response times, whereas stream native
processing is better suited for use cases that require near real-time responsiveness, such
as fraud detection, real-time pricing, and system monitoring.

4.1.3 Stream native processing

With stream native processing, each new piece of data is processed as soon as it
arrives, as illustrated in figure 4.2. Unlike batch processing, there are no arbitrary pro-
cessing intervals, and each individual data element is processed separately.

Although it may seem as though the differences between stream processing and
micro-batching are just a matter of timing, there are implications for both the data
processing systems and the applications that rely on them. The business value of data
decreases rapidly after it is created, particularly in use cases such as fraud prevention
or anomaly detection. The high-volume, high-velocity datasets used to feed these use
cases often contain valuable, but perishable, insights that must be acted upon immedi-
ately. A fraudulent business transaction, such as transferring money or downloading
licensed software, must be identified and acted upon before the transaction com-
pletes; otherwise it will be too late to prevent the thief from obtaining the funds ille-
gally. To maximize the value of their data for these use cases, developers must

Process Process ProcessProcess Process

Batch 1 Batch 2 Batch 3 Batch 4 Batch 5 Batch 6

Time

Figure 4.1 With batch processing, the message processing occurs at predetermined intervals and follows a 
consistent cadence.

Time

Processing

Figure 4.2 With stream processing, the processing is triggered by the arrival of each message, so the 
processing cadence is irregular and unpredictable.
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fundamentally change their approach to processing real-time data by focusing on
reducing the processing latency introduced from traditional batch processing frame-
works and utilizing a more reactive approach, such as stream-native processing.

4.2 What is Pulsar Functions?
Included with Apache Pulsar is a lightweight computing engine named Pulsar Func-
tions, which allows developers to deploy a simple function implementation in Java,
Python, or Golang. This feature allows users to enjoy the benefits of serverless com-
puting similar to those provided by AWS Lambda within an open source messaging
platform, rather than being tied to a cloud provider’s proprietary API.

 Pulsar Functions allows you to apply processing logic to data as it is routed through
the messaging system itself. These lightweight compute processes execute natively
within the Pulsar messaging system itself as close to the message as they can be and
without the need for another processing framework such as Spark, Flink, or Kafka
Streams. Unlike other messaging systems, which act as “dumb pipes” for moving data
from system to system, Pulsar Functions provides the capability to perform simple
computations on messages before they are routed to consumers. Pulsar Functions
consumes messages from one or more Pulsar topics, applies a user-supplied function
(processing logic) to each incoming message, and publishes the results to one or
more Pulsar topics, as shown in figure 4.3. 

Pulsar functions can be best characterized as Lambda-style functions that are specifi-
cally designed to use Pulsar as the underlying message bus. This is because they take
several design cues from the popular AWS Lambda framework that allows you to run
code without provisioning or managing servers to host the code. Hence, the common
term for this programming model is serverless.

Topic-2

Topic-3

Topic-N

Topic-1

Topic-0Pulsar
function

Input
messages

Output
message

Log
message

Input topics

Output topics

Log topic

Figure 4.3 Pulsar Functions executes user-defined code on data published to 
Pulsar topics.
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 The Pulsar function framework allows users to develop self-contained pieces of
code and then deploy them with a simple REST call. Pulsar takes care of the underly-
ing details required to run your code, including creating the Pulsar consumer and
producers for the function’s input and output topics. Developers can focus on the
business logic itself and not have to worry about the boilerplate code necessary to
send messages with Pulsar. In short, the Pulsar Functions framework provides a ready-
made computing infrastructure on your existing Pulsar cluster.

4.2.1 Programming model

The programming model behind Pulsar Functions is very straightforward. Pulsar
functions receive messages from one or more input topics, and every time a message is
published to the topic, the function code is executed. Upon being triggered, the func-
tion code executes its processing logic upon the incoming message and writes its
(optional) output to an output topic. Although all functions are required to have an
input topic, they are not strictly required to produce any output to an output topic.

 It is possible to have the output topic of one Pulsar function be the input topic of
another, allowing us to effectively create a directly acyclic graph (DAG) of the Pulsar
functions, as shown in figure 4.4. In such a graph, each edge represents a flow of data,
and each vertex represents a Pulsar function that applies the user-defined logic to pro-
cess the data. The combinations of Pulsar functions into these DAGs are endless, and
it is possible to write an application that is entirely composed of Pulsar functions and
structured as a DAG if you so choose.

Topic-1

Topic-3

Topic-2

Topic-4

Pulsar
function

Pulsar
function

Pulsar
function

Pulsar
function

Pulsar
function

Figure 4.4 Pulsar functions can be logically structured into a processing network.
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4.3 Developing Pulsar functions
Pulsar functions can currently be written in Java, Python, and Go. Therefore, if you
are already familiar with any of these popular languages, you will be able to develop
Pulsar functions relatively quickly.

4.3.1 Language native functions

Pulsar supports what are commonly referred to as language-native functions, which
means no Pulsar-specific libraries or special dependencies are required. The benefit
of language-native functions is that they don’t have any dependencies beyond what’s
already available in the programming language itself, which makes them extremely
lightweight and easy to develop. Currently, language-native functions can only be
developed using Java or Python. Golang support for this feature is not yet available.

JAVA LANGUAGE NATIVE FUNCTIONS

In order for a piece of Java code to be used as a language-native function, it must
implement the java.util.Function interface, which has just a single apply method,
as shown in listing 4.1. While this simplistic function merely echoes back any string
value it receives, it does demonstrate just how easy it is to develop a function using
only features of the Java language itself. Any sort of complex logic can be included
inside the apply method to provide more robust stream-processing capabilities.

import java.util.Function;

public class EchoFunction implements Function

➥ <String, String> {                         B

   public String apply(String input) {        c
   return input;
}
}

B Specifies that the input topic content will be a string and that we will return a string

c The only method defined in the function interface, which is executed when a message is received

PYTHON LANGUAGE-NATIVE FUNCTIONS

For a piece of Python code to be used as a language-native function, it must have a
method named process, like the functions shown in the following listing, that merely
appends an exclamation point to any string value it receives.

def process(input):                B
    return "{}!".format(input)     c

B The method that gets called when a message arrives

c Returns the provided input with an exclamation point appended to the end

Listing 4.1 Java-native function 

Listing 4.2 Python-native function 
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As you can see, the language-native approach provides a clean, API-free way of writing
Pulsar functions. It is ideal for the development of simple, stateless functions.

4.3.2 The Pulsar SDK

Another option is to develop your functions using the Pulsar Functions SDK, which
leverages Pulsar-specific libraries that provide a range of functionality not available in
the native interfaces, such as state management and user configuration. Additional
capabilities and information can be accessed through a Context object that is defined
inside the SDK, including

 The name, version, and ID of the Pulsar function
 The message ID of each message
 The name of the topic on which the message was sent
 The names of all input topics as well as the output topic associated with the

function
 The tenant and namespace associated with the function
 The logger object used by the function, which can be used to write log messages
 Access to arbitrary user config values supplied via the CLI
 An interface for recording metrics

An implementation of the Pulsar SDK is available for Java, Python, and Golang, and
each specifies a functional interface that includes the Context object as a parameter
that is populated and provided by the Pulsar Functions runtime environment.

JAVA SDK FUNCTIONS

To get started developing Pulsar functions using the Java SDK, you’ll need to add a
dependency on the pulsar-functions-api artifact to your project, as shown in the
following listing. 

<properties>
    <pulsar.version>2.7.2</pulsar.version>
</properties>

...
<dependency>
    <groupId>org.apache.pulsar</groupId>
    <artifactId>pulsar-functions-api</artifactId>
    <version>${pulsar.version}</version>
</dependency>

When you are developing a Pulsar function that is based on the SDK, the function
should implement the org.apache.pulsar.functions.api.Function interface. As
you can see from the following listing, this interface specifies only one method that
you need to implement, called process.

Listing 4.3 Adding Pulsar SDK dependencies to you pom.xml file
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@FunctionalInterface
public interface Function<I, O> {
  O process(I input, Context context) throws Exception;
}

The process method is called at least once, depending on the processing guarantees
you specify for the function for every message that is published to the configured
input topic of the function. The incoming input bytes are serialized to the input type
I for JSON-based messages as well as simple Java types, such as String, Integer, and
Float. If these types do not meet your needs, you can also use your own types as long
as you provide your own implementation of the org.apache.pulsar.functions.api
.SerDe interface for the type, or you can register the incoming message type in the
Pulsar schema registry, which I will cover in greater detail in chapter 7. An implemen-
tation of the echo function that demonstrates several different features of the SDK,
such as logging and recording metrics, is shown in the following listing.

import java.util.stream.Collectors;
import org.apache.pulsar.functions.api.Context;
import org.apache.pulsar.functions.api.Function;             B
import org.slf4j.Logger;

public class EchoFunction implements Function<String, String> {
   
    public String process(String input, Context ctx) {       c
       Logger LOG = ctx.getLogger();                         d
       String inputTopics = 
         ctx.getInputTopics().stream()
            .collect(Collectors.joining(", "));              e

       String functionName = ctx.getFunctionName();          f

       String logMessage = 
           String.format("A message with a value of \"%s\"" +
                “has arrived on one of the following topics: %s\n",
                input, inputTopics);

        LOG.info(logMessage);                                g
        String metricName = 
           String.format("function-%s-messages-received", functionName);
        
        ctx.recordMetric(metricName, 1);                     h
        return input;
    }
}

B The class must implement the Pulsar Functions interface.

c The interface defines a single method with two parameters, including a context object.

Listing 4.4 The Pulsar SDK function interface definition 

Listing 4.5 Pulsar SDK function in Java
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d We use the context object to access the LOGGER object.

e We use the context object to get the list of input topics

f We use the context object to get the function name.

g We generate a log message.

h We record a user-defined metric.

The Java SDK’s context object enables you to access key/value pairs provided to the
Pulsar function via the command line (as JSON). This feature allows you to write
generic functions that can be used multiple times but with a slightly different configu-
ration. For instance, let’s say you want to write a function that filters events based on a
user-defined regular expression. When an event arrives, the contents are compared to
the configured regex, and those entries that match the provided pattern are returned,
and all others are ignored. Such a function could be useful if you want to verify the
format of the incoming data before you begin processing it. An example of such a
function that accesses the regular expression from the key/value pairs in the context
object is shown in the following listing.

import java.util.regex.Pattern;
import org.apache.pulsar.functions.api.Context;
import org.apache.pulsar.functions.api.Function;

public class RegexMatcherFunction implements Function<String, String> {

    public static final String REGEX_CONFIG = "regex-pattern";

    @Override
    public String process(String input, Context ctx) throws Exception {
        Optional<Object> config = 
          ctx.getUserConfigValue(REGEX_CONFIG);                B
        
        if (config.isPresent() && config.get().getClass()
             .getName().equals(String.class.getName())) {      c

           Pattern pattern = Pattern.compile(config.get().toString());
           if (pattern.matcher(input).matches()) {             d
               String metricName = 
                 String.format("%s-regex-matches",ctx.getFunctionName());
                    
               ctx.recordMetric(metricName, 1);    
               return input;
           }
        }
       return null;                                            e
    }
}

B Retrieve the regex pattern from the user-provided configs.

c If a regex string was provided, then compile the regex.

Listing 4.6 User-configured Pulsar function in Java
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d If the input matches the regex, allow it to pass.

e Otherwise, return null.

Pulsar Functions can publish results to an output topic, but this isn’t required. You
can also have functions that don’t always return a value, such as the function in listing
4.5 that filters out non-matching inputs. In such a scenario, you can simply return a
value of null from the function. 

PYTHON SDK FUNCTIONS

To get started developing Pulsar functions using the Python SDK, you’ll need to add the
Pulsar client dependency to your Python installation. The latest version of the Pulsar
client library can be easily installed using the pip package manager and the commands
shown in the following listing. Once this is installed on your local development
environment, you will be able to start developing Pulsar functions in Python that
leverage the SDK.

pip3 install pulsar-client==2.6.3 –user    B
 
pip3 list                                  c
 
Package       Version 
------------- --------- 
... 
pulsar-client 2.6.3                        d

B Install the Pulsar client.

c List all the packages.

d Confirm that the correct version of the Pulsar client has been installed.

Let’s look at a Python-based implementation of the Echo function to demonstrate
some of the SDK capabilities in the following listing.

from pulsar import Function

class EchoFunction(Function):
    def __init__(self):
        pass
 
    def process(self, input, context):              B
        logger = context.get_logger()               c
        evtTime = context.get_message_eventtime()
        msgKey = context.get_message_key();         d
        
        logger.info("""A message with a value of {0}, a key of {1}, 
          and an event time of {2} was received"""
          .format(input, msgKey, evtTime))

Listing 4.7 Adding Pulsar SDK dependencies to your Python environment

Listing 4.8 Pulsar SDK function in Python 
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        metricName = """function-%s-
          messages-received""".format(context.get_function_name())
        context.record_metric(metricName, 1)        e

        return input                                f

B The function definition required by the Pulsar SDK

c The Python SDK provides access to the logger.

d The Python SDK provides access to message metadata.

e The Python SDK supports metrics.

f Echo back the original input value.

The Python SDK’s context object provides nearly all the same capabilities as the Java
SDK, with two notable exceptions. The first is that, as of version 2.6.0, Python-based
Pulsar Functions does not support schemas, which I will discuss in greater detail in
chapter 7; essentially this means that the Python function is responsible for the serial-
ization and deserialization of the message bytes into the expected format. The second
capability that is not present in Python-based Pulsar Functions is access to the Pulsar
Admin API, which, as I discussed in chapter 3, is only available in Java. 

GOLANG SDK FUNCTIONS

To get started developing Pulsar functions using the Golang SDK, you’ll need to add the
Pulsar client dependency to your Golang installation. The latest version of the pulsar
client library can be installed using the following command: go get -u "github.com/
apache/pulsar-client-go/pulsar". Let’s look at a Golang-based implementation of
the Echo function that we used earlier to demonstrate some of the SDK capabilities in
the following listing.

package main

import (
    "context"
    "fmt"

    "github.com/apache/pulsar/pulsar-function-go/pf"                    B

    log "github.com/apache/pulsar/pulsar-function-go/logutil"           c
)

func echoFunc(ctx context.Context, in []byte) []byte {                  d
    if fc, ok := pf.FromContext(ctx); ok {
        log.Infof("This input has a length of: %d", len(in))            e

        fmt.Printf("Fully-qualified function name is:%s\\%s\\%s\n",     f
          fc.GetFuncTenant(), fc.GetFuncNamespace(), fc. GetFuncName())
    }
    return in                                                           g
}

Listing 4.9 Pulsar SDK function in Go 
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func main() {
    pf.Start(echoFunc)                                                  h
}

B Import the SDK library.

c Import the function logger library.

d The function code with the correct method signature

e The Golang SDK provides access to the logger.

f The Golang SDK provides access to function metadata.

g Echo back the original input value.

h Register the echofunc with the Pulsar Functions framework.

When writing Golang-based functions, remember that you need to provide the name
of the function you wish to perform the actual logic to the pf.Start() method inside
the main() method call, as shown in listing 4.8. This registers the function with the
Pulsar Functions framework and ensures that the specified function is the one that is
invoked when a new message arrives. In this case, we named used the echoFunc func-
tion, but it can be named anything, provided that the method signature matches any
of the supported ones shown in the following listing. Any other function signatures
will not be accepted, and consequently, no processing logic will be executed inside
your Golang function.

func ()
func () error
func (input) error
func () (output, error)
func (input) (output, error)
func (context.Context) error
func (context.Context, input) error
func (context.Context) (output, error)
func (context.Context, input) (output, error)

There are currently some limitations when it comes to using the SDK to develop Golang-
based Pulsar functions, but this is subject to change as the project matures, so I highly
recommend checking the most recent version of the online documentation for the lat-
est capabilities. However, as of the writing of this book, Golang functions do not support
the recording of function-level metrics (e.g., there isn’t a recordMetric method
defined inside the context object of the Golang SDK). Furthermore, you cannot imple-
ment stateful functions using Golang at this time.

4.3.3 Stateful functions

Stateful functions utilize information gathered from previous messages they have pro-
cessed to generate their output. One such application would be a function that
receives temperature reading events from an IoT sensor and calculates the average

Listing 4.10 Supported method signatures in Go 
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temperature of the sensor. Providing this value would require us to calculate and store
a running average of the previous temperature readings.

 When using the Pulsar SDK to develop your functions, regardless of which of the
three supported languages you are using, the second parameter in the process
method is a Context object that is automatically provided by the Pulsar Functions
framework. If you are using Java or Python, then the Context object’s API also pro-
vides two separate mechanisms for retaining information between successive calls to a
Pulsar function. The first mechanism that the Context API provides is a map inter-
face for storing and retrieving key/value pairs via its putState and getState meth-
ods. These methods act like any other map interface you are familiar with and allow
you to store and retrieve values of any type using string values as the keys.

 The other state mechanisms provided by the Context object are counters, which
only allow you to retain numeric values using strings as the keys. These counters are a
specialized version of the key/value mapping that is functionally designed specifically
for storing numerical values. Internally, counters are stored as 64-bit big-endian binary
values and can only be changed via the incrCounter and incrCounterAsync methods.

 Let’s take a function that receives temperature reading events from an IoT sensor
and calculates the average temperature of the sensor as an example to show how you
would utilize state inside a Pulsar function. The function shown in listing 4.11 receives
a sensor reading and compares it to the average temperature reading it has calculated
from the previous reading to determine whether it should trigger an alarm of
some sort. 

public class AvgSensorReadingFunction implements 
  Function<Double, Void> {                                              B
 
  private static final String VALUES_KEY = "VALUES";

  @Override
  public Void process(Double input, Context ctx) throws Exception {    
    CircularFifoQueue<Double> values = getValues(ctx);                  c

    if (Math.abs(input - getAverage(values)) > 10.0) {
      // trigger an alarm.                                              d
    }

    values.add(input);                                                  e
    ctx.putState(VALUES_KEY, serialize(values));                        f
    return null;
  }

  private Double getAverage(CircularFifoQueue<Double> values) {
    return StreamSupport.stream(values.spliterator(), false)
      .collect(Collectors.summingDouble(Double::doubleValue))
      / values.size();                                                  g
  }

Listing 4.11 Average sensor reading function
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  private CircularFifoQueue<Double> getValues(Context ctx) {
    if (ctx.getState(VALUES_KEY) == null) {
      return new CircularFifoQueue<Double>(100);                        h
    } else {
      return deserialize(ctx.getState(VALUES_KEY));                     i
    }
 }
 
. . .
}

B The function takes in a double and doesn’t produce an output message.

c We deserialize the Java object used to store the previous sensor readings.

d If the current reading is significantly different, then we generate an alert.

e We add the current value to the list of observed values.

f We store the updated Java object in the state store.

g We use the Streams API to calculate the average.

h Instantiate the Java object if none exists in the state store.

i Convert the bytes in the state store into the Java object we need.

There are a few points I want to highlight from the function in listing 4.11. The first
thing you may notice is that the return type of function is defined as Void. This means
that the function does not produce an output value. Another point I want to highlight
is the fact that the function relies on Java serialization to store and retrieve a list of the
last 100 values (sensor readings) it has received. It relies on a third-party library imple-
mentation of a FIFO queue to retain the 100 most-recent values to compute the aver-
age before comparing it to the most recent sensor reading. If that value significantly
deviates from the average, then an alert is raised. Finally, the most recent reading is
added to the FIFO queue, which is then serialized and written to the state store.

 On subsequent calls, the AvgSensorReadingFunction will retrieve the bytes of the
FIFO queue, deserialize them back into the Java object, and use it to calculate the aver-
age again. This process repeats indefinitely and only retains the most recent values for
comparison against the trend (e.g., the moving average of the sensor readings). This
approach is very different from the windowing capability provided by Pulsar Functions
that is discussed in chapter 12. In short, the windowing capability provided by the Pul-
sar Functions framework permits the collection of multiple inputs before executing the
function method based on either time or a fixed count. Once the window is filled, the
function is provided the entire list of inputs at one time, whereas the function shown in
listing 4.6 is provided the values one at a time, and must maintain the previous values
inside its state.

 So, you might be asking yourself why you wouldn’t just use Pulsar’s built-in window-
ing for our use case. In our case, we want to react to every individual reading as it
becomes available, rather than waiting to accumulate a sufficient number of readings.
This allows us to detect any issue much sooner.
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 Now, let’s wrap up our discussion on stateful functions by looking at the counter
interface provided by the Context API. A good example of how and when to use this
functionality would be a WordCount function that stores the number of each individ-
ual word, using the counter methods provided by the context object API, as shown in
the following listing.

package com.manning.pulsar.chapter4.functions.sdk;

import java.util.Arrays;
import java.util.List;

import org.apache.pulsar.functions.api.Context;
import org.apache.pulsar.functions.api.Function;

public class WordCountFunction implements Function<String, Integer> {
  @Override
  public Integer process(String input, Context context) throws Exception {
    List<String> words = Arrays.asList(input.split("\\."));
      words.forEach(word -> context.incrCounter(word, 1));
        return Integer.valueOf(words.size());
  }  
}

The logic of the function is straightforward; it first splits the incoming string object
into multiple words, using a regex pattern; then for each word generated from the
split it increments the corresponding counter by one. This function is a good candi-
date for effectively once processing semantics to ensure an accurate result. If you were
to use at-least-once processing semantics instead, you could potentially end up pro-
cessing the same message more than once in a failure scenario, which would result in
the double counting of multiple words.

4.4 Testing Pulsar functions
In this section I will walk you through the process of developing and testing your first
Pulsar function. Let’s use the KeywordFilterFunction shown in listing 4.13 to
demonstrate the software development lifecycle for a Pulsar function. This function
takes in a user-provided keyword and filters out any input string that does not contain
that keyword. An example application of this function would be to scan a Twitter feed
for tweets related to a particular topic or containing a certain phrase.

package com.manning.pulsar.chapter4.functions.sdk;

import java.util.Arrays;
import java.util.List;
import java.util.Optional;

Listing 4.12 WordCount function using stateful counters

Listing 4.13 KeywordFilterFunction
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import org.apache.pulsar.functions.api.Context;
import org.apache.pulsar.functions.api.Function;

public class KeywordFilterFunction 
  implements Function<String, String> {                            B
    
public static final String KEYWORD_CONFIG = "keyword";
public static final String IGNORE_CONFIG = "ignore-case";
    
@Override
public String process(String input, Context ctx) {
  Optional<Object> keyword = 
    ctx.getUserConfigValue(KEYWORD_CONFIG);                        c
  Optional<Object> ignoreCfg = 
    ctx.getUserConfigValue(IGNORE_CONFIG);                         d
  
  boolean ignoreCase = ignoreCfg.isPresent() ? 
           (boolean) ignoreConfig.get(): false;
        
        List<String> words = Arrays.asList(input.split("\\s"));    e
        
        if (!keyword.isPresent()) {
            return null;                                           f
        } else if (ignoreCase && words.stream().anyMatch(          g
            s -> s.equalsIgnoreCase((String) keyword.get()))) {
            return input;
        } else if (words.contains(keyword.get())) {                h
            return input;
        }
        return null;
    }
}

B The function takes in a string and returns a string.

d Get the keyword from the context object.

d Get the ignore-case setting from the context object.

e Split the input string into individual words.

f Without a keyword, nothing can match.

g Evaluate each word, ignoring case.

h Check for an exact match.

While this code is simplistic, I will walk through the testing process you would typically
use when developing a function for production use. Since this is just plain Java code,
we can leverage any of the existing unit-testing frameworks, such as JUnit or TestNG,
to test the function logic.

4.4.1 Unit testing

The first step would be to write a suite of unit tests that test some of the more common
scenarios to validate that the logic is correct and produces accurate results for various
sentences we send it. Since this code uses the Pulsar SDK API, we will need to use a
mocking library, such as Mockito, to mock the Context object, as shown in the follow-
ing listing.
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package com.manning.pulsar.chapter4.functions.sdk;

import static org.mockito.Mockito.*;
import static org.junit.Assert.*;

public class KeywordFilterFunctionTests {    
private KeywordFilterFunction function = new KeywordFilterFunction();
    
@Mock
private Context mockedCtx;
    
@Before
public final void setUp() {
  MockitoAnnotations.initMocks(this);
}

  @Test
  public final void containsKeywordTest() throws Exception {
    when(mockedCtx.getUserConfigValue(
       KeywordFilterFunction.KEYWORD_CONFIG))
       .thenReturn(Optional.of("dog"));                      B
    
 String sentence = "The brown fox jumped over the lazy dog";
 String result = function.process(sentence, mockedCtx);
 assertNotNull(result);                                      c
 assertEquals(sentence, result);
  }
    
  @Test
  public final void doesNotContainKeywordTest() throws Exception {
    when(mockedCtx.getUserConfigValue(
    KeywordFilterFunction.KEYWORD_CONFIG))
    .thenReturn(Optional.of("cat"));                         d
    
    String sentence = "It was the best of times, it was the worst of times";
 String result = function.process(sentence, mockedCtx);
 assertNull(result);                                         e
  }
    
  @Test
  public final void ignoreCaseTest() {
    when(mockedCtx.getUserConfigValue(
       KeywordFilterFunction.KEYWORD_CONFIG))
       .thenReturn(Optional.of("RED"));                      f

    when(mockedCtx.getUserConfigValue(
       KeywordFilterFunction.IGNORE_CONFIG))
       .thenReturn(Optional.of(Boolean.TRUE));               g
        
  String sentence = "Everyone watched the red sports car drive off.";
  String result = function.process(sentence, mockedCtx);
  assertNotNull(result);                                     h
  assertEquals(sentence, result);

Listing 4.14 KeywordFilterFunction unit tests
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  }
}

B Configure the keyword to be dog.

c We expect the sentence to be returned, since it contained the keyword.

d Configure the keyword to be cat.

e We don’t expect the sentence to be returned, since it did not contain the keyword.

f Configure the keyword to be RED.

g Configure the function to ignore case when filtering on the keyword.

h We expect the sentence to be returned, since it contained a lowercase version of the keyword.

As you can see, these unit tests cover the very basic functionality
of the function and rely on the use of a mock object for the Pul-
sar context object. This type of test suite is just like one you
would write to test any Java class that wasn’t a Pulsar function.

4.4.2 Integration testing 

After we are satisfied with our unit testing results, we will want
to see how the Pulsar function will perform on a Pulsar cluster.
The easiest way to test a Pulsar function is to start a Pulsar server
and run the Pulsar function locally, using the LocalRunner
helper class. In this mode, the function runs as a standalone
process on the machine it is submitted from. This option is best
when you are developing and testing your functions, as it allows
you to attach a debugger to the function process on the local
machine, as shown in figure 4.5.

 To use the LocalRunner, you must first add a few dependen-
cies to your Maven project, as shown in the following listing.
This brings in the LocalRunner class that is used to test the
function against a running Pulsar cluster.

<dependencies>
  . . .
  <dependency>
        <groupId>com.fasterxml.jackson.core</groupId>
        <artifactId>jackson-core</artifactId>
        <version>${jackson.version}</version>
    </dependency>
  <dependency>
    <groupId>org.apache.pulsar</groupId>
    <artifactId>pulsar-functions-local-runner-original</artifactId>
    <version>${pulsar.version}</version>
  </dependency>
</dependencies>

Listing 4.15 Including the LocalRunner dependencies

Function
worker

Pulsar broker

Debugger

Node-1

Figure 4.5 When you 
run a Pulsar function 
using LocalRunner, 
the function runs on 
the local machine, 
allowing you to attach 
a debugger and step 
through the code.
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Next, we need to write a class to configure and launch the LocalRunner, as shown in
the following listing. As you can see, this code must first configure the Pulsar function
to execute on the LocalRunner, and it specifies the address of the actual Pulsar cluster
instance that will be used for the testing. 

public class KeywordFilterFunctionLocalRunnerTest {
  final static String BROKER_URL = "pulsar://localhost:6650";
  final static String IN = "persistent://public/default/raw-feed"; 
  final static String OUT = "persistent://public/default/filtered-feed";
    
  private static ExecutorService executor;
  private static LocalRunner localRunner;
  private static PulsarClient client;
  private static Producer<String> producer;
  private static Consumer<String> consumer;
  private static String keyword = "";
    
  public static void main(String[] args) throws Exception {
    if (args.length > 0) {
    keyword = args[0];                                               B
   }
   startLocalRunner();
   init();
   startConsumer();
   sendData();
   shutdown();
  }

  private static void startLocalRunner() throws Exception {
    localRunner = LocalRunner.builder()
            .brokerServiceUrl(BROKER_URL)                            c
            .functionConfig(getFunctionConfig())                     d
            .build();
   localRunner.start(false);                                         e
  }

  private static FunctionConfig getFunctionConfig() {
    Map<String, ConsumerConfig> inputSpecs = 
       new HashMap<String, ConsumerConfig> ();
 
    inputSpecs.put(IN, ConsumerConfig.builder()                      f
           .schemaType(Schema.STRING.getSchemaInfo().getName())
           .build());

    Map<String, Object> userConfig = new HashMap<String, Object>();
    userConfig.put(KeywordFilterFunction.KEYWORD_CONFIG, keyword);
    userConfig.put(KeywordFilterFunction.IGNORE_CONFIG, true);       g
        
    return FunctionConfig.builder()
          .className(KeywordFilterFunction.class.getName())          h
          .inputs(Collections.singleton(IN))                         i

Listing 4.16 Testing the KeywordFilterFunction with the LocalRunner 
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          .inputSpecs(inputSpecs)                                    j
          .output(OUT)                                               1)
          .name("keyword-filter")
          .tenant("public")
          .namespace("default")
          .runtime(FunctionConfig.Runtime.JAVA)                      1!
          .subName("keyword-filter-sub")
          .userConfig(userConfig)                                    1@
          .build();
  }

  private static void init() throws PulsarClientException {          1#
    executor = Executors.newFixedThreadPool(2);
    client = PulsarClient.builder()
              .serviceUrl(BROKER_URL)
              .build();
    producer = client.newProducer(Schema.STRING).topic(IN).create();    
    consumer = client.newConsumer(Schema.STRING).topic(OUT)
                .subscriptionName("validation-sub").subscribe();
  }
    
  private static void startConsumer() {                              1$
    Runnable runnableTask = () -> {
      while (true) {
        Message<String> msg = null;
        try {
           msg = consumer.receive();
           System.out.printf("Message received: %s \n", msg.getValue());
           consumer.acknowledge(msg);
        } catch (Exception e) {
           consumer.negativeAcknowledge(msg);
        }
       }};
    executor.execute(runnableTask);
  }
    
  private static void sendData() throws IOException {                1%
    InputStream inputStream = Thread.currentThread().getContextClassLoader()
       .getResourceAsStream("test-data.txt");

   InputStreamReader streamReader = new InputStreamReader(inputStream,
      StandardCharsets.UTF_8);

    BufferedReader reader = new BufferedReader(streamReader);
    for (String line; (line = reader.readLine()) != null;) {
      producer.send(line);
    }
  }
        
  private static void shutdown() throws Exception {                  1^
    executor.shutdown();
    localRunner.stop();
   . . .
  }   
}
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B Get the user-provided keyword.

c The service URL for the Pulsar cluster the function will run on

d Pass in the function configuration to the LocalRunner.

e Start the LocalRunner and function.

f Specifies that the data inside the input topic will be strings

g Initialize the user configuration properties with the user-provided keyword.

h Specifies the class name of the function to run locally

i Specifies the input topic

j Pass in the input topic configuration properties.

1) Specifies the output topic

1! Specifies that we want to use a Java Runtime environment for the function

1@ Pass in the user configuration properties.

1# Initialize a producer and consumer to use for testing.

1$ Launch the consumer in a background thread to read messages from the function output topic.

1% Send data to the function input topic.

1^ Stop the LocalRunner, consumer, etc.

The easiest way to gain access to a Pulsar cluster is to launch the Pulsar Docker con-
tainer like we did in chapter 3 by running the following command in a bash window,
which will start a Pulsar cluster in standalone mode inside the container. Note that we
are also mounting the directory where you cloned the GitHub project associated with
this book onto the local machine:

$ export GIT_PROJECT=<CLONE_DIR>/pulsar-in-action/chapter4
$ docker run --name pulsar -id \
  -p 6650:6650 -p 8080:8080 \
  -v $GIT_PROJECT:/pulsar/dropbox
  apachepulsar/pulsar:latest bin/pulsar standalone

Typically, you would run the LocalRunner test from inside your IDE to attach a debug-
ger and step through the function code to identify and resolve any errors you have
encountered. However, in this scenario I want to run the LocalRunner test using the
command line. Therefore, I must first bundle the test class that is located under the
chapter4/src/main/test folder of the GitHub repo associated with this book into a
JAR file along with all the necessary dependencies, including the LocalRunner class,
by running the Maven assemble command. Once that is complete, we can start the
LocalRunner commands, as shown in the following listing. 

mvn clean compile test-compile assembly:single                        B
...
[INFO] ----------------------------------------------------------
[INFO] BUILD SUCCESS
[INFO] ----------------------------------------------------------
[INFO] Total time:  29.279 s
[INFO] Finished at: 2020-08-15T15:43:58-07:00

Listing 4.17 Starting the LocalRunner and entering some data
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java -cp ./target/chapter4-0.0.1-fat-tests.jar  
com.manning.pulsar.chapter4.functions.sdk.KeywordFilter

        ➥ FunctionLocalRunnerTest Director                              c

org.apache.pulsar.functions.runtime.thread.ThreadRuntime - ThreadContainer 

➥ starting function with instance config InstanceConfig(instanceId=0, 

➥ functionId=0bc39b7d-fb08-4549-a6cf-ab641d583edd,

➥ functionVersion=7786da28-
0bb6-4c11-97d9-3d6140cc4261, functionDetails=tenant: "public"
namespace: "default"
name: "keyword-filter"
className: "com.manning.pulsar.chapter4.functions.

➥ sdk.KeywordFilterFunction"                                         d
userConfig: "{\"keyword\":\"Director\",\"ignore-case\":true}"
autoAck: true
parallelism: 1
source {                                                              e
  typeClassName: "java.lang.String"
  subscriptionName: "keyword-filter-sub"
  inputSpecs {
    key: "persistent://public/default/raw-feed"
    value {
      schemaType: "String"
    }
  }
  cleanupSubscription: true
}
sink {                                                                f
  topic: "persistent://public/default/filtered-feed"
  typeClassName: "java.lang.String"
  forwardSourceMessageProperty: true
}
. . .

Message received: At the end of the room a loud speaker projected from the 

➥ wall. The Director walked up to it and pressed a switch.           g
Message received: The Director pushed back the switch. The voice was 

➥ silent. Only its thin ghost continued to mutter from beneath the 

➥ eighty pillows.
Message received: Once more the Director touched the switch.

B Builds the fat jar containing the LocalRunner test and all its dependencies

c Run the LocalRunner test, and specify a keyword of Director to filter on.

d The output should indicate that the function was deployed as expected.

e The output should display the function’s input topic.

f The output should display the function’s output topic.

g The output should contain only sentences with the keyword Director in them.

Let’s review the steps that just occurred. An instance of the KeywordFilterFunction
was launched locally inside a JVM on my laptop and was connected to the Pulsar
instance that was running inside the Docker container we launched earlier. Next, the
input and output topics specified in the function configuration were created inside
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that Pulsar instance automatically. Then all of the data published by the producer run-
ning inside the KeywordFilterFunctionLocalRunnerTest’s sendData method was
published to the Pulsar topic inside the Docker container.

 The KeywordFilterFunction was listening on this same topic, and the processing
logic was applied to each line published to that topic. Only those messages that con-
tained the keyword, which in this case was Director, were written to the function’s
configured output topic. The consumer running inside the KeywordFilterFunction-
LocalRunnerTest’s startConsumer method was also reading messages from this out-
put topic and writing them to standard out so that we could verify the results.

4.5 Deploying Pulsar functions
After you have compiled and tested your Pulsar functions, you will eventually want to
deploy them to a production cluster. The pulsar-admin functions command-line tool
was designed specifically for this purpose, and it allows you to provide several configu-
ration properties for the functions, including tenant, namespace, input, and output
topics. In this section I will walk through the process of configuring and deploying a
Pulsar function using this tool.

4.5.1 Generating a deployment artifact

When you are deploying a Pulsar function, the first step is to generate a deployment
artifact that contains the function code along with all its dependencies. The type of
artifact varies depending on the programming language used to develop the function. 

JAVA SDK FUNCTIONS

For Java-based functions, the preferred artifact type is a NAR (NiFi archive) file,
although JAR files are also acceptable if they include all the necessary dependencies.
This holds true whether you want to deploy a simple Java-native language function or
one that has been developed using the Pulsar SDK. In either case, an archive file is the
deployment artifact. To have your Pulsar function packaged as a NAR file, you need to
include a special plugin inside your pom.xml file, as shown in the following listing,
which will bundle the function class, along with all its dependencies, for you.

<build>
  <plugins>
      <plugin>
        <groupId>org.apache.nifi</groupId>
        <artifactId>nifi-nar-maven-plugin</artifactId>
        <version>1.2.0</version>
        <extensions>true</extensions>
        <executions>
            <execution>
                <phase>package</phase>
                <goals>
                    <goal>nar</goal>
                </goals>

Listing 4.18 Add the NAR Maven plugin to your pom.xml file
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            </execution>
        </executions>
      </plugin>
   . . .
  </plugins>
</build>

Once this plugin has been added to your project’s pom.xml file, all you need to do is
run the mvn clean install command to generate the NAR file in your project’s tar-
get folder. This NAR file is the deployment artifact for Java-based Pulsar functions.

PYTHON SDK FUNCTIONS

For Python-based Pulsar functions, there are two deployment options, depending
on whether or not you used the Pulsar SDK. If you didn’t use the SDK and only want
to deploy a Python-native language function, then the Python source file (e.g.,
my-function.py) is the deployment artifact, and no further packaging is required.

 However, if you wish to deploy a Python-based Pulsar function that depends on
packages outside of the Python standard libraries, then you must first package all the
required dependencies into a single artifact (ZIP file) before you can deploy it. A file
named requirements.txt is required inside your Python project folder and is used to
maintain a list of all the project dependencies. It is up to the developer to keep this
file up to date manually. Note that pulsar-client is not needed as a dependency, as it
is provided by Pulsar. When you are ready to create your Python deployment artifact,
you first need to run the command shown in the following listing to download all the
Python dependencies specified in the requirements.txt file into the deps folder of
your Python project.

pip download \                    B
--only-binary :all: \             c
--platform manylinux1_x86_64 \    d
--python-version 37 \             e
-r requirements.txt \             f
-d deps                           g

B Use the pip package manager for Python.

c We need the binary version of all dependencies.

d Specify the target execution platform operating system.

e Specify the Python version.

f Relative path to the requirements.txt file

g Target download directory.

After the download is complete, you need to create a destination folder with the
desired package name (e.g., echo-function). Next, you must copy over both the src
and deps folders into it and compress the folder into a ZIP archive. The ZIP file gener-
ated from the command in the following listing is the deployment artifact for Python-
based Pulsar functions.

Listing 4.19 Downloading the Python dependencies
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mkdir -p /tmp/echo-function                          B

cp -R deps /tmp/echo-function/
cp -R src /tmp/echo-function/                        c

zip -r /tmp/echo-function.zip /tmp/echo-function     d

B Create a new target directory for the function dependencies and source.

c From inside the Python project folder, copy over dependencies and source.

d Use the zip command to create a ZIP file containing the contents of the target directory.

GOLANG SDK FUNCTIONS

For Golang-based Pulsar functions, the preferred artifact type is a single binary-
executable file that contains the machine byte code for your function along with all
the supporting code needed to execute the code on any computer, regardless of
whether that system has the .go source files or even a Go installation. You can use the
Go toolchain, as shown in the following listing, to generate this binary executable file.

cd chapter4                                         B

go build echoFunction.go                            c

go: downloading github.com/apache/pulsar/pulsar-function-go 

➥ v0.0.0-20210723210639-251113330b08
go: downloading github.com/sirupsen/logrus v1.4.2
go: downloading github.com/golang/protobuf v1.4.3
go: downloading github.com/apache/pulsar-client-go v0.5.0   
...                                                 d

ls -l                                               e

-rwxr-xr-x  1 david  staff  23344912 Jul 25 15:23 

➥ echoFunction                                     f
-rw-r--r--  1 david  staff       538 Jul 25 15:20 

➥ echoFunction.go                                  g

B Make sure you are in the project directory.

c Use the Go build command to generate the binary executable.

d Go will automatically download any packages that you need and include them in the binary.

e The Go source file containing the Pulsar function

f After the build command finishes, check the directory contents.

g The executable binary that was generated

If you are running macOS or Linux, the binary executable file will be generated
inside the directory where you run the command, and it will be named after the
source file. This is the artifact that must be deployed to run the Golang-based function
inside of Pulsar.

Listing 4.20 Packaging a Python-based Pulsar function for deployment

Listing 4.21 Packaging a Go-based Pulsar function for deployment
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4.5.2 Function configuration

Now that we know how to generate a deployment artifact, the next step is to configure
and deploy our Pulsar functions. All functions are required to provide some basic con-
figuration details when they are deployed to Pulsar, such as the input and output top-
ics and other details. There are two ways this configuration information can be
specified. The first is as command-line arguments passed to the pulsar-admin func-
tions CLI tool using the create (https://pulsar.apache.org/docs/en/functions-cli/
#create) and update (https://pulsar.apache.org/docs/en/functions-cli/#update)
function commands (e.g., bin/pulsar-admin functions create), and the second is
via a single configuration file.

 Which method you choose is a matter of preference, but I would strongly encourage
the use of the latter, as it not only simplifies the deployment process, but also allows you
to store the configuration details in source control along with the source code. This
allows you to refer to the properties at any time and ensures that you are always running
your functions with the correct configuration. If you choose this approach, you will only
need to provide two configuration values when you deploy your functions: the name of
the function artifact file containing the executable function code and the name of the
file containing all the configuration settings. The contents of a configuration file
named function-config.yaml are shown in the following listing. We are going to use this
file to deploy the KeywordFilterFunction to the Pulsar cluster running inside the
Docker container we started earlier in the chapter.

className: com.manning.pulsar.chapter4.functions.sdk.KeywordFilterFunction
tenant: public                                                  B
namespace: default                                              c
name: keyword-filter
inputs:                                                         d
- persistent://public/default/raw-feed
output: persistent://public/default/filtered-feed
userConfig:                                                     e
  keyword : Director
  ignore-case: false

##################################
# Processing 
##################################
autoAck: true                                                   f
logTopic: persistent://public/default/keyword-filter-log
processingGuarantees: ATLEAST_ONCE                              g
retainOrdering: false                                           h
timeoutMs: 30000
subName: keyword-filter-sub                                     i
cleanupSubscription: true

B Every function must have an associated tenant.

c Every function must have an associated namespace.

Listing 4.22 The function configuration file for the KeywordFilterFunction

https://pulsar.apache.org/docs/en/functions-cli/#create
https://pulsar.apache.org/docs/en/functions-cli/#create
https://pulsar.apache.org/docs/en/functions-cli/#create
https://pulsar.apache.org/docs/en/functions-cli/#update
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d There can be more than one input topic per function.

e The user configuration key, value map

f Whether or not the function should acknowledge the message after it has processed the message

g The delivery semantics applied to the function

h Whether or not the function should process the input messages in the order they were published

i The name of the subscription on the input topic

As you see, this file provides all the properties needed to run the Pulsar function,
including the class name, input/output directories, and much more. It also contains
the following configuration settings that control how the messages are consumed by
the function:

 auto_ack—Whether messages consumed from the input topic(s) are automati-
cally acknowledged by the function framework or not. When set to the default
value of true, each message that doesn’t result in an exception is acked auto-
matically when the function is done executing. If set to false, the function
code is responsible for message acknowledgment.

 retain-ordering—Whether messages are consumed in exactly the order they
appear on the input topics or not. When set to true, negatively acknowledged
messages will be redelivered before any unprocessed messages. 

 processing-guarantees—The processing guarantees (delivery semantics)
applied to messages consumed by the function. Possible values are [ATLEAST_
ONCE, ATMOST_ONCE, EFFECTIVELY_ONCE].

When executing a stream processing application, you may want to specify the delivery
semantics for the data processing within your Pulsar functions. These guarantees are
meaningful, since you must always assume there is the possibility of failures in the net-
work or machines that can result in data loss. 

 In the context of Pulsar Functions, these processing guarantees determine how
often a message is processed and how it is handled in the event of failure. Pulsar Func-
tions supports three distinct messaging semantics that you can apply to any function.
By default, Pulsar Functions provides at-most-once delivery guarantees, but you can
configure your Pulsar function to provide any of the following message processing
semantics instead.

AT-MOST-ONCE DELIVERY GUARANTEES

At-most-once processing does not provide any guarantee that data is processed, and
no additional attempts will be made to reprocess the data if it was lost before the Pul-
sar function could process it. Each message that is sent to the function will either be
processed one time at the most or not at all.

 As you can see in figure 4.6, when a Pulsar function is configured to use at-most-
once processing, the message is immediately acknowledged after it is consumed,
regardless of whether the message is successfully processed or not. In this scenario,
message M2 will be processed next by the function even if message M1 caused a pro-
cessing exception.
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You only want to use this processing guarantee if your application can handle periodic
data loss without impacting the correctness of the data. One such example would be a
function that calculates the average value of a sensor reading, such as a temperature.
Over the lifetime of the function, it will process tens of millions of individual tempera-
ture readings, and the loss of a handful of these readings will be inconsequential to
the accuracy of the computed average.

AT-LEAST-ONCE DELIVERY GUARANTEES

At-least-once processing guarantees that any data published to one of the function’s
input topics will be successfully processed by the function at least one time. In the
event of a processing failure, the message will automatically be redelivered. There-
fore, there is the possibility that any given message could be processed more than
once.

 With this processing semantic, the Pulsar function reads the message from the
input topic, executes its logic, and acknowledges the message. If the function fails to
acknowledge the message, it is reprocessed. This process is repeated until the func-
tion acknowledges the message. Figure 4.7 depicts the scenario in which the function
consumes the message but encounters a processing error that causes it to fail to send
an acknowledgment. In this scenario, the next message processed by the function
would be M1, and would continue to be M1 until the function succeeds.

You will only want to use this processing guarantee if your application can handle pro-
cessing the same data multiple times without impacting the correctness of the data.
One such scenario would be if the incoming messages represented records that would
be updated in a database. In such a scenario, multiple updates with the same values
would have no impact on the underlying database.

Input topic

Pulsar
function

Output topic

Ack

Consume

Mn M1M2M3
. . .

Figure 4.6 With at-most-once processing, the incoming messages are acknowledged, regardless 
of processing success or failure. This gives each message just one chance at being processed.

Pulsar
function

Output topic
Consume

Input topic

....Mn M1M2M3
. . .

Figure 4.7 With at-least-once processing, if the function encounters an error and fails 
to acknowledge the message, then the same message will be processed again.
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EFFECTIVELY-ONCE DELIVERY GUARANTEES

With effectively-once guarantees, a message can be received and processed more than
once, which is common in the presence of failures. The crucial thing is that the actual
outcome of the function processing on the resulting state will be as if the reprocessed
events were observed only once. This is most often what you will want to achieve.

 Figure 4.8 depicts the scenario in which an upstream producer to the function’s
input topic has re-sent the same message, M1. When configured to provide effectively-
once processing, the function will check to see if it has previously processed the mes-
sage (based on user-defined properties), and if so, it will ignore the message and send
an acknowledgment so that it will not be reprocessed.

4.5.3 Function deployment

Now that we have defined the configuration we want to use for the function, the next
step is to deploy the function onto a running Pulsar cluster. As we mentioned earlier,
the Pulsar cluster that we started earlier in the chapter that is running inside a Docker
container will do just fine. From inside a bash shell, you can execute the command
shown in the following listing to deploy the KeywordFilterFunction on that Pulsar
cluster.

$ docker exec -it pulsar bin/pulsar-admin functions create \ 
  --jar /pulsar/dropbox/target/chapter4-0.0.1.nar \           Bc
  --function-config-file 
  ➥ /pulsar/dropbox/src/main/resources/function-config.yaml  d

B Specify the deployment artifact, which must either a locally accessible file or a URL address.

c Using the pulsar-admin tool inside the Docker container

d Specify the function configuration file, which must either a locally accessible file or a URL address.

If everything went as expected, you should see Created successfully in the output of
the command, which indicates that the function was created and deployed on the Pul-
sar cluster. Let’s take a moment to review what happened and why the command was

Listing 4.23 Deploy the KeywordFilterFunction
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able to work. First off, we used the pulsar-admin CLI tool, which only exists inside the
Docker container. Therefore, we needed to use the Docker exec command to run the
pulsar-admin CLI tool inside the Docker container. In the command, we provided two
switches: one to specify the location of the deployment artifact (e.g., the NAR file) and
the other to specify the location of the function configuration file. Since we were
deploying a Java-based Pulsar function, we used the –-jar switch to specify the loca-
tion of the artifact. Had this been a Python-based function, we would have had to use
the –-py switch instead, and similarly, the –-go switch for a Golang-based function.
Using the correct switch is critical because Pulsar uses those switch values to determine
which runtime execution environment is needed to run the function (i.e., whether to
spin up a JVM, a Python interpreter, or a Go runtime for the function to run in).

 Both the configuration file and the function artifact files must either be on the
same machine as the pulsar-admin CLI tool or downloadable via a URL. Therefore,
we mounted the $GIT_PROJECT directory to the /pulsar/dropbox folder inside the
Docker container. That made both files locally accessible to the pulsar-admin CLI
tool. While this is a great trick for local development, bear in mind that in a real pro-
duction scenario, these files should be physically moved to the Pulsar cluster, prefera-
bly as part of the CI/CD release process. We can also check the status of our deployed
function using the function getstatus command, as shown in listing 4.24, which will
give us useful information about the function, including the status of the function,
how many messages it has processed, the average processing latency of the function,
and any exceptions that the function may have thrown.

# docker exec -it pulsar /pulsar/bin/pulsar-admin functions getstatus –

➥ name keyword-filter
{
  "numInstances" : 1,                    B
  "numRunning" : 1,                      c
  "instances" : [ {
    "instanceId" : 0,
    "status" : {
      "running" : true,                  d
      "error" : "",                      e
      "numRestarts" : 0,
      "numReceived" : 0,                 f
      "numSuccessfullyProcessed" : 0,    g
      "numUserExceptions" : 0,
      "latestUserExceptions" : [ ],
      "numSystemExceptions" : 0,
      "latestSystemExceptions" : [ ],
      "averageLatency" : 0.0,            h
      "lastInvocationTime" : 0,          i
      "workerId" : "c-standalone-fw-localhost-8080"
    }
  } ]
}

Listing 4.24 Checking the status of the KeywordFilterFunction
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B The number of requested instances of the function

c The actual number of running instances of the function

d Status indicator

e If any errors were thrown, they would be displayed here.

f The number of messages received by the function

g The number of messages that have been successfully processed by the function

h The average processing latency per message

i The last time a message was processed by the function

If you ever need to debug a running Pulsar function, the function getstatus com-
mand is an excellent place to start. The pulsar-admin functions command provides
another command that will show you the configuration settings of a Pulsar function as
well. You can check the configuration of a Pulsar function by using the function get
command, as shown in the following listing.

# docker exec -it pulsar /pulsar/bin/pulsar-admin functions get --name 

➥ keyword-filter
{
  "tenant": "public",
  "namespace": "default",
  "name": "keyword-filter",
  "className": 
   ➥ "com.manning.pulsar.chapter4.functions.sdk.KeywordFilterFunction",
  "inputSpecs": {
    "persistent://public/default/raw-feed": {                    B
      "isRegexPattern": false,
      "schemaProperties": {}
    }
  },
  "output": "persistent://public/default/filtered-feed",         c
  "logTopic": "persistent://public/default/keyword-filter-log",
  "processingGuarantees": "ATLEAST_ONCE",                        d
  "retainOrdering": false,                                       e
  "forwardSourceMessageProperty": true,
  "userConfig": {                                                f
    "keyword": "Director",
    "ignore-case": false
  },
  "runtime": "JAVA",                                             g
  "autoAck": true,                                               h
  "subName": "keyword-filter-sub",
  "parallelism": 1,                                              i
  "resources": {                                                 j
    "cpu": 1.0,
    "ram": 1073741824,
    "disk": 10737418240
  },
  "timeoutMs": 30000,
  "cleanupSubscription": true
}

Listing 4.25 Checking the configuration of the KeywordFilterFunction
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B The input topic(s)

c The output topic

d The processing guarantee for the function

e Whether or not the messages are to be processed in the order they were published to the topic

f Any user configuration values

g The runtime environment of functions (e.g., Java, Python, etc.)

h Whether the function will automatically acknowledge messages

i The number of parallel instances of the function that were requested

j The computing resources allocated to the function

4.5.4 The function deployment life cycle

As we saw in the previous section, there are quite a few configuration parameters avail-
able when creating and updating a function. In this section, we will cover how some of
those parameters are used within the Pulsar function deployment life cycle. When a
function is first created, the associated library bundle is stored in Apache BookKeeper
so it can be accessed by any Pulsar broker node in the cluster. The bundle is associated
with the fully qualified function name, which is a combination of the tenant, name-
space, and function name to ensure that it is globally unique across the Pulsar cluster.

 When a Pulsar function is first created, the steps shown in figure 4.9 are performed
in sequence. After the function is registered and all its details are persisted to Book-
Keeper, function workers are created based on the provided configuration parameters
and the Pulsar cluster’s deployment mode (which we will discuss in the next section).
The function workers are the runtime instantiations of the Pulsar function code and
can be threads, processes, or Kubernetes pods. Lastly, within each function worker, a
Pulsar consumer and subscription is created on the configured input topics. The func-
tion workers then await the arrival of incoming messages and perform their process-
ing logic on the incoming messages.

4.5.5 Deployment modes

As we have seen, to deploy and manage Pulsar Functions, you need to have a Pulsar
cluster running; however, there are a couple of options for where your Pulsar function
instances will run. You can have the Pulsar function run on your local development

Register function Create function workers Create a Pulsar consumer

Wait for
messages

Actions
Store the uploaded artifact in BK, 
and associate it with the fully-
qualified function name.

Parameters used
--jar / --py
--classname
--fqfn / --name --namespace --tenant

Actions
Create the threads, processes, or K8s
pods that will run the function workers
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--cpu
--ram
--disk
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Actions
Create a Pulsar consumer on
the specified input topic(s).

Parameters used
--inputs / --topics-pattern
--subs-name
--retain-ordering

Figure 4.9 The Pulsar function deployment life cycle
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machine (localrun mode) in which case it interacts with the broker over the network.
This was what we did with the LocalRunner test case. For production, you will want to
deploy your functions in cluster mode.

CLUSTER MODE

In this mode, users submit their functions to a running Pulsar cluster, and Pulsar will
take care of distributing them across the function workers for execution. The Pulsar
Functions framework supports the following runtime options when running in cluster
mode: thread, process, and Kubernetes, as shown in figure 4.10, and these refer to
how the function code itself is executed inside a function worker, which is the runtime
environment used to host Pulsar Functions.

In Pulsar, there are two options for where the function workers can run. One option is
to run inside the Pulsar brokers themselves, which simplifies the deployment. The
other option is to start the function worker processes on their own separate nodes to
provide better resource isolation between them and your brokers.

Function 
worker

Pulsar broker

Container

Intended for large-scale processing, in container deployment mode, 
Pulsar functions run within their own containers that are managed 
by Kubernetes.

Pulsar broker Pulsar broker Pulsar broker

Function 
worker-1-1

Function 
worker-1-2

Function 
worker-2-1

Function 
worker-2-2

Function 
worker-2-3

Local

Intended for development and testing,
local deployment mode executes the 
functions on the local machine and 
interacts with a separate Pulsar broker.

Broker

Intended for modest-scale processing, 
broker deployment mode executes the
functions on a function worker node 
as worker threads or processes.

Function 
worker-1

Function 
worker-2

Pulsar broker Pulsar broker

Function 
worker-1

Function 
worker-2

Kubernetes pods

Figure 4.10 A Pulsar function can run as a thread, process, or Kubernetes StatefulSet inside 
the Pulsar functions workers.



130 CHAPTER 4 Pulsar functions

 The benefits of running the function workers on the broker node itself, as either a
thread or a separate process, include that it has a smaller hardware footprint, as you
won’t need as many nodes in your environment, and a reduction in network latency
between the function processes and the broker that is serving the messages. However,
running the function workers on separate nodes provides better resource isolation
and insulates the pulsar broker process from being inadvertently killed by a function
worker crashing and bringing the broker down with it.

4.5.6 Pulsar function data flow

Before I conclude this chapter, I want to take a moment to document the flow of an
individual message through a Pulsar function and tie the various stages back to the
configuration parameters supplied when you first create or update a function, so you
have a better understanding of how to configure your functions. The data flow inside
a Pulsar function is depicted in the state machine shown in figure 4.11, along with the
configuration properties that control the function behavior.

When a message arrives on any of the function’s configured input topics, the func-
tion’s process method is called with the message contents as an input parameter. If the
function can successfully process the message without encountering any runtime
exceptions, the value returned by the method call is published to the configured out-
put topic, unless it is a void function, in which case nothing is published.

 However, if the function encounters a runtime exception, the message is retried up
to the value configured in the max-message-retries parameter. If all these attempts
fail, the message is routed to the configured dead-letter-queue topic (if any), so it
can be retained for future examination. In either case, the message is acknowledged as
consumed by the Pulsar function if the auto-ack flag was configured to true, allowing
the next message to be processed. 

 Invoke function

Message
arrives

Publish message
to DLQ topic

Retry up to
max-message-retries

Parameters used
--auto-ack
--processing-guarantees
--max-message-retries
--timeout-ms
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Figure 4.11 The basic message flow for a Pulsar function running inside of a Pulsar worker



131Summary

Summary
 Pulsar Functions is a serverless computing framework that runs on top of

Apache Pulsar and allows you to define processing logic that get executed when
a new message arrives in a topic.

 Pulsar functions can be written in several popular languages, including Python,
Go, and Java, but throughout the remainder of this book we will focus on Java.

 Pulsar functions can be configured, submitted, and monitored from the Pulsar
command line interface.

 Pulsar functions can be deployed to run as threads, processes, or Kubernetes
pods.
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Pulsar IO connectors

Messaging systems are much more useful when you can easily use them to move
data into and out of other external systems, such as databases, local and distributed
filesystems, or other messaging systems. Consider the scenario where you want to
ingest log data from external sources, such as applications, platforms, and cloud-
based services, and publish it to a search engine for analysis. This could easily be
accomplished with a pair of Pulsar IO connectors; the first would be a Pulsar source
that collects the application logs, and the second would be a Pulsar sink that writes
the formatted records to Elasticsearch.

 Pulsar provides a collection of pre-built connectors that can be used to interact
with external systems, such as Apache Cassandra, Elasticsearch, and HDFS, just to
name a few. The Pulsar IO framework is also extensible, which allows you to
develop your own connectors to support new or legacy systems as needed. 

This chapter covers
 An introduction to the Pulsar IO framework

 Configuring, deploying, and monitoring Pulsar IO 
connectors

 Writing your own Pulsar IO connector in Java
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5.1 What are Pulsar IO connectors?
The Pulsar IO connector framework provides developers, data engineers, and opera-
tors an easy way to move data into and out of the Pulsar messaging platform without
having to write any code or become experts in both Pulsar and the external system.
From an implementation perspective, Pulsar IO connectors are just specialized Pulsar
functions purpose-built to interface with external systems through an extensible API
interface.

 Compare this to a scenario in which you had to implement the logic for interacting
with an external system, such as MongoDB, inside a Java class that uses the Pulsar
Java client. Not only would you have to become familiar with the client interface for
MongoDB and Pulsar, but you would also have the operational burden of deploying and
monitoring a separate process that is now a critical part of your application stack. Pulsar
IO seeks to make the movement of data into and out of Pulsar less cumbersome.

 Pulsar IO connectors come in two types: sources, which ingest data from an external
system into Pulsar, and sinks, which feed data from Pulsar into an external system. Fig-
ure 5.1 illustrates the relationship between sources, sinks, and Pulsar.

5.1.1 Sink connectors

While the Pulsar IO framework already provides a collection of built-in connectors for
some of the most popular data systems, it was designed with extensibility in mind,
allowing users to add new connectors as new systems and APIs are developed. The
programming model behind Pulsar IO Connectors is very straightforward, which
greatly simplifies the development process. Pulsar IO sink connectors can receive mes-
sages from one or more input topics. Every time a message is published to any of the
input topics, the Pulsar sink’s write method is called. 

 The implementation of the write method is responsible for determining how to
process the incoming message contents and properties in order to write data to the
source system. The Pulsar sink shown in figure 5.2 can use the message contents to
determine which database table to insert the record into and then construct and exe-
cute the appropriate SQL command to do so. 

Source SinkPulsar

External systems

Reads
from

Writes
to

Cloud servicesFilesystemsObject stores Databases

Figure 5.1 Sources consume data 
from external systems, while sinks 
write data to external systems.
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The easiest way to create a custom sink connector is to write a Java class that imple-
ments the org.apache.pulsar.io.core.Sink interface shown in listing 5.1. The first
method defined in the interface is the open method, which is called just once when
the sink connector is created and can be used to initialize all the necessary resources
(e.g., for a database connector, you can create the JDBC client). The open method
also provides a single input parameter, named config, from which you can retrieve all
the connector-specific settings (e.g., the database connection URL, username, and
password). In addition to the passed-in config object, the Pulsar runtime also provides
a SinkContext for the connector that provides access to runtime resources, much like
the Context object does in the Pulsar Functions API.

package org.apache.pulsar.io.core;

public interface Sink<T> extends AutoCloseable {
    /**
     * Open connector with configuration
     *
     * @param config initialization config
     * @param sinkContext
     * @throws Exception IO type exceptions when opening a connector
     */
    void open(final Map<String, Object> config, 
              SinkContext sinkContext) throws Exception;

    /**
     * Write a message to Sink
     * @param record record to write to sink
     * @throws Exception
     */
    void write(Record<T> record) throws Exception;
}

The other method defined in the interface is the write method, which is responsible
for consuming messages from the sink’s configured source Pulsar topic and writing
the data to the external source system. The write method receives an object that

Listing 5.1 The Pulsar sink interface
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implements the org.apache.pulsar.functions.api.Record interface, which pro-
vides information that can be used when processing the incoming message. It is worth
pointing out that the sink interface extends the AutoCloseable interface, which
includes a close method definition that can be used to release any resources, such as
database connections or open file writers, before the connector is stopped.

package org.apache.pulsar.functions.api

public interface Record<T> {

    default Optional<String> getTopicName() {           B
        return Optional.empty();
    }

    default Optional<String> getKey() {                 c
        return Optional.empty();
    }

    T getValue();                                       d

    default Optional<Long> getEventTime() {             e
        return Optional.empty();
    }

    default Optional<String> getPartitionId() {         f
        return Optional.empty();
    }

    default Optional<Long> getRecordSequence() {        g
        return Optional.empty();
    }

    default Map<String, String> getProperties() {       h
        return Collections.emptyMap();
    }

    default void ack() {                                i
    }

    default void fail() {                               j
    }

    default Optional<String> getDestinationTopic() {    1)
        return Optional.empty();
    }
}

B If the record originated from a topic, report the topic name.

c Return a key if the key has one associated.

d Retrieves the actual data of the record

Listing 5.2 The record interface
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e Retrieves the event time of the record from the source

f If the record is originated from a partitioned source, return its partition ID. The partition ID will be 
used as part of the unique identifier by the Pulsar IO runtime to do message deduplication and 
achieve an exactly-once processing guarantee.

g If the record is originated from a sequential source, return its record sequence. The record sequence 
will be used as part of the unique identi-fier by Pulsar IO runtime to do message deduplication and 
achieve an exactly-once processing guarantee.

h Retrieves user-defined properties attached to the record

i Acknowledge that the record has been processed.

j Indicate to the source system that this record has failed to be processed.

1) To support message routing on a per message basis

The implementation of the record should also provide two methods: ack and fail.
These two methods will be used by the Pulsar IO connector to acknowledge the
records that have been processed and fail the records that have failed. Failure to
acknowledge or fail messages within the source connector will result in the messages
being retained, which will ultimately cause the connector to stop processing due to
backpressure.

5.1.2 Source connectors 

Pulsar IO source connectors are responsible for consuming data from external sys-
tems and publishing the data to the configured output topic. There are two distinct
types of sources supported by the Pulsar IO framework; the first are those that operate
on a pull-based model. As you can see in figure 5.3, the Pulsar IO framework repeat-
edly calls the Source connector’s read() method to pull data from the external
source into Pulsar.

In this particular case, the logic inside the connector’s read() method would be
responsible for querying the database, converting the result set into Pulsar messages,
and publishing them to the output topic. This type of connector would be particularly
useful when you have a legacy order entry application that only writes incoming

Pulsar source
connector

Publishes to Output
topic

Pulsar IO
framework

MySQL DB

Reads
from

read()

Repeated
calls

Figure 5.3 The Source connector’s read() method is repeatedly called, 
which then pulls the information from the database and publishes it to Pulsar.
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orders into a MySQL database, and you want to expose these new orders to other sys-
tems for real-time processing and analysis.

 The easiest way to create a pull-based source connector is to write a Java class that
implements the org.apache.pulsar.io.core.Source interface, which is shown in
listing 5.3. The first method defined in this interface is the open method, which is
called just once when the source connector is created and should be used to initialize
all the necessary resources, such as a database client. 

 The open method specifies an input parameter, named config of type Map, from
which you can retrieve all the connector-specific settings, such as the database connec-
tion URL, username, and password. This input parameter contains all of the values
specified in the file specified by the –-source-config-file parameter along with all
the default configuration settings and values provided by the various switches used to
create or update a function.

package org.apache.pulsar.io.core;

public interface Source<T> extends AutoCloseable {
   /**
    * Open source with configuration
    *
    * @param config initialization config
    * @param sourceContext
    * @throws Exception IO type exceptions when opening a connector
    */
    void open(final Map<String, Object> config,
           SourceContext sourceContext) throws Exception;

    /**
     * Reads the next message from source.
     * If source does not have any new messages, this call should block.
     * @return next message from source. The result should never be null
     * @throws Exception
    */
    Record<T> read() throws Exception;

}

In addition to the config parameter, the Pulsar runtime also provides a Source-
Context for the connector. Much like the context object defined in the Pulsar Func-
tion API, the SourceContext object provides access to runtime resources for tasks like
collecting metrics, retrieving stateful property values, and more.

 The other method defined in the interface is the read method, which is responsi-
ble for retrieving data from the external source system and publishing it to the target
Pulsar topic. The implementation of this method should be blocking on this method if
there is no data to return and should never return null. The read() method returns
an object that implements the org.apache.pulsar.functions.api.Record interface

Listing 5.3 The Pulsar source interface
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that we saw earlier in listing 5.2. It is worth pointing out that the source interface also
extends the AutoCloseable interface that includes a close method definition, which
should be used to release any resources, such as database connections, before the con-
nector is stopped

5.1.3 PushSource connectors 

The second type of source connectors are those that operate on a push-based model.
These connectors continuously gather data and buffer it inside an internal blocking
queue for eventual delivery to Pulsar. As you can see from figure 5.4, PushSource con-
nectors typically have a background thread running continuously that gathers infor-
mation from the source system and buffers it inside an internal queue. When the
Pulsar IO framework repeatedly calls the Source connector’s read() method, the data
inside that internal queue is then published into Pulsar.

In this particular case, the connector has a background thread that is listening to all
incoming traffic on a network socket and publishing it to the internal queue. This type
of connector is particularly useful when you are consuming data from an external
source that does not retain any information and can be periodically queried at any
future point in time. A network socket is just such an example in that if the thread wasn’t
connected and listening at all times, data sent over that network connection would be
lost forever. Contrast this with the previous connector which queries a database. In that
scenario, the connector can query the database after an order has been entered into the
database and still retrieve the data because the database has retained it.

 The easiest way to create a push-based source connector is to write a Java class that
extends the abstract org.apache.pulsar.io.core.PushSource class shown in the fol-
lowing listing. Since this class implements the Source interface, your class must pro-
vide an implementation of all the methods we discussed in the previous section.
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Repeated
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Figure 5.4 The PushSource connector’s has a background thread running that is 
listening to a network socket and pushing all the traffic it receives to a blocking queue. 
When the read() method is called, the data is pulled from the blocking queue.
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package org.apache.pulsar.io.core;
/**
 * Pulsar's Push Source interface. PushSource read data from
 * external sources (database changes, twitter firehose, etc)
 * and publish to a Pulsar topic. The reason its called Push is
 * because PushSources get passed a consumer that they
 * invoke whenever they have data to be published to Pulsar.
 */
public abstract class PushSource<T> implements Source<T> {

  private LinkedBlockingQueue<Record<T>> queue;
  private static final int DEFAULT_QUEUE_LENGTH = 1000;

  public PushSource() {
   this.queue = new LinkedBlockingQueue<>(this.getQueueLength());    B
  }

  @Override
  public Record<T> read() throws Exception {
   return queue.take();                                              c
  }

  /**
* Attach a consumer function to this Source. This is invoked by the 
* implementation to pass messages whenever there is data to be 
* pushed to Pulsar.
*
* @param record next message from source which should be sent to 
*  a Pulsar topic
*/
  public void consume(Record<T> record) {
    try {
   queue.put(record);                                                d
   } catch (InterruptedException e) {
     throw new RuntimeException(e);
   }
  }

  /**
* Get length of the queue that records are push onto
* Users can override this method to customize the queue length
* @return queue length
*/
  public int getQueueLength() {
   return DEFAULT_QUEUE_LENGTH;                                      e
  }
}

B The BatchPushSource uses an internal blocking queue to buffer messages.

c Messages are read from the internal queue that blocks if no data is available.

d Incoming messages are stored in the internal queue that blocks if it is full.

e You must override this method if you want to increase the size of the internal queue.

Listing 5.4 The PushSource class
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The key architectural feature of the PushSource is the LinkedBlockingQueue that is
used to buffer messages before they are published to Pulsar. This queue allows you to
have a continuously running process that listens for incoming data and publishes it to
Pulsar. It is also worth noting that the internal queue can be constrained to the
desired size, which allows you to limit the memory consumption of the PushSource
connector. When the blocking queue reaches the configured size limit, no more
records can be published to the queue. This will result in the background thread get-
ting blocked, which could lead to data loss when the queue is full. Therefore, it is
important to size the queue properly.

5.2 Developing Pulsar IO connectors
In the previous section, I introduced the source and sink interfaces provided by the
Pulsar IO connector framework and provided a high-level discussion of what each
method does. I will build upon that foundation in this section as I walk you through
the process of developing new connectors.

5.2.1 Developing a sink connector

I will start with a very basic sink connector that receives an endless stream of string val-
ues and writes them to a local temp file, as shown in listing 5.5. While this sink connec-
tor does have some limitations, specifically that you cannot write an endless stream of
data to a single file, it does serve as a good example that can be used to demonstrate
the process of developing a Sink connector.

import org.apache.pulsar.io.core.Sink;                            B

public class LocalFileSink implements Sink<String> {
   
   private String prefix, suffix;
   private BufferedWriter bw = null;
   private FileWriter fw = null;

   public void open(Map<String, Object> config, 
                    SinkContext sinkContext) throws Exception {

     prefix = (String) config.getOrDefault("filenamePrefix", "test-out");
     suffix = (String) config.getOrDefault
        ➥ ("filenameSuffix", ".tmp");                               c

     File file = File.createTempFile(prefix, suffix);             d
     fw = new FileWriter(file.getAbsoluteFile(), true);           e
     bw = new BufferedWriter(fw);
   }

   public void write(Record<String> record) throws Exception {
     try {
        bw.write(record.getValue());                              f

Listing 5.5 Local file Pulsar IO sink
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        bw.flush();
        record.ack();                                             g
     } catch (IOException e) {
        record.fail();                                            h
        throw new RuntimeException(e);
     }
   }

   public void close() throws Exception {                         i
      try {
         if (bw != null)
            bw.close();
         if (fw != null)
           fw.close();
     } catch (IOException ex) {
        ex.printStackTrace();
     }
   }
}

B Import the source interface.

c Retrieve the target filename prefix and suffix from the provided configuration properties.

d Create the new file in the temporary directory.

e Initialize the file and buffered writers.

f Retrieve the value from the incoming record, and write it to the open file.

g Acknowl-edge that we processed the message successfully, so it can be purged.

h Indicate that we weren’t able to process the message, so it can be retained and retried at a later time.

i Close both of the open file streams to ensure the data is flushed to disk.

The open method of the connector retrieves the configuration properties provided by
the user and creates the empty target file inside the temp directory of the host. Next,
the instance-level FileWriter and BufferedWriter variables are initialized to point to
the newly created target file, while the close method will attempt to close both of the
writers when the connector is stopped. 

 The sink’s write method is invoked whenever a new message arrives in any of the
sink’s configured input topics. The method appends the record value to the target file
via the BufferedWriter’s write method before acknowledging that the message has
been successfully processed. In the unlikely event that we cannot write the record’s
contents to the temp file, an IOException will be thrown, and the sink will fail the
message before propagating the exception. 

5.2.2 Developing a PushSource connector

Next, let’s write a custom push-based source connector that scans a directory for new
files and publishes the contents of these files line by line to Pulsar, as shown in listing
5.6. We want this connector to periodically scan for new files and publish their contents
as soon as the file is written to the directory we are scanning. We can do this by extend-
ing the PushSource class, which is a specialized implementation of the source interface
that is designed to use a background process to continuously produce records. 
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  import org.apache.pulsar.io.core.PushSource;
  import org.apache.pulsar.io.core.SourceContext;

  public class DirectorySource extends PushSource<String> {
    private final ScheduledExecutorService scheduler =
    Executors.newScheduledThreadPool(1);                            B

    private DirectoryConsumerThread scanner;

    private Logger log;

@Override
public void open(Map<String, Object> config, SourceContext context) 
  throws Exception {
  String in = (String) config.getOrDefault("inputDir", ".");        c
  String out = (String) config.getOrDefault("processedDir", ".");
  String freq = (String) config.getOrDefault("frequency", "10");

  scanner = new DirectoryConsumerThread(this, in, out, log);        d
  scheduler.scheduleAtFixedRate(scanner, 0, Long.parseLong(freq), 

TimeUnit.MINUTES);                                             e
  log.info(String.format("Scheduled to run every %s minutes", freq));
  }

@Override
public void close() throws Exception {
  log.info("Closing connector");
  scheduler.shutdownNow();
}
}

B An internal thread pool for running the background thread

c Get the runtime settings from the configuration properties that are passed in.

d Create the background thread, passing in a reference to the source connector and the configs.

e Start the back-ground thread.

The open method of the source connector retrieves the configuration properties pro-
vided by the user that specifies the local directory to read the files from, and then
launches a background thread of type DirectoryConsumerThread that is responsible
for scanning the directory and reading each of the file’s contents line by line. The
background thread class shown in the following listing takes the source connector
instance as a parameter to its constructor method, which it then uses to pass the file
contents to an internal blocking queue inside the threads process method.

  import org.apache.pulsar.io.core.PushSource;

  public class DirectoryConsumerThread extends Thread {
   private final PushSource<String> source;                           B

Listing 5.6 A PushSource connector

Listing 5.7 The DirectoryConsumerThread process
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   private final String baseDir;
   private final String processedDir;

public DirectoryConsumerThread(PushSource<String> source, String base, String 

➥ processed, Logger log) {
  this.source = source;
  this.baseDir = base;
  this.processedDir = processed;
  this.log = log;
}

public void run() {
  log.info("Scanning for files.....");
  File[] files = new File(baseDir).listFiles();
  for (int idx = 0; idx < files.length; idx++) {
   consumeFile(files[idx]);                                           c
  }
}

private void consumeFile(File file) {
  log.info(String.format("Consuming file %s", file.getName()));
  try (Stream<String> lines = getLines(file)) {                       d
    AtomicInteger counter = new AtomicInteger(0);
     lines.forEach(line -> 
        process(line, file.getPath(), counter.incrementAndGet()));    e
             
      log.info(String.format("Processed %d lines from %s", 
        counter.get(), file.getName()));
      Files.move(file.toPath(),Paths.get(processedDir)
        .resolve(file.toPath().getFileName()), REPLACE_EXISTING);     f
      log.info(String.format("Moved file %s to %s",
        file.toPath().toString(), processedDir));

  } catch (IOException e) {
    e.printStackTrace();
  } 
}

private Stream<String> getLines(File file) throws IOException {       g
  if (file == null) {
     return null;
  } else {
    return Files.lines(Paths.get(file.getAbsolutePath()),
      Charset.defaultCharset());
  }
}

private void process(String line, String src, int lineNum) {
  source.consume(new FileRecord(line, src, lineNum));                 h
}
}

B A reference to the PushSource connector

c Process all of the files in the configured base directory.

d Split each file into individual lines.
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e Process each line in the file individually.

f When we are finished with a file, move it to the processed directory.

g Splits the given file into a stream of individual lines

h Creates a new Record for each line of text in the file

I also created a new record type, FileRecord, as shown in listing 5.8, for this Push-
Source connector. This allows me to retain some additional metadata about the file
content, including the name of the source file and line number. This type of metadata
can be used for downstream processing of these records by other Pulsar functions, as
it would allow you to sort the records by file name or type or ensure that you are pro-
cessing the lines of a given file in sequence (based on the line number).

import org.apache.pulsar.functions.api.Record;

public class FileRecord implements Record<String> {

  private static final String SOURCE = "Source";
  private static final String LINE = "Line-no";
  private String content;                              B
  private Map<String, String> props;                   c

  public FileRecord(String content, String src, int lineNumber) {
    this.content = content;
    this.props = new HashMap<String, String>();
    this.props.put(SOURCE, srcFileName);
    this.props.put(LINE, lineNumber + "");
  }

  @Override
  public Optional<String> getKey() {
    return Optional.ofNullable(props.get(SOURCE));     d
  }

  @Override
  public Map<String, String> getProperties() {
    return props;                                      e
  }

  @Override
  public String getValue() {
     return content;                                   f
  }
}

B The actual contents of the file for this particular line

c The message properties

d Use the source file as the key for key-based subscriptions, etc.

e The message properties expose the metadata.

f The message value is the raw file contents themselves.

Listing 5.8 The FileRecord class
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The thread’s process method calls the PushSource’s consume() method, passing in the
file contents. As we saw in listing 5.4, the consume() method inside the PushSource sim-
ply writes the incoming data directly to the internal blocking queue. This decouples
the reading of the file contents from the Pulsar framework’s call to the PushSource
connector’s read() method. The use of a background thread is a common design pat-
tern for PushSource connectors that retrieve the data from the external system and
then invoke the source’s consume method to push the data to the output topic.

5.3 Testing Pulsar IO connectors
In this section, I will walk you through the process of developing and testing a Pulsar
connector. Let’s use the DirectorySource connector shown in listing 5.6 to demon-
strate the software development lifecycle for a Pulsar connector. This connector takes
in a user-provided directory and publishes the contents of all the files within the given
directory line by line. 

 While this code is fairly simplistic, I will walk through the testing process you would
typically use when developing a connector for production use. Since this is just plain
Java code, we can leverage any of the existing unit testing frameworks, such as JUnit or
TestNG, to test the function logic.

5.3.1 Unit testing

The first step is to write a suite of unit tests that test some of the more common scenar-
ios in order to validate that the logic is correct and produces accurate results for vari-
ous sentences we send it. Since this code uses the Pulsar SDK API, we will need to use
a Mocking library, such as Mockito, to mock the SourceContext object, as shown in
the following listing.

  public class DirectorySourceTest {
    final static Path SOURCE_DIR =
      Paths.get(System.getProperty("java.io.tmpdir"), "source");
   final static Path PROCESSED_DIR = 
     Paths.get(System.getProperty("java.io.tmpdir"),"processed");      B
    
   private Path srcPath, processedPath;
   private DirectorySource spySource;                                  c
    
   @Mock
   private SourceContext mockedContext;

   @Mock
   private Logger mockedLogger;
    
   @Captor
   private ArgumentCaptor<FileRecord> captor;                          d

   @Before
   public final void init() throws IOException {

Listing 5.9 DirectorySource unit tests
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      MockitoAnnotations.initMocks(this);
      when(mockedContext.getLogger()).thenReturn(mockedLogger);
      FileUtils.deleteDirectory(SOURCE_DIR.toFile());
      FileUtils.deleteDirectory(PROCESSED_DIR.toFile());               e
      srcPath = Files.createDirectory(SOURCE_DIR, 
        PosixFilePermissions.asFileAttribute(
          PosixFilePermissions.fromString("rwxrwxrwx")));
      processedPath = Files.createDirectory(PROCESSED_DIR,
        PosixFilePermissions.asFileAttribute(
          PosixFilePermissions.fromString("rwxrwxrwx")));              f
      spySource = spy(new DirectorySource());                          g
   }

    
      @Test
      public final void oneLineTest() throws Exception {
        Files.copy(getFile("single-line.txt"),Paths.get(srcPath.toString(),
          "single-line.txt"), COPY_ATTRIBUTES);                        h
       Map<String, Object> configs = new HashMap<String, Object>();
       configs.put("inputDir", srcPath.toFile().getAbsolutePath());
       configs.put("processedDir", processedPath.toFile().getAbsolutePath());
        
       spySource.open(configs, mockedContext);                         i
       Thread.sleep(3000);
        
       Mockito.verify(spySource).consume(captor.capture());            j
       FileRecord captured = captor.getValue();                        1)
       assertNotNull(captured);
       assertEquals("It was the best of times", 
        ➥ captured.getValue());                                        1!
       assertEquals("1", captured.getProperties().get(FileRecord.LINE));
       assertTrue(captured.getProperties().get(FileRecord.SOURCE)
         .contains("single-line.txt"));                                1@
     }
    
     @Test
     public final void multiLineTest() throws Exception {
       Files.copy(getFile("example-1.txt"),Paths.get(srcPath.toString(),
         "example-1.txt"), COPY_ATTRIBUTES);
       Map<String, Object> configs = new HashMap<String, Object>();
       configs.put("inputDir", srcPath.toFile().getAbsolutePath());
       configs.put("processedDir", processedPath.toFile().getAbsolutePath());
        
       spySource.open(configs, mockedContext);                         1#
       Thread.sleep(3000);
        
    Mockito.verify(spySource, times(113)).consume(captor.capture());   1$
        
    final AtomicInteger counter = new AtomicInteger(0);
    captor.getAllValues().forEach(rec -> {
      assertNotNull(rec.getValue());
      assertEquals(counter.incrementAndGet() + "", 
        rec.getProperties().get(FileRecord.LINE));    
      assertTrue(rec.getProperties().get(FileRecord.SOURCE)
        .contains("example-1.txt"));                                   1%
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    });
  }
    
  private static Path getFile(String fileName) throws IOException {
     . . .     
  }
}

B Using the tmp folder for testing

c We will spy on the DirectorySource connector.

d Class that captures all of the records written by the DirectorySource connector

e Clear out the tmp folder before running each test.

f Create the source and processed folder used during the test.

g Instantiate the DirectorySource connector.

h Copy the test file into the source directory.

i Run the DirectorySource connector.

j Verify that a single record was published.

1) Retrieve the published record for validation.

1! Validate the record contents.

1@ Validate the record properties.

1# Run the DirectorySource connector.

1$ Verify that the expected number of records were published.

1% Validate each of the records’ values and properties.

As you can see, these unit tests cover the very basic functionality of Functions and rely
on the use of a mock object for the Pulsar context object. This type of test suite is
quite similar to one you would write to test any Java class that wasn’t a Pulsar function.

5.3.2 Integration testing 

After we are satisfied with our unit testing results, we will want to see how the Pulsar
function will perform on a Pulsar cluster. The easiest way to test a Pulsar function is to
start a Pulsar server and run the Pulsar function locally using the LocalRunner helper
class. In this mode, the function runs as a standalone process on the machine it is sub-
mitted from. This option is best when you are developing and testing your connectors,
as it allows you to attach a debugger to the connector process on the local machine. In
order to use the LocalRunner, you must first add a few dependencies to your maven
project, which brings in the LocalRunner class that is used to test the function against
a running Pulsar cluster, as shown in the following listing.

<dependencies>
  . . .
  <dependency>
        <groupId>com.fasterxml.jackson.core</groupId>
        <artifactId>jackson-core</artifactId>

Listing 5.10 Including the LocalRunner dependencies
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        <version>2.11.1</version>
  </dependency>
  <dependency>
    <groupId>org.apache.pulsar</groupId>
    <artifactId>pulsar-functions-local-runner-original</artifactId>
    <version>2.6.1</version>
  </dependency>
</dependencies>

Next, we need to write a class to configure and launch the LocalRunner, as shown in
listing 5.11. As you can see, this code must first configure the Pulsar connector to exe-
cute on the LocalRunner and specify the address of the actual Pulsar cluster instance
that will be used for the testing. The easiest way to gain access to a Pulsar cluster is to
launch the Pulsar Docker container like we have done previously by running the fol-
lowing command in a bash window: docker run -d -p 6650:6650 -p 8080:8080 --name
pulsar apachepulsar/pulsar-standalone. This will start a Pulsar cluster in stand-
alone mode inside the container. Typically, you would run the LocalRunner test from
inside your integrated development environment (IDE) in order to attach a debugger
and step through the function code to identify and resolve any errors you have
encountered. 

public class DirectorySourceLocalRunnerTest {
  final static String BROKER_URL = "pulsar://localhost:6650";
  final static String OUT = "persistent://public/default/directory-scan"; 
  final static Path SOURCE_DIR =
     Paths.get(System.getProperty("java.io.tmpdir"), "source");
  final static Path PROCESSED_DIR =
     Paths.get(System.getProperty("java.io.tmpdir"), "processed");     B
    
  private static LocalRunner localRunner;
  private static Path srcPath, processedPath;
    
  public static void main(String[] args) throws Exception {
    init();
    startLocalRunner();
    shutdown();
  }
    
  private static void startLocalRunner() throws Exception {
    localRunner = LocalRunner.builder()
            .brokerServiceUrl(BROKER_URL)                              c
            .sourceConfig(getSourceConfig())                           d
            .build();
    localRunner.start(false);
  }
    
  private static void init() throws IOException {
    Files.deleteIfExists(SOURCE_DIR);
    Files.deleteIfExists(PROCESSED_DIR);

Listing 5.11 Testing the DirectorySource with the LocalRunner 
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    srcPath = Files.createDirectory(SOURCE_DIR,    
      PosixFilePermissions.asFileAttribute(
         PosixFilePermissions.fromString("rwxrwxrwx")));
    processedPath = Files.createDirectory(PROCESSED_DIR,
      PosixFilePermissions.asFileAttribute(
         PosixFilePermissions.fromString("rwxrwxrwx")));               e
      
    Files.copy(getFile("example-1.txt"), Paths.get(srcPath.toString(),
      "example-1.txt"), COPY_ATTRIBUTES);                              f
  }
    
  private static void shutdown() throws Exception {                    g
    Thread.sleep(30000);
    localRunner.stop();
    System.exit(0);
  }

  private static SourceConfig getSourceConfig() {    
    Map<String, Object> configs = new HashMap<String, Object>();
    configs.put("inputDir", srcPath.toFile().getAbsolutePath());
    configs.put("processedDir", processedPath.toFile().getAbsolutePath());
        
    return SourceConfig.builder()
        .className(DirectorySource.class.getName())                    h
        .configs(configs)                                              i
        .name("directory-source")
        .tenant("public")
        .namespace("default")
        .topicName(OUT)                                                j
        .build();
  }
    
  private static Path getFile(String fileName) throws IOException {
    . . .                                                              1)
  }
}

B Using the tmp folder for testing

c Connect the LocalRunner to the Docker container.

d Deploy the DirectorySource connector.

e Create the source and processed folder used during the test.

f Copy the test file into the source directory.

g Stops the LocalRunner after 30 seconds

h Specify the DirectorySource as the connector we want to run.

i Configure the DirectorySource connector.

j Specifies the output topic for the source connector

1) Reads the file from the project resources folder

5.3.3 Packaging Pulsar IO connectors

Since Pulsar IO connectors are specialized Pulsar functions, they are expected to be
self-contained software bundles. Thus, you will need to package your connector with
all of its dependencies as either a fat JAR or a NAR file. NAR stands for NiFi archive. It



148 CHAPTER 5 Pulsar IO connectors

is a custom packaging mechanism used by Apache NiFi that provides Java ClassLoader
isolation. In order to have your Pulsar IO connector packaged as a NAR file, all that is
required is to include the nifi-nar-maven-plugin in your maven project for your
connector, as shown in the following listing.

<build>
   ...
   <plugin>
      <groupId>org.apache.nifi</groupId>
      <artifactId>nifi-nar-maven-plugin</artifactId>
      <version>1.2.0</version>
      <extensions>true</extensions>
      <executions>
         <execution>
            <phase>package</phase>
            <goals>
               <goal>nar</goal>
            </goals>
         </execution>
      </executions>
    </plugin>
</build>

The build plugin in listing 5.12 is used to generate a NAR file, which by default
includes all of the project dependencies in the generated archive file. This is the pre-
ferred method for bundling and deploying Java-based Pulsar IO connectors. With this
plugin added to your pom.xml file, all that you need to do is run the mvn clean
install command to produce a NAR file that can be used to deploy your connector
onto a production Pulsar cluster. Once you have packaged up your connector along
with all of its dependencies inside a NAR file, the next step is to deploy the connector
to a Pulsar cluster.

5.4 Deploying Pulsar IO connectors
As specialized Pulsar functions, IO connectors utilize the same runtime environment
that provides all the benefits of the Pulsar Functions framework, including fault toler-
ance, parallelism, elasticity, load balancing, on-demand updates, and much more.
With respect to deployment options, you can have the Pulsar IO connector run on
your local development machine, in localrun mode, inside the function workers in
the Pulsar cluster, or in cluster mode. In the previous section, we were using the Local-
Runner to run our connector in localrun mode. In this section, I will walk you
through the process of running the DirectorySource connector we developed in
cluster mode.

 Figure 5.5 shows a cluster-mode deployment inside a Kubernetes environment,
where each connector runs in its own container alongside other non-connector func-
tion instances. In cluster mode, Pulsar IO connectors leverage the fault-tolerance

Listing 5.12 Creating a NAR package
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capability offered by the Pulsar Functions runtime scheduler to handle failures. If a
connector is running on a machine that fails, Pulsar will automatically attempt to
restart the task on one of the remaining running nodes in the cluster. 

5.4.1 Creating and deleting connectors

If you haven’t already done so, run the mvn clean install command to create the
NAR file for the DirectorySource connector. Also, you will want to stop any running
Docker Pulsar containers, as you will need to start a new instance with some additional
parameters that allow you to access the NAR file from inside the Pulsar Docker con-
tainer, as shown in the following listing.

$ export GIT_PROJECT=<CLONE_DIR>/pulsar-in-action/chapter5   B
$ docker run --name pulsar -id \
  -p 6650:6650 -p 8080:8080 \
  -v $GIT_PROJECT:/pulsar/dropbox                            c
  apachepulsar/pulsar-standalone

B Set this to the directory where you cloned the book’s associated repo.

c Makes the project directory accessible inside the Docker container

As you can see from listing 5.13, we have added a -v switch to the usual command we
have been using to launch a Pulsar Docker container. That switch mounts the local
directory where you cloned the source code for this chapter onto your machine to a
folder named /pulsar/dropbox inside the Docker container itself. This is necessary to
deploy the connector, since the NAR file has to be physically accessible by the Pulsar
cluster for it to be deployed. We will also use this mounted directory to access the con-
figuration file that must be provided when creating a connector.

 As you may have noticed, we have always provided hard-coded values for the con-
figuration property inside the unit and integration tests, but when deploying to pro-
duction, we want to specify those values in a more dynamic manner. This is where the

Listing 5.13 Starting Pulsar Docker container with mounted volumes
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Figure 5.5 Pulsar IO connector deployment on Kubernetes
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configuration file comes in, as it allows us to specify connector-specific configurations
along with other standard connector properties such as parallelism. 

tenant: public
namespace: default
name: directory-source

className: com.manning.pulsar.chapter5.source.DirectorySource
topicName: "persistent://public/default/directory-scan"
parallelism: 1
processingGuarantees: ATLEAST_ONCE

# Connector specific config
configs:
    inputDir: "/tmp/input"
    processedDir: "/tmp/processed"
    frequency: 10

As you can see in listing 5.14, the configuration file we are going to use to deploy the
connector contains values for source and processed directories along with several
properties used by the Pulsar IO framework to create the Pulsar IO connector. The
configuration file is then provided to the bin/pulsar-admin source create command
when you want to create a new source connector, as shown in the following listing.

docker exec -it pulsar mkdir -p /tmp/input
docker exec -it pulsar chmod a+w /tmp/input
docker exec -it pulsar mkdir -p /tmp/processed   
docker exec -it pulsar chmod a+w /tmp/processed 
docker exec -it pulsar cp /pulsar/dropbox/src/test/resources/example-1.txt 

➥ /tmp/input                                                          B

docker exec -it pulsar /pulsar/bin/pulsar-admin source create \        c
 --archive /pulsar/dropbox/target/chapter5-0.0.1.nar \                 d
 --source-config-file /pulsar/dropbox/src/main/resources/config.yml    e

"Created successfully"                                                 f

docker exec -it pulsar /pulsar/bin/pulsar-admin source list            g
[
  "directory-source"
]

B Create the input and output folders inside the container, and copy over a test file.

c Using the source, create a command to create the connector.

d Specifies the NAR file that contains the source connector class

e Specifies the configuration file to use

f A response message indicating that the source was created

g List the active source connectors to confirm it was created.

Listing 5.14 Contents of the DirectorySource connector config file

Listing 5.15 The output of the create command
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When you create the connector, you should receive a reassuring Created success-
fully message to indicate that the connector was launched successfully. If you did not
receive the success message, you will need to debug the error, as described in the next
section.

5.4.2 Debugging deployed connectors

If you encounter any errors or unexpected behavior inside a Pulsar IO connector that
has been deployed, the best place to start debugging is the log files on the Pulsar worker
node where the connector is running. By default, all of the connector’s startup infor-
mation and captured stderr output is written to a log file. The name of the file is based
on the connector name and matches the following pattern in a production environ-
ment: logs/functions/tenant/namespace/function-name/function-name-instance-id
.log. In standalone mode, which is what we are currently using, the base directory is
/tmp instead of /logs with the rest of the path staying the same. Let’s examine the log
file for the DirectorySource connector that we created in the previous section, shown
in the following listing, and review some of the information that is available to you for
debugging.

cat /tmp/functions/public/default/directory-source/

➥ directory-source-0.log                                            B

20:53:30.671 [main] INFO

➥ org.apache.pulsar.functions.runtime.JavaInstanceStarter - JavaInstance 

➥ Server started, listening on 36857
20:53:30.676 [main] INFO  

➥ org.apache.pulsar.functions.runtime.JavaInstanceStarter – 

➥ Starting runtimeSpawner
20:53:30.678 [main] INFO  

➥ org.apache.pulsar.functions.runtime.RuntimeSpawner – 

➥ public/default/directory-source-0 RuntimeSpawner starting function
20:53:30.689 [main] INFO  

➥ org.apache.pulsar.functions.runtime.thread.ThreadRuntime – 

➥ ThreadContainer starting function with instance config 

➥ InstanceConfig(instanceId=0, functionId=c368b93f-34e9-4bcf-801f-

➥ d097b1c0d173, functionVersion=247cbde2
-b8b4-45bb-a3cb-8926c3b33217, functionDetails=tenant: "public"       c
namespace: "default"
name: "directory-source"
className: "org.apache.pulsar.functions.api.utils.IdentityFunction"
autoAck: true
parallelism: 1
source {
  className: "com.manning.pulsar.chapter5.source.DirectorySource"    d
  configs:                                                           e
  ➥ "{\"processedDir\":\"/tmp/processed\",\"inputDir\":\"/tmp/input\",
  ➥ \"frequency\":\"2\"}"
  typeClassName: "java.lang.String"

Listing 5.16 The first section of the DirectorySource log file
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}
sink {
  topic: "persistent://public/default/directory-scan"                f
  typeClassName: "java.lang.String"
}
resources {
  cpu: 1.0
  ram: 1073741824
  disk: 10737418240
}
componentType: SOURCE
, maxBufferedTuples=1024, functionAuthenticationSpec=null, port=36857, 

➥ clusterName=standalone, maxPendingAsyncRequests=10
00)

...
20:53:31.223 [public/default/directory-source-0] INFO  

➥ org.apache.pulsar.functions.instance.JavaInstanceRunnable - Initialize 

➥ function class loader for function directory-source at function cache 

➥ manager, functionClassLoader: 

➥ org.apache.pulsar.common.nar.NarClassLoader[/tmp/pulsar-nar/chapter5-

➥ 0.0.1.nar-unpacked]                                               g

B Examining the connector’s log file

c The connector configuration details section

d The connector class name

e The configuration map

f The output topic

g The NAR file and version we are using to deploy the connector

The first section of the log file contains the basic information about the connector,
such as the tenant, namespace, name, parallelism, resources, and so on, which can be
used to check whether the connector has been configured correctly or not. A little
further down in the log file, you should see a message indicating which artifact file the
connector was created from, which allows you to confirm that you are using the cor-
rect artifact file.

org.apache.pulsar.client.impl.ProducerStatsRecorderImpl - Starting
 Pulsar producer perf with config: {                                      B
  "topicName" : "persistent://public/default/directory-scan",
  "producerName" : null,
  "sendTimeoutMs" : 0,
  ...                                                                     c
  "multiSchema" : true,
  "properties" : {
    "application" : "pulsar-source",
    "id" : "public/default/directory-source",
    "instance_id" : "0"
  }
}

Listing 5.17 The last section of the DirectorySource log file
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20:53:33.704 [public/default/directory-source-0] INFO 

➥ org.apache.pulsar.client.impl.ProducerStatsRecorderImpl 

➥ - Pulsar client config: {                                              d
  "serviceUrl" : "pulsar://localhost:6650",
  "authPluginClassName" : null,
  "authParams" : null,
  ...                                                                     e
  "proxyProtocol" : null
}
20:53:33.726 [public/default/directory-source-0] INFO  

➥ org.apache.pulsar.client.impl.ProducerImpl - [persistent://public/
default/directory-scan] [null] Creating producer on cnx [id: 0xbcd9978b, 

➥ L:/127.0.0.1:44010 - R:localhost/127.0.0.1:6650]
20:53:33.886 [pulsar-client-io-1-1] INFO  

➥ org.apache.pulsar.client.impl.ProducerImpl – 

➥ [persistent://public/default/direc
tory-scan] [standalone-0-0] Created producer on cnx [id: 0xbcd9978b, 

➥ L:/127.0.0.1:44010 - R:localhost/127.0.0.1:6650]
20:53:33.983 [public/default/directory-source-0] INFO  function-directory-

➥ source - Scheduled to run every 2 minutes                              f
20:53:33.985 [pool-6-thread-1] INFO  function-directory-source - Scanning 

➥ for files.....
20:53:33.987 [pool-6-thread-1] INFO  function-directory-source - Processing 

➥ file example-1.txt
20:53:33.987 [pool-6-thread-1] INFO  function-directory-source - Consuming 

➥ file example-1.txt
20:53:34.385 [pool-6-thread-1] INFO  function-directory-source - Processed 

➥ 113 lines from example-1.txt
20:53:34.385 [pool-6-thread-1] INFO  function-directory-source - Moved file 

➥ /tmp/input/example-2.txt to /tmp/processed

B The Pulsar producer for the source connector

c Additional source connector properties

d The Pulsar client configuration, including security settings

e Additional Pulsar client configuration properties

f Log messages from the DirectorySource connector

The next section of the log file, shown in listing 5.18, contains some information
about the Pulsar producers and consumers that are created on behalf of the connec-
tor and will be used to publish and consume data from the configured input and out-
put topics. Any connectivity issues with either of these will result in errors at this point.
All the log statements added to your code will follow this section and allow you to
monitor the progress of your connector or see any of the exceptions that were raised.

 When you are finished with the connector and don’t want it to run any more, you
can use the bin/pulsar-admin source delete command to stop all the running
instances of the connector. The only parameters you need to provide are the connec-
tor’s tenant, namespace, and name to uniquely identify the connector that you wish to
delete (e.g., in order to delete the source we just created you would simply execute the
following command: bin/pulsar-admin source delete --tenant public --namespace
default --name directory-source).
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5.5 Pulsar’s built-in connectors
Pulsar provides a wide variety of existing sources and sinks, collectively referred to as
built-in connectors, that you can use to get started using the Pulsar IO connector frame-
work without having to write any code. Pulsar releases all the built-in connectors as
individual archives. All that is required to use these connectors is a copy of the built-in
connector’s archive (NAR) file on your Pulsar cluster and a simple YAML or JSON
configuration file that specifies the runtime parameters used to connect to the exter-
nal system. If you are running Pulsar in standalone mode, as we are by using the Pul-
sar standalone Docker image, then these built-in connectors’ individual archives are
already included as part of the distribution.

 Let’s walk through a simple scenario that uses these built-in connectors to move data
from Pulsar into MongoDB. While this example is a bit simplistic in nature, it will
demonstrate how easy it is to use the connector’s framework and help demonstrate
some of the high-level steps required to deploy and use Pulsar IO connectors. The first
step in this process will be to create an instance of MongoDB that we can interact with.

5.5.1 Launching the MongoDB cluster

The following command will run the latest MongoDB container in detached mode for
us. We are also mapping the container ports with host ports, so we can access the data-
base from our local machine if we want to. Once the container has launched, we will
have a functional MongoDB deployment available for us to work with:

$ docker run -d \
  -p 27017-27019:27017-27019 \
  --name mongodb \
  mongo

At this point we will have a MongoDB Docker container currently running in detached
mode. Next, you will need to execute the mongo command to launch the MongoDB shell
client. Once inside the shell we will need to create a new database and collection to store
the data. Next, we will need to create a new database named pulsar_in_action and
define a collection inside the database that we will use for storing the data, using the
commands shown in following listing.

docker exec -it mongodb mongo                                    B
MongoDB shell version v4.4.1                                     c
...
> 

>use pulsar_in_action;                                           d
switched to db pulsar_in_action

> db.example.save({ firstname: "John", lastname: "Smith"})       e

Listing 5.18 Creating a Mongo database table
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WriteResult({ "nInserted" : 1 })

> db.example.find({firstname: "John"})                           f
{ "_id" : ObjectId("5f7a53aedccb229a78960d2c"), "firstname" : "John", 

➥ "lastname" : "Smith" }

B Start the MongoDB interactive shell.

c Among the output, you should see the MongoDB shell version.

d Creates a database with the name pulsar_in_action

e Creates a collection named example inside the database and defines the schema

f Query the database to confirm the record was added successfully.

Now that we have a MongoDB cluster running locally and a database created, we can
proceed with configuring a MongoDB sink connector. It will then read messages from
a Pulsar topic and write the messages into a MongoDB table we created.

5.5.2 Link the Pulsar and MongoDB containers

Since we are going to run the MongoDB Pulsar connector inside the Pulsar Docker
container, there must be network connectivity between the two containers. The easiest
way to accomplish this in Docker is by using the –-link command line argument
when launching the Pulsar container. However, since we already started the Pulsar
container, we will first need to stop it and remove it before restarting it with the
–-link switch. Therefore, you will need to execute all of the commands shown in the
following listing before proceeding.

$ docker stop pulsar                                   B

$ docker rm pulsar                                     c

$ docker run -d \
  -p 6650:6650 -p 8080:8080 \
  -v $PWD/data:/pulsar/data \
  --name pulsar \
  --link mongodb \                                     d
  apachepulsar/pulsar-standalone

$ docker exec -it pulsar bash                          e

apt-get update && apt-get install vim --fix-missing -y f
vim /pulsar/examples/mongodb-sink.yml                  g

B Stops the currently running Pulsar container

c Deletes the old Pulsar container, so we can create a new one with the same name

d Links the MongoDB container to the Pulsar container

e Exec into the new Pulsar container

f We need to install the vim text editor in the Pulsar container so we can edit the config file.

g Launch the text editor inside the Pulsar container to create the configuration file.

Listing 5.19 Commands to link Pulsar and MongoDB containers
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By providing the name of the container running the MongoDB instance we wish to
interact with in the –-link switch, Docker creates a secure network channel between
the two containers that allows the Pulsar container to talk to the MongoDB container
via the link name. We will see this when we configure the MongoDB sink connector.

5.5.3 Configure and create the MongoDB sink

Configuring Pulsar IO connectors is straightforward. All you need to do is to provide a
YAML configuration file when you create the connectors. In order to run a MongoDB
sink connector, you will need to prepare a YAML config file containing all the infor-
mation that the Pulsar IO runtime needs to know to connect to the local MongoDB
instance. First, you need to create a local file in the examples subdirectory named
mongodb-sink.yml and edit it to have the content shown in the following listing.

tenant: "public"
namespace: "default"
name: "mongo-test-sink"
configs:
    mongoUri: "mongodb://mongodb:27017/admin"   B
    database: "pulsar_in_action"                c
    collection: "example"                       d
    batchSize: 1
    batchTimeMs: 1000

B We can use the name specified with the –link switch here instead of a hostname or IP address.

c We must specify the Mongo database we are writing to.

d We must specify the Mongo collection we are writing to.

For more information on the MongoDB sink connector configuration, please refer to
the documentation (http://pulsar.apache.org/docs/en/io-mongo/#sink). The Pulsar
command line interface provides commands for running and managing Pulsar IO
connectors, so you can run the command shown in the following listing from the Pul-
sar container command line to start the MongoDB sink connector.

/pulsar/bin/pulsar-admin sink create \                       B
   --sink-type mongo \                                       c
   --sink-config-file /pulsar/examples/mongodb-sink.yml \    d
   --inputs test-mongo                                       e
"Created successfully"                                       f

B Using the sink, create the command.

c Indicates we want to use the built-in sink connector for MongoDB

d Use the configuration file we created earlier.

e Specifies the input topic

f A response message indicating that the sink was created

Listing 5.20 The MongoDB sink connector configuration file

Listing 5.21 Starting the MongoDB sink connector 

http://pulsar.apache.org/docs/en/io-mongo/#sink
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Once the command is executed, Pulsar will create a sink connector named mongo-
test-sink, and the sink connector will begin writing the messages in the test-mongo
topic to the MongoDB collection examples in the pulsar_in_action database. Now,
let’s send some messages to the test-mongo topic to confirm that the connector is
functioning as expected by executing the commands in the following listing from
inside the Docker container.

  /pulsar/bin/pulsar-client produce \                    B
  -m "{firstname: \"Mary\", lastname: \"Smith\"}" \      c
  -s % \                                                 d
  -n 10 \                                                e
  test-mongo                                             f

B We are producing messages.

c The message contents, including escaped quotes

d Defines a non-comma record separator character; otherwise the message contents would be split

e Specifies we want to send the same message 10 times

f The destination topic

You can now query the MongoDB instance to confirm that the MongoDB connector
worked as expected. Return to the MongoDB shell we opened earlier to create the
database and run some different queries to confirm that the records were added to
the MongoDB table as expected, as shown in the next listing.

> db.example.find({lastname: "Smith"})                                 B
{ "_id" : ObjectId("5f7a53aedccb229a78960d2c"), "firstname" : "John", 

➥ "lastname" : "Smith" }                                              c
{ "_id" : ObjectId("5f7a68bbb94aa03489fa5ca9"), "firstname" : "Mary", 

➥ "lastname" : "Smith" }                                              d
{ "_id" : ObjectId("5f7a68bbb94aa03489fa5caa"), "firstname" : "Mary", 

➥ "lastname" : "Smith" }
{ "_id" : ObjectId("5f7a68bbb94aa03489fa5cab"), "firstname" : "Mary", 

➥ "lastname" : "Smith" }
{ "_id" : ObjectId("5f7a68bbb94aa03489fa5cac"), "firstname" : "Mary", 

➥ "lastname" : "Smith" }
{ "_id" : ObjectId("5f7a68bbb94aa03489fa5cad"), "firstname" : "Mary", 

➥ "lastname" : "Smith" }
{ "_id" : ObjectId("5f7a68bbb94aa03489fa5cae"), "firstname" : "Mary", 

➥ "lastname" : "Smith" }
{ "_id" : ObjectId("5f7a68bbb94aa03489fa5caf"), "firstname" : "Mary", 

➥ "lastname" : "Smith" }
{ "_id" : ObjectId("5f7a68bbb94aa03489fa5cb0"), "firstname" : "Mary", 

➥ "lastname" : "Smith" }
{ "_id" : ObjectId("5f7a68bbb94aa03489fa5cb1"), "firstname" : "Mary", 

➥ "lastname" : "Smith" }
{ "_id" : ObjectId("5f7a68bbb94aa03489fa5cb2"), "firstname" : "Mary", 

➥ "lastname" : "Smith" }

Listing 5.22 Sending messages to the connector’s input topic

Listing 5.23 Querying the MongoDB table after the messages are sent
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B Query by lastname field.

c The original record we published

d 10 instances of the new record created from the messages we just sent

This concludes our quick introduction to the built-in Pulsar IO connectors. Now, you
should have a better understanding of how to configure and deploy Pulsar connectors
and how the overall IO connectors framework works.

5.6 Administering Pulsar IO connectors
The pulsar-admin CLI tool provides a collection of commands that enables you to
manage, monitor, and update Pulsar IO connectors. We will discuss some of these
commands that were designed specifically for Pulsar IO connectors, including how
and when they should be used and what information they provide. It is worth noting
that both the sink and source commands have the exact same subcommands, so we
will only focus on the sink command, but the information is applicable to source con-
nectors as well.

5.6.1 Listing connectors

The first command we will look at is the pulsar-admin sink list command, which
will return a list of all the sinks currently running on the Pulsar cluster, which is useful
when you want to make sure the connector you just created was accepted and is run-
ning. If you were to run this command after you deployed the mongo-test-sink con-
nector, the expected output would be similar to what is shown in the following listing.

docker exec -it pulsar /pulsar/bin/pulsar-admin sink list 
[
  "mongo-test-sink"
]

This shows that the mongo-test-sink was indeed created and is the only sink connec-
tor currently running in the Pulsar cluster. The list command is not to be confused
with the available-sources or available-sinks commands, which will return a list
of all the built-in connectors that are supported by the Pulsar cluster. By default, the
built-in connectors are included in the Pulsar standalone Docker container, so the
output of the command should be as shown in the following listing. The available-
sinks command can also help you confirm that you have successfully installed a cus-
tom connector manually.

docker exec -it pulsar /pulsar/bin/pulsar-admin sink available-sinks
aerospike
Aerospike database sink

Listing 5.24 Output of the list command inside the Docker container

Listing 5.25 Output of the available-sinks command inside the Pulsar Docker container
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----------------------------------------
cassandra
Writes data into Cassandra
----------------------------------------
data-generator
Test data generator source
----------------------------------------
elastic_search
Writes data into Elastic Search
----------------------------------------
flume
flume source and sink connector
----------------------------------------
hbase
Writes data into hbase table
----------------------------------------
hdfs2
Writes data into HDFS 2.x
----------------------------------------
hdfs3
Writes data into HDFS 3.x
----------------------------------------
influxdb
Writes data into InfluxDB database
----------------------------------------
jdbc-clickhouse
JDBC sink for ClickHouse
----------------------------------------
jdbc-mariadb
JDBC sink for MariaDB
----------------------------------------
jdbc-postgres
JDBC sink for PostgreSQL
----------------------------------------
jdbc-sqlite
JDBC sink for SQLite
----------------------------------------
kafka
Kafka source and sink connector
----------------------------------------
kinesis
Kinesis connectors
----------------------------------------
mongo
MongoDB source and sink connector
----------------------------------------
rabbitmq
RabbitMQ source and sink connector
----------------------------------------
redis
Writes data into Redis
----------------------------------------
solr
Writes data into solr collection
----------------------------------------
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5.6.2 Monitoring connectors

Another useful command for monitoring Pulsar IO connectors is the pulsar-admin
sink status command. This command will return runtime information about the
specified connector, such as how many instances are running and if any of the
instances have encountered errors. 

docker exec -it pulsar /pulsar/bin/pulsar-admin sink status \
 --name mongo-test-sink
{
  "numInstances" : 1,                                   B
  "numRunning" : 1,                                     c
  "instances" : [ {                                     d
    "instanceId" : 0,
    "status" : {
      "running" : true,                                 e
      "error" : "",                                     f
      "numRestarts" : 0,                                g
      "numReadFromPulsar" : 0,                          h
      "numSystemExceptions" : 0,
      "latestSystemExceptions" : [ ],
      "numSinkExceptions" : 0,
      "latestSinkExceptions" : [ ],
      "numWrittenToSink" : 0,    
      "lastReceivedTime" : 0,                           i
      "workerId" : "c-standalone-fw-d513daf5b94e-8080"
    }
  } ]
}

B The total number of instances of the connector that were requested

c The total number of instances of the connector that are running

d An array of information for each instance

e The current status of the connector

f Any applicable error messages

g The number of times the connector attempted to restart. This number increases whenever the 
connector failed to start, and it is relaunched.

h The number of messages consumed from the Pulsar input topic by this instance

i The last time an incoming message was consumed by this instance

As you can see from listing 5.26, the pulsar-admin sink status command would be
particularly useful for checking on the status of a connector immediately after you
have deployed it to make sure it started properly. The pulsar-admin sink get com-
mand can be used to return the configuration information about a Pulsar IO connec-
tor, which is useful when you want to inspect the configuration settings of your
connector to ensure it is properly configured, as shown in the next listing.

 
 

Listing 5.26 Output of the Sink status command
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docker exec -it pulsar /pulsar/bin/pulsar-admin sink get \
--name mongo-test-sink
{
  "tenant": "public",
  "namespace": "default",
  "name": "mongo-test-sink",                               B
  "className": "org.apache.pulsar.io.mongodb.MongoSink",   c
  "inputSpecs": {
    "test-mongo": {                                        d
      "isRegexPattern": false                              e
    }
  },
  "configs": {                                             f
    "mongoUri": "mongodb://mongodb:27017/admin",
    "database": "pulsar_in_action",
    "collection": "example",
    "batchSize": "1.0",
    "batchTimeMs": "1000.0"
  },
  "parallelism": 1,                                        g
  "processingGuarantees": "ATLEAST_ONCE",
  "retainOrdering": false,
  "autoAck": true,
  "archive": "builtin://mongo"
}

B The tenant, namespace, and name of the connector

c The classname of the connector implementation

d The input topics for the sink connector

e Whether or not the sink is configured to consume from multiple topics based on some regular 
expression

f All of the user-defined configuration properties we provided in the sink-config-file

g All of the default property values for properties we did not specify

What makes this command even more useful is the fact that the output of the com-
mand is a properly formatted JSON connector configuration that can be saved as a
file, modified, and used to update the configuration of the running connector with
the update command. This frees you from having to retain a copy of the configura-
tion you deployed a specific connector with, as the data can easily be retrieved from
the running connector with this command.

/pulsar/bin/pulsar-admin sink update \
   --sink-type mongo \
   --sink-config-file /pulsar/examples/mongodb-sink.yml \
   --inputs prod-mongo \
   --processing-guarantees EFFECTIVELY_ONCE

Listing 5.27 Output of the sink get command

Listing 5.28 Updating the Mongo DB connector
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The pulsar-admin sink update command allows you to dynamically change the
configuration parameters of an already-submitted sink connector without having to
delete and re-create it. The update command takes in a variety of command-line
options, which are described in greater detail in the Apache documentation (pulsar
.apache.org/docs/en/pulsar-admin/), that allow you to change almost any of the
connector’s configurations, including the archive file if you wanted to deploy a new
version of the connector. This makes modifying, testing, and deploying a much more
streamlined process. Listing 5.28 shows how to update the Mongo sink connector we
deployed earlier to use a different Pulsar topic as the input source and change the
processing guarantees.

 That wraps up our quick introduction to some of the commands available for mon-
itoring and administering Pulsar IO connectors. My goal was to provide enough of a
high-level overview of the capabilities provided by the framework itself to enable you
to get started. I strongly recommend referring to the online documentation for details
on the various switches and parameters for each of these commands.

Summary
 Pulsar IO connectors are an extension of the Pulsar Functions framework spe-

cifically designed to interface with external systems such as databases.
 Pulsar IO connectors come in two basic types: sources, which pull data out of

external systems into Pulsar, and sinks, which publish data from Pulsar into
external systems.

 Pulsar provides a set of built-in connectors you can use to interact with several
popular systems without having to write a single line of code. 

 The Pulsar CLI tool allows you to administer Pulsar IO connectors, including
creating, deleting, and updating connectors.
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Pulsar security

This chapter covers how to secure your cluster in order to prevent unauthorized
access to the data sent through Apache Pulsar. While the tasks I am going to cover
are not important in a development environment, they are critically important for
a production deployment to reduce the risk of unauthorized access to sensitive
information, ensure data loss prevention, and protect your organization’s public
reputation. Modern systems and organizations utilize a combination of security
controls and safeguards to provide multiple layers of defense that prevent access to
data within the system. This is particularly true for those that must maintain regula-
tory compliance with security regulations, such as HIPPA, PCI-DSS, or GDPR, just
to name a few.

 Pulsar integrates well with several existing security frameworks that allow you to
leverage these tools to secure your Pulsar cluster at multiple levels in order to

This chapter covers
 Encrypting data transmitted into and out of a 

Pulsar cluster

 Enabling client authentication using JSON Web 
Tokens (JWTs)

 Encrypting data stored inside Apache Pulsar



162 CHAPTER 6 Pulsar security

mitigate the risk of a lapse in one of the security mechanisms, resulting in a total
security failure. For instance, even if an unauthorized user were able to access your
system with a compromised password, they would still need a valid encryption key to
read the encrypted message data.

6.1 Transport encryption
By default, the data transmitted between a Pulsar broker and a Pulsar client is sent in
plain text. This means any sensitive data contained within a message, such as pass-
words, credit card numbers, and social security numbers, is susceptible to being inter-
cepted by eavesdroppers as it is transmitted over the network. Therefore, the first
layer of defense is ensuring that the data transmitted between a Pulsar broker and a
Pulsar client is encrypted before it is transmitted. 

 Pulsar allows you to configure all communication to use transport layer security
(TLS), which is a common cryptographic protocol that provides data encryption only
as it is transported across the network. This is why it is often referred to as encryption
for “data in motion”—the data is decrypted on the receiving end and therefore no
longer encrypted once it reaches its destination. 

ENABLING TLS ON PULSAR

Now that I have covered the basics of TLS wire encryption at a fairly high level, let’s
focus on how we can use this technology to secure our communications between our
Pulsar brokers and our clients. Since the Pulsar documentation does a fair job of out-
lining the steps required to enable TLS on Pulsar, I have decided that, rather than
republish those same steps here, I will capture all of those steps in a single script that
can be used to automate the process inside a Docker-based image. 

 I will then discuss the commands contained within the scripts in greater detail, as
they relate to the discussion we had in the previous section, so you have a better
understanding of why these steps are important and how you might modify them to
suit your needs in a true production environment. If you look inside the GitHub repo
(https://github.com/david-streamlio/pulsar-in-action) associated with this book, you
will find a Dockerfile similar to the one shown in listing 6.1 under the docker-
image/pulsar-standalone folder. 

 For those of you unfamiliar with Docker, a Dockerfile is a simple text file that con-
tains a series of instructions that are executed sequentially by the Docker client when
creating an image. They can be thought of as recipes or blueprints for building
Docker images and provide a simple way to automate the image-creation process. Now
that we have a better understanding of Docker images, it is time to create our own.
Our goal is to create an image that extends the capability of the pulsar-standalone
image we used previously to include all of the security features I will be discussing
throughout this chapter.

 
 
 

https://github.com/david-streamlio/pulsar-in-action
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FROM apachepulsar/pulsar-standalone:latest                            B
ENV PULSAR_HOME=/pulsar

COPY conf/standalone.conf $PULSAR_HOME/conf/standalone.conf           c
COPY conf/client.conf $PULSAR_HOME/conf/client.conf                   d

ADD manning $PULSAR_HOME/manning                                      e

RUN chmod a+x $PULSAR_HOME/manning/security/*.sh \
           $PULSAR_HOME/manning/security/*/*.sh \
              $PULSAR_HOME/manning/security/authentication/*/*.sh     f

#####################################################################
# Transport Encryption using TLS
#####################################################################
RUN ["/bin/bash", "-c", 
     "/pulsar/manning/security/TLS-encryption/enable-tls.sh"]         g

B Use the existing pulsar-standalone image as a starting point to effectively extend its capabilities.

c Overwrite the broker configuration with one that contains our updated security settings.

d Overwrite the client configuration with one that contains our updated client credentials.

e Copy the contents of the manning folder into the image at /pulsar/manning.

f Give execute permission to all of the scripts we need to execute.

g Execute the specified script to generate the certificates required for TLS.

I will start by specifying that I wish to use the non-secured apachxpulsar/pulsar-
standalone:latest image as the base image by using the FROM keyword. For those of
you familiar with object-oriented languages, this is effectively the same as inheriting
from a base class. All of the base image’s services, features, and configurations are
automatically included in our image, which ensures that our Docker images will also
provide a complete Pulsar environment for testing purposes without having to repli-
cate those commands in our Dockerfile.

 After setting the PULSAR_HOME environment variable, I use the COPY keyword to
replace both the Pulsar broker and client configuration files with ones that are prop-
erly configured to secure the Pulsar instance. This is an important step, as once a con-
tainer based on this image is launched, it is impossible to change these settings and
have them take effect. Next, we add the contents of the manning directory to the
Docker image and run a command to enable execute permission on all of the bash
scripts that were added in the previous command, so we can execute them.

 At the end of the Dockerfile are a series of bash scripts that get executed in order
to generate the necessary security credentials, certificates, and keys required to secure
a Pulsar cluster. Let’s examine the first script, named enable-tls.sh, which performs
all the steps necessary to enable TLS wire encryption on the Pulsar cluster.

 The pulsar-standalone Docker image includes OpenSSL, which is an open source
library that provides several command-line tools for issuing and signing digital certifi-
cates. Since we are running in a development environment, we will use these tools to

Listing 6.1 Dockerfile contents
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act as our own certificate authority to produce self-signed certificates rather than use
an internationally trusted third-party certificate authority (CA) (e.g., VeriSign,
DigiCert) to sign our certificates. In a production environment you should always rely
on a third-party CA.

 Acting as a CA means dealing with cryptographic pairs of private keys and public
certificates. The very first cryptographic pair we’ll create is the root pair. This consists
of the root key (ca.key.pem) and root certificate (ca.cert.pem). This pair forms the
identity of your CA. Let’s examine the first part of the enable-tls.sh script, which
generate these. As we can see from the following listing, the first command in the
script generates the root key, while the second command creates the public X.509 cer-
tificate using the root key that was generated in the previous step.

#!/bin/bash

export CA_HOME=$(pwd)
export CA_PASSWORD=secret-password                                        B

mkdir certs crl newcerts private
chmod 700 private/
touch index.txt index.txt.attr
echo 1000 > serial

# Generate the certificate authority private key
openssl genrsa -aes256 \                                                  c
   -passout pass:${CA_PASSWORD} \                                         d
   -out /pulsar/manning/security/cert-authority/private/ca.key.pem \
   4096                                                                   e

# Restrict Access to the certificate authority private key   
chmod 400 /pulsar/manning/security/cert-authority/private/ca.key.pem      f

# Create the X.509 certificate.
openssl req -config openssl.cnf \
  -key /pulsar/manning/security/cert-authority/private/ca.key.pem \       g
  -new -x509 \                                                            h
  -days 7300 \                                                            i
  -sha256 \
  -extensions v3_ca \
  -out /pulsar/manning/security/cert-authority/certs/ca.cert.pem \
  -subj '/C=US/ST=CA/L=Palo Alto/CN=gottaeat.com' \                       j
  -passin pass:${CA_PASSWORD}                                             1)

B We use an environment variable to set the password for the CA root key.

c Encrypt the root key with AES 256-bit encryption.

d Generates the private key that is secured with a strong password

e Use 4096 bits for the root key.

f Anyone in possession of the root key and password can issue trusted certificates.

g Generates the root certificate using the root key

Listing 6.2 Portion of enable-tls.sh that creates CA
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h Requests a new X.509 certificate

i Give the root certificate a long expiry date.

j Specify the organization for which the certificate is valid.

1) Allows us to provide the password for the root key from the command line without a prompt

At this point the script has generated a password-protected private key (ca.key.pem)
and root certificate (ca.cert.pem) for our internal CA. The script purposely generates
the root certificate to a known location, so we can refer to it from inside the broker’s
configuration file, /pulsar/conf/standalone.conf. Specifically, we have preconfig-
ured the tlsTrustCertsFilePath property to point to the location where the root cer-
tificate was generated. In a production environment where you are using a third-party
CA, you will be provided with a certificate that can be used to authenticate the X.509
certificates and update the property to point to that certificate instead.

 Now that we have created a CA certificate, the next step is to generate a certificate
for the Pulsar broker and sign it with our internal CA. When using a third-party CA,
you would issue this request to them and wait for them to send you a certificate; how-
ever, since we are acting as our own certificate authority, we can issue the certificate
ourselves, as shown in the following listing.

export BROKER_PASSWORD=my-secret                                        B

# Generate the Server Certificate private key
openssl genrsa -passout pass:${BROKER_PASSWORD} \                       c
      -out /pulsar/manning/security/cert-authority/broker.key.pem \
      2048                                                              d

# Convert the key to PEM format
openssl pkcs8 -topk8 -inform PEM -outform PEM \                         e
      -in /pulsar/manning/security/cert-authority/broker.key.pem \
      -out /pulsar/manning/security/cert-authority/broker.key-pk8.pem \
      -nocrypt

# Generate the server certificate request       
openssl req -config /pulsar/manning/security/cert-authority/openssl.cnf \
      -new -sha256 \
      -key /pulsar/manning/security/cert-authority/broker.key.pem \
      -out /pulsar/manning/security/cert-authority/broker.csr.pem \
      -subj '/C=US/ST=CA/L=Palo Alto/O=IT/CN=pulsar.gottaeat.com' \     f
      -passin pass:${BROKER_PASSWORD}                                   g
      
# Sign the server certificate with the CA
openssl ca -config /pulsar/manning/security/cert-authority/openssl.cnf \
      -extensions server_cert \                                         h
      -days 1000 -notext -md sha256 -batch \                            i
      -in /pulsar/manning/security/cert-authority/broker.csr.pem \
      -out /pulsar/manning/security/cert-authority/broker.cert.pem \
      -passin pass:${CA_PASSWORD}                                       j

Listing 6.3 Portion of enable-tls.sh that generates the Pulsar broker certificate
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B We use an environment variable to set the password for the server certificate’s private key.

c Generates the private key that is secured with a strong password

d Use 2048 bits for the private key.

e The broker expects the key to be in PKCS 8 format.

f Specify the organization and hostname for which the certificate is valid.

g Allows us to provide the password for the key from the command line without a prompt

h Specify that this certificate is intended to be used by a server.

i Give the server certificate a long expiry date.

j We need to provide the password for the CA’s private key, since we are acting as the CA.

At this point you have a broker certificate (broker.cert.pem) and its associated private
key (broker.key-pk8.pem) that you can use along with ca.cert.pem to configure TLS
transport encryption for your broker and proxy nodes. Again, the script purposely
generates the broker certificate to a known location, so we can refer to it from inside
the broker’s configuration file, /pulsar/conf/standalone.conf. Let’s take a look at
all the properties that were changed to enable TLS for Pulsar.

#### To Enable TLS wire encryption #####
tlsEnabled=true
brokerServicePortTls=6651
webServicePortTls=8443

# The Broker certificate and associated private key
tlsCertificateFilePath=/pulsar/manning/security/cert-authority/broker

➥ .cert.pem
tlsKeyFilePath=//pulsar/manning/security/cert-authority/broker.key-pk8.pem

# The CA certificate
tlsTrustCertsFilePath=/pulsar/manning/security/cert-authority/certs/ca.cert

➥ .pem

# Used for TLS negotiation to specify which ciphers we consider safe.
tlsProtocols=TLSv1.2,TLSv1.1
tlsCiphers=TLS_DH_RSA_WITH_AES_256_GCM_SHA384,TLS_DH_RSA_WITH_AES_256_CBC_SHA

Since I have enabled TLS transport encryption, I also need to configure the command-
line tools, such as pulsar-admin and pulsar-perf, to communicate with the secure
Pulsar broker by changing the following properties in the $PULSAR_HOME/conf/client
.conf file, as shown in the following listing.

#### To Enable TLS wire encryption ##### 
# Use the TLS protocols and ports
webServiceUrl=https://pulsar.gottaeat.com:8443/
brokerServiceUrl=pulsar+ssl://pulsar.gottaeat.com:6651/

Listing 6.4 TLS property changes to the standalone.conf file 

Listing 6.5 TLS property changes to the client.conf file 
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useTls=true
tlsAllowInsecureConnection=false
tlsEnableHostnameVerification=false
tlsTrustCertsFilePath=pulsar/manning/security/cert-authority/certs/ca.cert.pem

If you haven’t already done so, change to the directory that contains the Dockerfile, and
run the following command, docker build . -t pia/pulsar-standalone-secure:
latest, to create the Docker image, and tag it as shown in the following listing.

$ cd $REPO_HOME/pulsar-in-action/docker-images/pulsar-standalone         B
$ docker build . -t pia/pulsar-standalone-secure:latest                  c
Sending build context to Docker daemon  3.345MB
Step 1/7 : FROM apachepulsar/pulsar-standalone:latest 
 ---> 3ed9bffff717                                                       d
Step 2/7 : ENV PULSAR_HOME=/pulsar
 ---> Running in cf81f78f5754
Removing intermediate container cf81f78f5754
 ---> 48ea643513ff
Step 3/7 : COPY conf/standalone.conf $PULSAR_HOME/conf/standalone.conf
 ---> 6dcf0068eb40
Step 4/7 : COPY conf/client.conf $PULSAR_HOME/conf/client.conf
 ---> e0f6c81a10c4
Step 5/7 : ADD manning $PULSAR_HOME/manning                              e
 ---> e253e7c6ed8e
Step 6/7 : RUN chmod a+x $PULSAR_HOME/manning/security/*.sh

            ➥ $PULSAR_HOME/manning/security/*/*.sh
➥ $PULSAR_HOME/manning/security/authentication/*/*.sh
 ---> Running in 42d33f3e738b
Removing intermediate container 42d33f3e738b
 ---> ddccc85c75f4
Step 7/7 : RUN ["/bin/bash", "-c", 

➥ "/pulsar/manning/security/TLS-encryption/enable-tls.sh"]              f
 ---> Running in 5f26f9626a25
Generating RSA private key, 4096 bit long modulus
.....................++++
.............................................................................

........................................................................

........................................................................

.......................++++
e is 65537 (0x010001)
Generating RSA private key, 2048 bit long modulus
......................+++++
.............................................+++++
e is 65537 (0x010001)
Using configuration from /pulsar/manning/security/cert-authority/openssl.cnf
Check that the request matches the signature
Signature ok
Certificate Details:                                                     g
        Serial Number: 4096 (0x1000)
        Validity
            Not Before: Jan 13 00:55:03 2020 GMT

Listing 6.6 Building the Docker image from the Dockerfile
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            Not After : Oct  9 00:55:03 2022 GMT                         h
        Subject:
            countryName               = US
            stateOrProvinceName       = CA
            organizationName          = gottaeat.com
            commonName                = pulsar.gottaeat.com
        X509v3 extensions:
            X509v3 Basic Constraints:
                CA:FALSE
            Netscape Cert Type:
                SSL Server                                               i
            Netscape Comment:
                OpenSSL Generated Server Certificate
            X509v3 Subject Key Identifier:
                DF:75:74:9D:34:C6:0D:F0:9B:E7:CA:07:0A:37:B8:6F:D7:DF:52:0A
            X509v3 Authority Key Identifier:
                

keyid:92:F0:6D:0F:18:D4:3C:1E:88:B1:33:3A:9D:04:29:C0:FC:81:29:02
                DirName:/C=US/ST=CA/L=Palo Alto/O=gottaeat.com
                serial:93:FD:42:06:D8:E9:C3:89

            X509v3 Key Usage: critical
                Digital Signature, Key Encipherment
            X509v3 Extended Key Usage:
                TLS Web Server Authentication
Certificate is to be certified until Oct  9 00:55:03 2022 GMT (1000 days)

Write out database with 1 new entries
Data Base Updated
Removing intermediate container 5f26f9626a25
 ---> 0e7995c14208
Successfully built 0e7995c14208
Successfully tagged pia/pulsar-standalone-secure:latest                 j

B Change to the directory that contains the Dockerfile.

c Command to build the Docker image from the Dockerfile, and tag it.

d Pulls down the apachepulsar/pulsar-standalone:latest image from the public repository

e Copies the entire contents of the manning directory into the Docker image

f Executes the enable-tls.sh script

g The details of the server certificate that is generated by the enable-tls.sh script

h The expiration date of the certificate

i Indicates that the certificate generated can be used as a server certificate

j Success message, including the tag used to reference the image

Once the enable-tls.sh script has been executed and the properties have all been
configured to point to the correct values, the pulsar-standalone image will only
accept connections over a secure TLS channel. You can verify this by using the
sequence of commands shown in listing 6.7 to launch a container with the new Docker
image. Notice that I am using the –volume switch to create a logical mount point
between my laptop’s $HOME directory and a directory inside the Docker container
itself. This allows me to publish the TLS client credentials that only exist inside the con-
tainer to a location on our machine where I can access them. Next, I need to secure
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shell (ssh) into the container and run the publish-credentials.sh script inside the
newly launched bash session to make these credentials available to me in the
${HOME}/exchange folder on our local machine.

$ docker run -id --name pulsar -p:6651:6651 -p 8443:8443\      B
  –volume=${HOME}/exchange:/pulsar/manning/dropbox \           cd
  -t pia/pulsar-standalone-secure:latest                       e
$ docker exec -it pulsar bash
$ /pulsar/manning/security/publish-credentials.sh              f
$ exit                                                         g

B Use the SSL ports of 6651 and 8443.

c Use the volume switch to allow us to copy files from the container to our local machine.

d Specify the image that we just built

e Run the script that copies the generated credentials to our local machine.

f Create the default namespace to use for testing.

g Exit the container.

Next, I will attempt to connect to it over the TLS secured port (6651), using the fol-
lowing Java program, which is available in the GitHub repo associated with this book.

import org.apache.pulsar.client.api.*;
public class TlsClient {
    public static void main(String[] args) throws PulsarClientException {
       final String HOME = "/Users/david/exchange";
       final String TOPIC = "persistent://public/default/test-topic";
        
       PulsarClient client = PulsarClient.builder()
          .serviceUrl("pulsar://localhost:6651/")             B
          .tlsTrustCertsFilePath(HOME + "/ca.cert.pem")       c
          .build();

      Producer<byte[]> producer = 
        client.newProducer().topic(TOPIC).create();
        
      for (int idx = 0; idx < 100; idx++) {
        producer.send("Hello TLS".getBytes());
      }        
        System.exit(0);
    }
}

B Specify the pulsar+ssl protocol. Failure to do so will result in a connection failure.

c The location of the file containing the trusted TLS certificates

That concludes the configuration of TLS wire encryption on the Pulsar broker. From
this point forward, all communication with the broker will be over SSL, and all traffic

Listing 6.7 Publishing the TLS credentials

Listing 6.8 Using the TLS credentials to connect to Pulsar
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will be encrypted to prevent unauthorized access to the data contained inside the mes-
sages that are published to and consumed from the Pulsar broker. You can experi-
ment some more with this container, but once you are finished, you should be sure to
run docker stop pulsar && docker rm pulsar to stop the container and remove it.
Both of these steps are necessary to rebuild the Docker image in the next section to
enable support for authentication in the pulsar-standalone image. 

6.2 Authentication
An authentication service provides a way for a user to confirm their identity by provid-
ing some credentials, such as a username and password, to validate who you claim to
be. Pulsar supports a pluggable authentication mechanism, which clients can use to
authenticate themselves. Currently, Pulsar supports different authentication provid-
ers. In this section, we will walk through the steps required to configure both TLS
authentication and JWT authentication.

6.2.1 TLS authentication 
In TLS client authentication, the client uses a certificate to authenticate itself. Obtaining
a certificate requires interaction with a CA that will issue a certificate that can be trusted
by the Pulsar broker. For a client certificate to pass a server’s validation process, the digital
signature found on it should have been signed by a CA recognized by the server. There-
fore, I have used the same CA that issued the server certificate in the previous section to
generate the client certificates to ensure that the client certificates are trusted.

 With TLS client authentication, the client generates a key pair for authentication
purpose and retains the private key of the key pair in a secure location. The client then
issues a certificate request to a trusted CA and receives back an X.509 digital certificate.

 These client certificates typically contain pertinent information like a digital signa-
ture, expiration date, name of client, name of CA, revocation status, SSL/TLS version
number, serial number, common name, and possibly more, all structured using the
X.509 standard. Pulsar uses the common name field of the certificate to map the cli-
ent to a specific role, which is used to determine what actions the client is authorized
to perform. 

 When a client attempts to connect to a Pulsar broker that has TLS authentication
enabled, it can submit a client certificate for authentication as part of the TLS hand-
shake. Upon receiving the certificate, the Pulsar broker uses it to identify the certifi-
cate’s source and determine whether the client should be granted access.

 Don’t confuse client certificates with the server certificate we used to enable TLS
wire encryption. Both are X.509 digital certificates, but they are two different things.
A server certificate is sent from the Pulsar broker to the client at the start of a session
and is used by the client to authenticate the server. A client certificate, on the other
hand, is sent from the client to the broker at the start of a session and is used by the
server to authenticate the client. In order to enable TLS-based authentication, we
append a command to the Dockerfile from the previous section that executes another
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script named gen-client-certs.sh. This script generates TLS client certificates that
can be used for authentication, as shown in the following listing.

FROM apachepulsar/pulsar-standalone:latest    
ENV PULSAR_HOME=/pulsar

… 

RUN ["/bin/bash", "-c", 
     "/pulsar/manning/security/TLS-encryption/enable-tls.sh"]

RUN ["/bin/bash", "-c", 
     "/pulsar/manning/security/authentication/tls/gen-client-certs.sh"]   B
#A Same content as shown in figure 6.1

B Execute the specified script to generate TLS client certs for role-based authentication.

Let’s take a look at the gen-client-certs.sh script in the following listing to see
exactly what steps are required to generate TLS client certificates that can be used to
authenticate with the Pulsar broker.

#!/bin/bash

cd /pulsar/manning/security/cert-authority
export CA_HOME=$(pwd)
export CA_PASSWORD=secret-password

function generate_client_cert() {
    
   local CLIENT_ID=$1                                                      B
   local CLIENT_ROLE=$2                                                    c
   local CLIENT_PASSWORD=$3                                                d

  # Generate the Client Certificate private key
  openssl genrsa -passout pass:${CLIENT_PASSWORD} \                        e
   -out /pulsar/manning/security/authentication/tls/${CLIENT_ID}.key.pem \
   2048
    
  # Convert the key to PEM format
  openssl pkcs8 -topk8 -inform PEM -outform PEM -nocrypt \
   -in /pulsar/manning/security/authentication/tls/${CLIENT_ID}.key.pem \
   -out /pulsar/manning/security/authentication/tls/${CLIENT_ID}-pk8.pem 

  # Generate the client certificate request       
  openssl req -config /pulsar/manning/security/cert-authority/openssl.cnf \
   -key /pulsar/manning/security/authentication/tls/${CLIENT_ID}.key.pem  
   -out /pulsar/manning/security/authentication/tls/${CLIENT_ID}.csr.pem \
   -subj "/C=US/ST=CA/L=Palo Alto/O=gottaeat.com/
     ➥ CN=${CLIENT_ROLE}" \                                                 f
   -new -sha256 \

Listing 6.9 Updated Dockerfile contents

Listing 6.10 Contents of the gen-client-certs.sh file
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   -passin pass:${CLIENT_PASSWORD}                                         g
      
  # Sign the server certificate with the CA
  openssl ca -config /pulsar/manning/security/cert-authority/openssl.cnf \
   -extensions usr_cert \                                                  h
   -days 100 -notext -md sha256 -batch \
   -in /pulsar/manning/security/authentication/tls/${CLIENT_ID}.csr.pem \
   -out /pulsar/manning/security/authentication/tls/${CLIENT_ID}.cert.pem \
   -passin pass:${CA_PASSWORD}                                             i

  # Remove the client key and certifcate request once we are finished
  rm -f /pulsar/manning/security/authentication/tls/${CLIENT_ID}.csr.pem
  rm -f /pulsar/manning/security/authentication/tls/${CLIENT_ID}.key.pem
}

# Create a certificate for Adam with admin role-level access
generate_client_cert admin admin admin-secret

# Create a certificate for the web app with webapp role-level access
generate_client_cert webapp-service webapp webapp-secret

# Create a certificate for Peggy who with payment-role level access
generate_client_cert peggy payments payment-secret

# Create a certificate for David who needs driver-role level access
generate_client_cert david driver davids-secret

B Sets the local variable CLIENT_ID to the first parameter passed to the function call

c Sets the local variable CLIENT_ROLE to the second parameter passed to the function call

d Sets the local variable CLIENT_PASSWORD to the third parameter passed to the function call

e Use the CLIENT_PASSWORD to secure the private key.

f Pulsar uses the value associated with the common name (CN) to determine the client’s role.

g We need to pass in the password associated with the client key used to generate the CSR.

h Specify that we want a client certificate.

i We need to provide the CA password to approve and sign the client’s certificate request.

In a production environment, the clients would use their own private keys to generate
the certificate requests and only send over the CSR files. Since I am automating the
process, I have taken the liberty of generating these as part of the script for a small set
of users, each with a different role.

 At this point, there are now several pairs of private keys and client certificates that
have been generated and signed by our CA that can be used to authenticate to the
pulsar-standalone instance. The properties shown in the following listing have also
been added to the standalone.conf file in order to enable TLS-based authentication
on the broker.

#### To enable TLS authentication 
authenticationEnabled=true                          B

Listing 6.11 TLS authentication property changes to the standalone.conf file 
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authenticationProviders=org.apache.pulsar.broker.

➥ authentication.AuthenticationProviderTls         c

B Turn on authentication.

c Specifies the TLS authentication provider

Changes are also required to the client.conf file, as shown in the following listing,
which grants all of the Pulsar command-line tools admin-level permissions, including
the ability to define authorization rules at the Pulsar-namespace level. 

## TLS Authentication ##
authPlugin=org.apache.pulsar.client.impl.auth.AuthenticationTls           B
authParams=tlsCertFile:/pulsar/manning/security/authentication/tls/

➥ admin.cert.pem,tlsKeyFile:/pulsar/manning/security/authentication/tls/

➥ admin-pk8.pem                                                          c

B Tells the client to use TLS authentication when connecting to Pulsar

c Specifies the client certificate and associated private key to use

Let’s rebuild the image to include the changes necessary to generate the TLS client
certificates and enable TLS-based authentication that was discussed in this section by
executing the commands shown in the following listing.

$ cd $REPO_HOME/pulsar-in-action/docker-images/pulsar-standalone          B
$ docker build . -t pia/pulsar-standalone-secure:latest                   c
Sending build context to Docker daemon  3.345MB
Step 1/8 : FROM apachepulsar/pulsar-standalone:latest                     d
 ---> 3ed9bffff717
…                                                                         e
Step 8/8 : RUN ["/bin/bash", "-c", 

"/pulsar/manning/security/authentication/tls/gen-client-certs.sh"]   f
 ---> Running in 5beaabba5865
Generating RSA private key, 2048 bit long modulus                         g
........+++++
...................+++++
e is 65537 (0x010001)
Using configuration from /pulsar/manning/security/cert-authority/openssl.cnf
Check that the request matches the signature
Signature ok
Certificate Details:
        Serial Number: 4097 (0x1001)                                      h
        Validity
            Not Before: Jan 13 02:47:54 2020 GMT
            Not After : Apr 22 02:47:54 2020 GMT
        Subject:
            countryName               = US
            stateOrProvinceName       = CA
            organizationName          = gottaeat.com

Listing 6.12 TLS authentication property changes to the client.conf file 

Listing 6.13 Building the Docker image from the Dockerfile
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            commonName                = admin                             i
   ....    

Write out database with 1 new entries
Data Base Updated
Generating RSA private key, 2048 bit long modulus

…                                                                         j
Successfully built 6ef6eddd675e
Successfully tagged pia/pulsar-standalone-secure:latest                   1)

B Change to the directory that contains the Dockerfile.

c Command to build the Docker image from the Dockerfile and tag it

d Notice there are now eight steps instead of seven.

e Execution of steps 2 through 7

f Executes the gen-client-certs.sh script

g The following stanza will be repeated five times—once for each client cert generated.

h The certificate serial number will be different for each client.

i The common name will be different for each client and is used to associate it to a particular role.

j Four more occurrences of the stanza should appear—one for each client certificate generated.

1) Success message, including the tag used to reference the image

Next, I need to follow the steps shown in listing 6.7 again to launch a new container
based on the updated Docker image, ssh into the container, and run the publish-
credentials.sh script inside the newly launched bash session to make these client cer-
tificates available to us in the ${HOME}/exchange folder on our local machine. For
instance, the certificate file admin.cert.pem and the associated private key file admin-
pk8.pem can now be used together to authenticate to the pulsar-standalone instance.
Next, I will attempt to use TLS authentication by using the Java program shown in the
following listing, which is available in the GitHub repo associated with this book.

import org.apache.pulsar.client.api.*;

public class TlsAuthClient {
  public static void main(String[] args) throws PulsarClientException {
    final String AUTH = 

"org.apache.pulsar.client.impl.auth.AuthenticationTls";
    final String HOME = "/Users/david/exchange";
    final String TOPIC = "persistent://public/default/test-topic";
        
    PulsarClient client = PulsarClient.builder()
        .serviceUrl("pulsar+ssl://localhost:6651/")                 B
        .tlsTrustCertsFilePath(HOME + "/ca.cert.pem")               c
        .authentication(AUTH,                                       d
            "tlsCertFile:" + HOME + "/admin.cert.pem," +            e
            "tlsKeyFile:" + HOME + "/admin-pk8.pem")                f
        .build();

Listing 6.14 Authenticating with TLS client certificates
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    Producer<byte[]> producer = 
      client.newProducer().topic(TOPIC).create();
        
    for (int idx = 0; idx < 100; idx++) {
      producer.send("Hello TLS Auth".getBytes());
    }    
    System.exit(0);
  }
}

B Use the Pulsar+ssl protocol. Failure to do so will result in a connection failure.

c The location of the file containing the trusted TLS certificates

d Use TLS authentication.

e The client certificate location 

f The private key associated with the client certificate

TLS client authentication is useful in cases where a server is keeping track of hun-
dreds of thousands or millions of clients, as in IoT, or in a mobile app with millions of
installs exchanging secure information. For example, a manufacturing company with
hundreds of thousands of IoT devices can issue a unique client certificate to each
device, then limit connections to only their devices by having Pulsar only accept con-
nections where the client presents a valid client certificate signed by the company’s
certificate authority. 

 In the case of a mobile application, where you want to prevent your customers’
sensitive data, such as credit card information, from getting stolen by someone spoof-
ing your mobile app, you can issue a unique certificate to every app installation and
use them to validate that the request is coming from an approved version of your
mobile application, not a spoofed version.

6.2.2 JSON Web Token authentication

Pulsar supports authenticating clients using security tokens that are based on JWT,
which is a standardized format used to create JSON-based access tokens that assert
one or more claims. Claims are factual statements or assertions. The two claims that
can be found in all JWT are iss (issuer), which identifies the party that issued the
JWT, and sub, which identifies the subject or party the JWT carries information about.

 In Pulsar, JWTs are used to authenticate a Pulsar client and associate it with some
role, which will then be used to determine what actions it is authorized to perform,
such as publish or consume from a given topic. Typically, the administrator of the Pul-
sar cluster would generate a JWT that has a sub claim associated with a specific role
(e.g., admin that identifies the owner of the token). The admin would then provide
the JWT to a client over a secure communication channel, and the client could then
use that token to authenticate with Pulsar and be assigned to the admin role.

 The JWT standard defines the structure of a JWT as consisting of the following
three parts: the header, which contains basic information; the payload, which contains
the claims; and the signature, which can be used to validate the token. Data from each
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of these parts is encoded separately and concatenated together, using periods to
delineate the fields. The resulting strings look something like figure 6.1, which can be
transmitted easily over HTTP. 

Since JWTs are based on an open standard, the contents of a JWT are readable to any-
one in possession of it. This means that anyone can attempt to gain access to your sys-
tem with a JWT they generate themselves or by altering an intercepted JWT and
modifying one or more of the claims to impersonate a validated user. This is where
the signature comes into play, as it provides a means to establish the authenticity of
the entire JWT.

 The signature is calculated by encoding the header and payload, using Base64
URL encoding and concatenating the two together along with a secret. That string is
then passed through the cryptographic hashing algorithm specified in the header.
With JWTs, there are two cryptographic schemes you can use; the first is referred to as
a shared secret scheme in which both the party that generates the signature and the
party that verifies it must know the secret. Since both parties are in possession of the
secret, each party can verify the authenticity of a JWT by calculating the signature for
themselves and validate that the value they computed matches the value in the JWT’s
signature section. Any discrepancy indicates that the token has been tampered with.
This scheme is useful when you want or need both parties to be able to exchange
information back and forth in a secure manner. The second scheme uses an asymmet-
ric public/private key pair in which the party with the public key can validate the
authenticity of any JWT it receives, and the party with the private key can generate
valid JWTs. 

 There are several online tools available that allow you to encode and decode JWTs,
and figure 6.2 shows the side-by-side output from one such tool that was used to
decode two different JWTs. The output on the left is from a token that is using the
shared secret scheme. As you can see, the contents of the token can be easily read by
the tool without any additional credentials. However, the secret key is required in
order to validate the token’s signature to confirm it hasn’t been tampered with.

Encoded
header

Encoded
signature

Encoded
payload

Figure 6.1 An encoded 
JSON web token and its 
corresponding parts
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The output on the right side of the figure is from a JWT using the asymmetric scheme,
whose contents can also be easily read without any additional credentials. However,
the public key is required to verify the token’s signature. The tool also requires a pri-
vate key only if you wish to use it to generate a new JWT. Hopefully, this helps clarify
the differences between the two and why both the JWT token and an associated key
are required to configure Pulsar brokers and clients to use JWT for authentication.

 Lastly, it is worth mentioning that anyone in possession of a valid JWT can use it to
authenticate with Pulsar. Therefore, adequate precautions should be taken to prevent
an issued JWT from falling into unwanted hands. This includes only sending JWT
tokens over a TLS-encrypted connection and storing the contents of a JWT in a safe
location on the client machine. To enable JWT authentication, we append a com-
mand to the Dockerfile from the previous section, which executes another script
named gen-tokens.sh that generates JWTs that can be used for authentication, as
shown in the following listing.

Shared-secret JWT Public/private key JWT 

Requires secret for
signature validation

Requires public key for
signature validation

Requires private key
for token generation

Figure 6.2 Verification methods for shared secret vs. public/private key pair signed JWTs
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FROM apachepulsar/pulsar-standalone:latest    
ENV PULSAR_HOME=/pulsar

…                                                                   B

RUN ["/bin/bash", "-c", 
     "/pulsar/manning/security/authentication/jwt/gen-tokens.sh"]   c

B Same content as shown in figure 6.9

c Execute the specified script to generate some JWT tokens for role-based authentication.

Let’s take a look at the gen-token.sh script in the following listing to see exactly what
steps are required to generate the JWTs that can be used to authenticate with the Pul-
sar broker.

#!/bin/bash

# Create a public/private keypair. 
/pulsar/bin/pulsar tokens create-key-pair \                        B
   --output-private-key \
      /pulsar/manning/security/authentication/jwt/my-private.key \
   --output-public-key \
      /pulsar/manning/security/authentication/jwt/my-public.key
   
# Create the token for the admin role
/pulsar/bin/pulsar tokens create --expiry-time 1y \
     --private-key \                                               c
       file:///pulsar/manning/security/authentication/jwt/my-private.key \
     --subject admin > /pulsar/manning/security/authentication/jwt/admin-
        ➥ token.txt

…                                                                  d

B We are going to use asymmetric encryption, so we need to create a key pair.

c Create a token and give it the subject of admin.

d Repeats token creation process for additional roles

After this script is executed, there will be several JWT tokens that have been generated
and stored as text files on the Pulsar broker. These tokens, along with the public key, will
need to be distributed to the Pulsar clients so they can be used to authenticate to the
pulsar-standalone instance. The properties shown in the following listing have also
been modified inside the standalone.conf file to enable JWT-based authentication.

#### JWT Authentication #####
authenticationEnabled=true                              B

Listing 6.15 Updated Dockerfile contents

Listing 6.16 Contents of the gen-token.sh file

Listing 6.17 JWT authentication property changes to the standalone.conf file 
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authorizationEnabled=true                               c
authenticationProviders=org.apache.pulsar.broker.authentication.

➥ AuthenticationProviderTls,org.apache.pulsar.broker.authentication.

➥ AuthenticationProviderToken                          d
tokenPublicKey=file:///pulsar/manning/security/

➥ authentication/jwt/my-public.key                     e

B This is required for any authentication mechanism in Pulsar.

c Enable authorization.

d Append the JWT token provider to the list of authentication providers.

e The location of the public key of the JWT key pair which is used for signature validation

If you want to use JWT authentication, you will need to make the changes shown in
the following listing to the client.conf file. Since we have previously enabled TLS
authentication for the client, we will need to comment out those properties for now,
since the client can only use one authentication method at a time.

#### JWT Authentication #####
authPlugin=org.apache.pulsar.client.impl.auth.AuthenticationToken
authParams=file:///pulsar/manning/security/authentication/jwt/admin-token.txt

#### TLS Authentication ####
#authPlugin=org.apache.pulsar.client.impl.auth.AuthenticationTls         B
#authParams=tlsCertFile:/pulsar/manning/security/authentication/tls/admin.cert

➥ .pem,tlsKeyFile:/pulsar/manning/security/authentication/tls/admin-pk8.pem

B Comment out both of the TLS authentication properties.

Now, let’s rebuild the image to include the changes necessary to generate the JWTs
and enable JWT-based authentication by executing the commands shown in the fol-
lowing listing. Be sure to have stopped and removed any previous running instances
of the Pulsar image before doing so.

$ cd $REPO_HOME/pulsar-in-action/docker-images/pulsar-standalone    B
$ docker build . -t pia/pulsar-standalone-secure:latest             c
Sending build context to Docker daemon  3.345MB
Step 1/9 : FROM apachepulsar/pulsar-standalone:latest               d
 ---> 3ed9bffff717
….
Step 8/9 : RUN ["/bin/bash", "-c", "/pulsar/manning/security/authentication/jwt/

➥ gen-tokens.sh"]                                                  e
Step 9/9 : CMD ["/pulsar/bin/pulsar", "standalone"]
 ---> Using cache
 ---> a229c8eed874
Successfully built a229c8eed874
Successfully tagged pia/pulsar-standalone-secure:latest             f

B Change to the directory that contains the Dockerfile.

Listing 6.18 JWT authentication property changes to the client.conf file 

Listing 6.19 Building the Docker image from the Dockerfile
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c Command to build the Docker image from the Dockerfile and tag it

d Notice that there are now nine steps instead of eight.

e Executes the gen-token.sh script

f Success message, including the tag used to reference the image

Next, we need to follow the steps shown in listing 6.7 again to launch a new container
based on the updated Docker image, ssh into the container, and run the publish-
credentials.sh script inside the newly launched bash session to make these JWTs
available to us in the ${HOME}/exchange folder on our local machine. Next, we will
attempt to use JWT authentication by using the Java program shown in the following
listing, which is available in the GitHub repo associated with this book.

import org.apache.pulsar.client.api.*;

public class JwtAuthClient {
public static void main(String[] args) throws PulsarClientException {
    final String HOME = "/Users/david/exchange";
    final String TOPIC = "persistent://public/default/test-topic";
        
    PulsarClient client = PulsarClient.builder()
       .serviceUrl("pulsar+ssl://localhost:6651/")
       .tlsTrustCertsFilePath(HOME + "/ca.cert.pem")
       .authentication(
           AuthenticationFactory.token(() -> {
        try {
          return new String(Files.readAllBytes(
            Paths.get(HOME+"/admin-token.txt")));
        } catch (IOException e) {
          return "";
        }
        })).build();

    Producer<byte[]> producer = 
      client.newProducer().topic(TOPIC).create();
        
    for (int idx = 0; idx < 100; idx++) {
      producer.send("Hello JWT Auth".getBytes());
    }        
     System.exit(0);
}
}

That concludes the configuration of authentication on the Pulsar broker. From this
point forward, all Pulsar clients will be required to present valid credentials to be
authenticated. Thus far, we have only implemented two of the four authentication
mechanisms supported by Pulsar, TLS, and JWT. Additional authentication methods
can be enabled by following the steps outlined in Pulsar’s online documentation.

Listing 6.20 Authenticating with JWT
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6.3 Authorization
Authorization occurs only after a client has been successfully authenticated by Pulsar’s
configured authentication provider, which determines whether or not you have suffi-
cient permission to access a given topic. If you only enable authentication, any
authenticated user has the ability to perform any action on any namespace or topic
within the cluster.

6.3.1 Roles

In Pulsar, roles are used to define a collection of privileges, such as permission to
access a particular set of topics that are assigned to groups of users. Apache Pulsar
uses the configured authentication providers to establish the identity of a client and
then assign a role token to that client. These role tokens are then used by the authoriza-
tion mechanism to determine what actions the clients are allowed to make. 

 Role tokens are analogous to physical keys that are used to open a lock. Many peo-
ple may have a copy of the key, and the lock doesn’t care who you are, only that you
have the right key. Within Pulsar, the hierarchy of roles falls into three categories,
each with their own capabilities and intended uses. As you can see from figure 6.3, the
role hierarchy closely mirrors Pulsar’s cluster/tenant/namespace hierarchy when it
comes to structuring data. Let us examine each of these roles in greater detail.

Pulsar cluster

Tenants

Namespaces

Topics

Superusers

Tenant
administrators

Clients

Role hierarchy Topic categorization

Administers

Administrative policies

Create clusters
Geo-replication

Namespace resource quotas
Topic-level data retention policies
Topic-level backlog quotas
Topic-level message TTL
Tiered-storage offload
Message deduplication
Persistence policies (write quorum,acks)
Message dispatch rates 

Administers

Creates/sets policies

Consume/produce

Grants
permissions

Creates

Figure 6.3 The Pulsar role hierarchy and its corresponding administrative tasks
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SUPERUSERS

Just as the name implies, superusers can perform any action at any level of the Pulsar
cluster; however, it is considered a best practice to delegate the administration of a
tenant and its underlying namespaces to another person who will be responsible for the
administration of that particular tenant’s policies. Therefore, superusers’ primary activ-
ity is the creation of tenant admins, which can be accomplished from the pulsar-admin
CLI by executing a command similar to the one shown in the following listing.

$PULSAR_HOME/bin/pulsar-admin tenants create tenant-name \     B
   --admin-roles tenant-admin-role \                           c
   --allowed-clusters standalone                               d

B Specifies the tenant’s name

c Specifies the tenant admin role name for the tenant

d Specifies the clusters where the tenant will exist

This allows the superuser to focus on cluster-wide administrative tasks, such as cluster
creation, broker management, and configuring tenant-level resource quotas to ensure
all the tenants receive their fair share of the cluster’s resources. Typically, the adminis-
tration of a tenant is given to a user that is responsible for designing the layout of the
topics required for the tenant, such as a department head, project manager, or appli-
cation team leader. 

TENANT ADMINISTRATORS

The primary focus of the tenant administrator is the design and implementation of
namespaces within their tenant. As I discussed earlier, namespaces are nothing more
than a logical collection of topics that have the same policy requirements. Namespace-
level policies apply to each topic within a given namespace and allow you to configure
things such as data retention policies, backlog quotas, and tiered-storage offload. 

CLIENTS

Last are the client roles, which can be any application or service that has been granted
permission to consume from or produce to topics with the Pulsar cluster. These per-
missions are granted by the tenant admins at either the namespace level, meaning
they apply to all the topics in a particular namespace, or on a per-topic basis. Listing
6.22 shows an example of both scenarios.

6.3.2 An example scenario

Let’s imagine you are working for a food delivery company named GottaEat that
allows customers to order food from a variety of participating restaurants and have it
delivered directly to you. Rather than employ their own fleet of drivers, your company
has decided to enlist private individuals to deliver the food to keep costs down. The
company will use three separate mobile applications to conduct business: a publicly

Listing 6.21 Creating a Pulsar tenant



183Authorization

available one for customers, a restricted one for all participating restaurateurs, and a
restricted one for all authorized delivery drivers. 

ORDER PLACEMENT USE CASE

Next, let’s walk through a very basic use case for your company, the placement of an
order by a customer, all the way through to when it is assigned to a driver for delivery
using a microservices-based application that uses Apache Pulsar for communicating
via messages. We will focus on how you might structure your namespaces under the
restaurateurs and driver tenants, along with what permissions you would want to
grant. The microservices tenant will be used by multiple tenants, so it is created and
managed by the application team. Figure 6.4 shows the overall message flow in the
order entry use case.

In this use case, a customer uses the company’s mobile application to select some food
items, enter the desired delivery address, provide their payment information, and sub-

Resturantuers

Offers

Restaurant_ID

Payment
verification

Microservices

Orders

New Paid Accepted Dispatched

Drivers

Offers

Driver_ID

Restaurant
assignment

Driver
assignment Drivers

Restaurants

Customers

Customer
notification
service

Order accepted
SMS notification

Tenants

Namespaces

Key

Microservice

Topics

Figure 6.4 Message flow during the order placement use case
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mit the request. The order information is published to the persistent:// microser-
vices/orders/new topic by the mobile application.

 The payment verification microservice consumes the inbound order and commu-
nicates with the credit card payment system to secure payment for the items before
placing the order in the persistent://microservices/orders/paid topic to indi-
cate that payment has been captured for the items. The service also replaces the raw
credit card information with an internal tracking ID that be used at a later time to
access the payment. 

 The restaurant assignment microservice is responsible for finding a restaurant
that can fulfill the order by consuming from the persistent://microservices/
orders/paid topic and determining a subset of candidate restaurants based on the
food items and delivery location. It then sends out an offer to each of these restau-
rants by publishing the order details to a specific restaurant’s topic that only they can
access (e.g., persistent://restaurateurs/offers/restaurant_4827) to ensure the
order is only fulfilled by one restaurant. If the offer is rejected, or after a certain
amount of time elapses, the offer is rescinded and sent to the next restaurant in the
list until it is fulfilled. Once a restaurant accepts the order via their mobile applica-
tion, a message contain-ing the restaurant details, including location, is published to
the persistent://microservices/orders/accepted topic.

 Once the order has been accepted, the driver assignment microservice will con-
sume the message from the accepted topic and will attempt to locate a driver who can
deliver the order to the customer. It selects a list of potential drivers based on their
location, planned routes, etc., and publishes a message to a topic that only the driver
can access (e.g., persistent://drivers/offers/driver_5063) to ensure the order is
only dispatched to a single driver. If the offer is rejected, or after a certain amount of
time elapses, the offer is rescinded and sent to the next driver in the list until it is
accepted. If a driver accepts the delivery, a message containing the driver details is
published to the persistent://microservices/orders/dispatched topic to indicate
that the order is scheduled for delivery.

 All of the messages stored inside the topics of the persistent://microservices/
orders namespace contain both a customer_id and order_id data element. A cus-
tomer notification service is subscribed to all of the topics shown, and when it receives
a new record in any of these topics, it parses out those fields and uses the information
to send out a notification to the corresponding customer’s mobile app, so they can
track the progress of their order.

TENANT CREATION

As the Pulsar superuser your first task would be to create all three of the tenants and
their associated tenant admin roles. So, let’s review the steps required to create the
necessary tenants for this use case, as shown in the following listing.
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$PULSAR_HOME/bin/pulsar-admin tenants create microservices \
  --admin-roles microservices-admin-role

$PULSAR_HOME/bin/pulsar-admin tenants create drivers \
  --admin-roles drivers-admin-role

$PULSAR_HOME/bin/pulsar-admin tenants create restaurateurs \
  --admin-roles restaurateurs -admin-role

Since we are delegating the administration of these tenants to someone else within
our organization, I will take a moment to outline the characteristics of the individuals
who should serve in this capacity on a tenant-by-tenant basis:

 Since the microservices tenant is used to share information across multiple ser-
vices and applications, a good candidate for the corresponding tenant admin
should be an IT professional responsible for architectural decisions across
departments, such as an enterprise architect.

 For the restaurateurs’ tenant, a good candidate would be the person(s) in
charge of the acquisition of new restaurateurs, as they will be the ones responsi-
ble for soliciting, vetting, and managing these partners. They can include the
creation of restaurateurs’ private topics as part of the onboarding process, etc.

 Similarly, a good candidate for administering the driver’s topic would be the
person(s) in charge of the acquisition of new drivers. 

AUTHORIZATION POLICIES

Based on the requirements for this use case, we would devise an overall security design
similar to the one shown in figure 6.5, which defines the following security
requirements:

 The application that requires access
 The authentication method it will use 
 The topics and namespaces it will access, and how
 The roleID we will assign to these permissions

For example, we know that the driver assignment microservice will use a JWT to
authenticate with Pulsar and be assigned the DA_service role token, which will grant
consume permission on the persistent://microservices/orders/accepted topic
and produce permission on all the topics in the persistent://drivers/offers
namespace. Therefore, the commands shown in listing 6.23 would need to be exe-
cuted to enable the security policies for the DA_service role, and similar commands
would be required for the other services as well. It is worth mentioning that, even
though there may be multiple instances of the driver assignment service running, they
can all use the same RoleID. This is not the case for some of the mobile applications,
since we will need to know exactly which user is accessing the system to enforce our
security policies.

Listing 6.22 Creating the Pulsar tenants
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$PULSAR_HOME/bin/pulsar-admin namespaces create microservice/orders      B

$PULSAR_HOME/bin/pulsar tokens create \                                  c
   --private-key file:///path/to/private-secret.key \
   --subject DA_service > DA_service-token.txt                           d

$PULSAR_HOME/bin/pulsar-admin namespaces grant-permission \
   drivers/offers --actions produce –-role DA_service                    e

$PULSAR_HOME/bin/pulsar-admin topics grant-permission \
   persistent://microservices/orders/accepted \
   --actions produce \
   –-role DA_service                                                     f

B Create the microservices/order namespace; this only needs to be done once.

c Create a JWT for the DA_service role.

d Save the token in a text file to share with the service deployment team.

e Grant the DA_service role permission to publish to any topic in the drivers/offers namespace.

f Grant the DA_service role permission to consume from a single topic.

Listing 6.23 Enabling security for the driver assignment microservice

Application Authentication RoleID Authorization policies

DA_serviceDriver assignment
microservice

JWT
microservices/orders/accepted (consume)
drivers/offers/driver_* (publish)

RA_service
microservices/orders/paid (consume)
restaurants/offers/restaurant_* (publish)

Resturant assignment
microservice

JWT

PV_service
microservices/orders/new (consume)
microservices/orders/paid (produce)

Payment verificaton
microservice

JWT

CN_service microservices/orders/* (consume)Customer notificaton
microservice

JWT

microservices/orders/new (publish)Customer mobile
application

TLS Cert Customer

drivers/offers/driver_ID (consume)
microservices/orders/dispatched (produce)

Driver mobile
application

TLS Cert Driver_<id>

restaurants/offers/restaurant_ID (consume)
microservices/orders/accepted (produce)Restaurant mobile

application
TLS Cert Restaurant_<id>

Figure 6.5 Application-level security requirements for the order placement use case
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The JWT should be saved to a file and shared with the team that will be deploying the
driver assignment service, so they can make it available to the service at runtime by
either bundling it with the service or placing it in a secure location, such as a Kuber-
netes secret. The mobile applications, in contrast, will use custom client certificates
that are generated after the driver or restaurateur has been successfully onboarded
and issued a unique ID, as the client certificate that is generated will be associated
with that specific ID in order to uniquely identify to the user when they connect (e.g.,
driver_4950 would be issued a client certificate associated with a common name of
driver_4950 and would be granted a role token for that role). We can see this in the
following listing, which shows the steps that would be taken by the driver-admin-role
to add a new driver to the Pulsar cluster.

openssl req -config file:///path/to/openssl.cnf \
      -key file:///path/to/driver-4950.key.pem -new -sha256 \            B
      -out file:///path/to/driver-4950.csr.pem \
      -subj "/C=US/ST=CA/L=Palo Alto/O=gottaeat.com/CN=driver_4950" \    c
      -passin pass:${CLIENT_PASSWORD}

openssl ca -config file:///path/to/openssl.cnf \
      -extensions usr_cert \
      -days 100 -notext -md sha256 -batch \
      -in file:///path/to/driver-4950.csr.pem \                          d
      -out file:///path/to/driver-4950.cert.pem \                        e
      -passin pass:${CA_PASSWORD}

$PULSAR_HOME/bin/pulsar-admin topics grant-permission \
   persistent://drivers/offers/driver_4950 \                             f
   --actions consume \
   –-role driver_4950                                                    g

$PULSAR_HOME/bin/pulsar-admin topics grant-permission \
   persistent://microservices/orders/dispatched \ 
   --actions produce \
   –-role driver_4950    

B Use the driver-provided private key to generate a certificate request.

c Use the CN field to specify the new roleID for this driver.

d Use the CSR to generate a TLS client certificate for the new driver.

e The name of the client certificate file, which will be bundled with the mobile app download

f Grant the driver_4950 role permission to consume from a dedicated topic.

g Grant the driver role permission to produce to the general dispatched topic.

In listing 6.24, we see that a TLS client certificate is generated specifically for the new
driver, based on their ID. This certificate is then bundled together with the driver
mobile application code to ensure it is always used to authenticate with Pulsar when
connecting to the cluster. The driver will then be sent a link they can use to download
and install it on their smartphone.

Listing 6.24 Onboarding a new driver
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6.4 Message encryption
The new orders topic will contain sensitive credit card information that must not be
accessible to any consumer other than the payment verification service. Even though
we have configured TLS wire encryption to secure the information during transit into
the Pulsar cluster, we also need to ensure that the data is stored in an encrypted for-
mat. Fortunately, Pulsar provides methods that allow you to encrypt messages’ con-
tents on the producer side before sending them to the broker. These message
contents will remain encrypted until a consumer with the correct private key con-
sumes them.

 In order to send and receive encrypted messages, you will first need to create an asym-
metric key pair. A script named gen-rsa-key.sh is included in the Docker image we
have been using, which can be used to generate a public/private key pair. The following
listing shows the contents of the script, which is located in the /pulsar/manning/
security/message-encryption folder.

# Generate the private key
openssl ecparam -name secp521r1 \
   -genkey \
   -param_enc explicit \
   -out /pulsar/manning/security/encryption/ecdsa_privkey.pem
   
# Generate the public key
openssl ec -pubout \
   -outform pem \
   -in /pulsar/manning/security/encryption/ecdsa_privkey.pem \
   -out /pulsar/manning/security/encryption/ecdsa_pubkey.pem

You should give the public key to the producer application, which, in this particular
case, is the client mobile application. The private key should only be shared with the
payment verification service, since it will need to consume the encrypted messages
that are published to the persistent://microservices/orders/new topic. The fol-
lowing listing shows sample code of how to use the public key with a message pro-
ducer to encrypt the data before it is sent.

String pubKeyFile = “path to ecdsa_pubkey.pem”;            B
CryptoKeyReader cryptoReader 
    = new RawFileKeyReader(pubKeyFile, null);              c

Producer<String> producer = client
  .newProducer(Schema.STRING)
  .cryptoKeyReader(cryptoReader)                           d
  .cryptoFailureAction(ProducerCryptoFailureAction.FAIL)   e
  .addEncryptionKey(“new-order-key”)                       f

Listing 6.25 Contents of gen-rsa-keys.sh

Listing 6.26 Encrypted producer configuration
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  .topic(“persistent://microservices/orders/new”)
  .create();

B The client must have access to the public key.

c Initialize the crypto reader to use the public key.

d Configure the producer to use the public key to encrypt the messages via the CryptoReader.

e Tells the producer to throw an exception if the message cannot be encrypted

f Provides a name for the encryption key

The following listing shows sample code of how to configure the consumer inside the
payment verification service to use the private key to decrypt the messages it consumes
from the persistent://microservices/orders/new topic. 

String privKeyFile = “path to ecdsa_privkey.pem”;                 B
CryptoKeyReader cryptoReader 
    = new RawFileKeyReader(null, privKeyFile);                    c

ConsumerBuilder<String> builder = client
    .newConsumer(Schema.STRING)
    .consumerName("payment-verification-service")
    .cryptoKeyReader(cryptoReader)                                d
    .cryptoFailureAction(ConsumerCryptoFailureAction.DISCARD)     e
    .topic("persistent://microservices/orders/new")
    .subscriptionName("my-sub");

B The client must have access to the public key.

c Initialize the crypto reader to use the public key.

d Configure the consumer to use the private key to decrypt the messages via the CryptoReader.

e Tells the consumer to discard the message if it cannot be decrypted

Now that I’ve covered the steps required to configure the message producers and con-
sumers to support message encryption, I want to drill down into the details of how it is
implemented internally within Pulsar and some of the key design decisions you
should be aware of to better understand how to leverage it in your applications. Figure
6.6 shows the steps taken on the producer side when message encryption is enabled.
When the producers’ send method is called with the raw message bytes, the producer
first makes an internal call to the Pulsar client library to get the current symmetric
AES encryption key. The encryption key is considered current because these keys are
automatically rotated every four hours to limit the impact of someone gaining unau-
thorized access to the key, limiting the data exposed to a four-hour window in the
event of a compromised key, rather than the entire history of the topic.

 The current AES key is then used to encrypt the raw message bytes of the message,
which are then placed in the outbound message’s payload. Next, the public key of the
RSA asymmetric key pair we generated earlier is used to encrypt the AES key itself,
and the resulting encrypted AES key is placed in the outbound message’s header
properties. 

Listing 6.27 Configuring a Pulsar client to read from an encrypted topic
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By encrypting the AES Key with the public key of an asymmetric key pair, we can rest
assured that only a consumer with the corresponding private key of the key pair can
decrypt (and thus read) the AES key that was used to encrypt the message payload. At
this point, all of the data within the outbound message is encrypted: the message pay-
load with the AES key and the message header that contains the AES key, which itself
has been encrypted with a public RSA key. The message is then sent over the wire to
the Pulsar cluster for delivery to its intended consumers.

 Upon receipt of an encrypted message, a consumer performs the steps shown in
figure 6.7 to decrypt the message and access the raw data. First, the consumer reads
the message headers and looks for the encryption key property, which contains the
encrypted AES key. It then uses the private RSA key from the asymmetric key pair to
decrypt the contents of the encryption key property to produce the AES key. Now
that the consumer is in possession of the AES key, it can decrypt the message contents
with it due to the fact that it is a symmetrical key, meaning it is used to both encrypt
and decrypt data. 

 Choosing to store the AES key used to encrypt the message with the encrypted
message contents themselves alleviates Pulsar from the responsibility of having to
store and manage these encryption keys internally. However, if you lose or delete the
RSA private key used to decrypt the RSA key, your message is irretrievably lost and can-
not be decrypted by Pulsar. Therefore, it is a best practice to store and manage the
RSA key pairs in a third-party key management service, such as AWS KMS.

 Now that I have brought up the possibility of a lost RSA key, you might be wonder-
ing what exactly happens in such a scenario. Obviously, you never want this to occur,
but it can happen, so you need to consider how you want your application to respond
and what options you have on both the producer and consumer side.
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Figure 6.6 Message encryption on the Pulsar producer
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First, let’s consider the producer side. There are really only two options here. First,
you can choose to continue sending the messages without encrypting them. This
might be a good option if the value of the data exceeds the risk of having it stored in
an unencrypted format for a limited amount of time. For instance, in the order place-
ment scenario we discussed earlier, it would be better to allow the customer orders to
be sent rather than to shut down the entire business due to a missing RSA key. Since
the data is being sent over a secure TLS connection, the risk is minimal. 

 The other option is for the producer to fail the messages and throw an exception,
which is a good option when risk of the exposing the data outweighs the potential
business value of having it delivered in a timely manner. This would typically be some
sort of non-customer-facing application, such as a backend payment processing sys-
tem, that does not have a strict business SLA. You can specify which action you want
your producer to take by using the setCryptoFailureAction() method in the pro-
ducer configuration, as was shown in listing 6.26. 

 If consumption fails due to decryption failure on the consumer side, then you have
three options; first, you can elect to deliver the encrypted contents to the consuming
application. However, it will then be the consuming application’s responsibility to
decrypt the message. This option is useful when your consumer’s logic is not based on
the message contents, such as routing of the message to downstream consumers based
on the information in the message headers.

 The second option is to fail the message, which will make the Pulsar broker rede-
liver it. This option is useful if you are a shared subscription type, so there are multiple
consumers on the same subscription. When you fail the message, you are hoping the
decryption issue is isolated to just the current consumer, such as a missing private key
on that consumer’s host machine, and if the message is redelivered to another con-
sumer, it will be able to decrypt the message and consume it successfully. Do not use
this option with an exclusive subscription type, as this will result in the message being
redelivered indefinitely to the same consumer, who cannot process it. 
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Figure 6.7 Message decryption on the Pulsar consumer
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 The last option is to have the consumer discard the message, which is useful for an
exclusive subscription consumer that needs access to the message contents in order to
perform its logic. As we discussed earlier, failing the message will result in an infinite
number of message redelivers, and the consumer will be stuck reprocessing the mes-
sage. Such a scenario would halt message consumption on the subscription and
steadily increase in the message backlog for the entire topic. Therefore, discarding the
message is the only way to prevent this from occurring, but at the cost of message loss.

Summary
 Pulsar supports TLS wire encryption, which ensures that all data transferred

between clients and the Pulsar broker is encrypted. 
 Pulsar supports TLS authentication with client certificates, which allows you to

distribute these credentials only to trusted users and limit cluster access to only
those in possession of a valid client certificate.

 Pulsar allows you to use JSON web tokens to authenticate users and map them
to a specific role. 

 Once authenticated, a user is granted a role token that is used to determine
which resources within the Pulsar cluster the user is authorized to read from
and write to.

 Pulsar supports message-level encryption to provide security for data stored on
the local disk in the bookies. This prevents unauthorized access to any sensitive
data that may be inside those messages. 
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Traditional databases employ a process referred to as schema-on-write, where the
table’s columns, rows, and types are all defined before any data can be written into
the table. This ensures that the data conforms to a predetermined specification
and the consuming clients can access the schema information directly from the
database itself, which enables them to determine the basic structure of the records
they are processing.

 Apache Pulsar messages are stored as unstructured byte arrays, and the struc-
ture is applied to this data only when it’s read. This approach is referred to as
schema-on-read and was first popularized by Hadoop and NoSQL databases. While
the schema-on-read approach makes it easier to ingest and process new and
dynamic data sources on the fly, it does have some drawbacks, including the lack of

This chapter covers
 Using the Pulsar schema to simplify your 

microservice development

 Understanding the different schema compatibility 
types

 Using the LocalRunner class to run and debug 
your functions inside your IDE

 Evolving a schema without impacting existing 
consumers
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a metastore that clients can access to determine the schema for the Pulsar topic they
are consuming from.

 Pulsar clients just see a stream of individual records that can be of any type and
need an efficient way to determine how to interpret each arriving record. This is
where the Pulsar schema registry comes into play. It is a critical component of the Pul-
sar technology stack that tracks the schema of all the topics inside of Pulsar.

 As we saw in the last chapter, the development team for the food delivery service
company GottaEat has decided to embrace the microservice architectural style in
which applications are comprised of a collection of loosely coupled, independently
developed services. In such an architecture, different microservices will need to collab-
orate on the same data, and in order to do that, they will need to know the basic struc-
ture of the event, including the fields and their associated types. Otherwise, the event
consumers will not be able to perform any meaningful calculations on the event data.
In this chapter, I will demonstrate how Pulsar’s schema registry can be used to greatly
simplify the sharing of this information across the application teams at GottaEat.

7.1 Microservice communication
When you build microservice architectures, one of the concerns you need to address
is that of interservice communication. There are different options for interservice
communication, each with their own respective strengths and weaknesses. Typically,
these various types of communication can be classified across two different decision
factors. The first factor is whether the communication between the services is synchro-
nous or asynchronous, and the second factor is whether the communication is
intended for a single receiver or multiple receivers, as shown in figure 7.1

Synchronous

Single
receiver

Multiple
receivers

Asynchronous

Rest
or

gRPC

Messaging Messaging

Messaging

Figure 7.1 Microservice 
communication factors and 
appropriate communication 
protocols
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Protocols such as HTTP/REST or gRPC are most commonly used as synchronous
request/response-based interservice communication mechanisms. With synchronous
communication, one service sends a request and waits for a response from another
service. The calling service’s execution is blocked and cannot continue its task until it
receives a response. This communication pattern is similar to procedure calls in tradi-
tional application programming in which a specific method is made to an external
service with a specific set of parameters.

 With asynchronous communication, one service sends a message and does not
need to wait for a response. If you want an asynchronous publish/subscribe-based
communication mechanism, messaging systems such as Pulsar are a perfect fit. A mes-
saging system is also required to support publish/subscribe interservice communica-
tion between a single service that has multiple message receivers. It is not practical to
have a service block until all of the intended recipients have acknowledged the mes-
sage, as some of them may be offline. A much better approach is to have the messag-
ing system retain the messages. 

 These factors and communication mechanisms are good to know so you have clar-
ity on the possible communication mechanisms you can use, but they’re not the most
important concerns when building microservices. What is most important is being
able to integrate your microservices, while maintaining the independence of micros-
ervices, and doing so requires the establishment of a contract between the collaborat-
ing services, regardless of the communication mechanism you chose.

7.1.1 Microservice APIs

As with any software development project, clear requirements help development
teams create the right software, and having well-defined service contracts up front
allows microservice developers to write code without having to make assumptions
about the data that will be provided to them or the expected output for any particular
method within their service. In this section, I will cover how each of the communica-
tion styles supports service contracts.

REST AND GRPC PROTOCOLS

When evaluating the synchronous request/response-based interservice communica-
tion mechanisms, one of the biggest differences between REST and gRPC is the for-
mat of the payload. The conceptual model used by gRPC is to have services with clear
interface definitions and structured messages for requests and responses. This model
translates directly to programming language concepts like interfaces, functions, meth-
ods, and data structures. It also allows gRPC to automatically generate client libraries
for you. These libraries can then be shared between the microservice development
teams and act as a formal contract between them. 

 While the REST paradigm doesn’t mandate any structure, message payloads typically
use a loosely-typed data serialization system, such as JSON. Consequently, REST APIs
don’t have a formal mechanism for specifying the format of the messages passed between
services. The data is passed back and forth as raw bytes, which must be deserialized by
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the receiving service(s). However, these message payloads have an implied structure that
the payload must adhere to. Therefore, any changes to the message payloads must be
coordinated between the teams that are developing the services to ensure any changes
made by one team do not impact the others. One such example would be the removal
of a field that is required by other services. Making such a change would violate the infor-
mal contract between the services and cause issues for the consuming services that
depend on that particular field to perform their processing logic.

 This problem isn’t just limited to the REST protocol either, but rather it is a side
effect of the loosely-typed data communication protocol being used. Consequently,
this issue also exists with message-based interservice communication that uses a
loosely-typed data serialization system. 

MESSAGING PROTOCOL

As we saw in figure 7.1, most of the interservice communication patterns can only be
supported by a message-based communication protocol. Within Pulsar each message
consists of two distinct parts: the message payload, which is stored as raw bytes, and a
collection of user defined properties that are stored as key/value pairs. Storing the
message payload as raw bytes provides maximum flexibility, but the trade-off is that
each message consumer is required to transform these bytes into a format the con-
suming applications are expecting, as shown in figure 7.2.

Different microservices will need to communicate via messages, and in order to do so,
both the producer and consumer will need to agree on the basic structure of the mes-
sages they are exchanging, including the fields and their associated types. The meta-
data that defines the structure of these messages is commonly referred to as message
schemas. They provide a formal definition of how the raw message bytes should be
translated into a more formal type structure (e.g., how the 0s and 1s stored inside the
message payload map to a programming-language object type).

 Message schemas are the closest we come to a formal contract between the services
that generate the messages and the services that consume them. It is useful to think
about message schemas as APIs. Applications depend on APIs and expect that any
changes made to APIs are still compatible and that applications can still run. 

Pulsar
100110111010001110

Producer Consumer

100110111010001110

Without a schema registry Consumer is responsible
for deserializing and
parsing the data 

Figure 7.2 Pulsar takes raw bytes as input and delivers raw bytes as output.
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7.1.2 The need for a schema registry

A schema registry provides a central location for storing information about the sche-
mas used within your organization, which in turn greatly simplifies the sharing of this
information across application teams. It serves as a single source of truth for the mes-
sage schemas used across all your services and development teams, which makes it eas-
ier for them to collaborate. Having an external repository of message schemas helps
answer the following questions for any given topic:

 If I am consuming messages, how do I parse and interpret the data?
 If I am producing messages, what is the expected format?
 Do all of the messages have the same format, or has the schema changed?
 If the schema has changed, what are the different message formats inside the topic?

Having a central schema registry along with the consistent use of schemas across the
organization makes data consumption and discovery much easier. If you define a stan-
dard schema for a common business entity that almost all applications will use, such as
a customer, product, or order, then all message-producing applications will be able to
generate messages in the latest format. Similarly, consuming applications won’t need
to perform any transformations on the data in order to make it conform to a different
format. From a data discovery perspective, having the structure of the messages clearly
defined in the schema registry allows data scientists to understand the structure of the
data better without having to ask the development teams.

7.2 The Pulsar schema registry
The Pulsar schema registry enables message producers and consumers on Pulsar top-
ics to coordinate on the structure of the topic’s data through the Pulsar broker itself
without needing an additional serving layer for the metadata. Other messaging sys-
tems, such as Kafka, require a separate standalone schema registry component. 

7.2.1 Architecture

By default, Pulsar uses the Apache BookKeeper table service for schema storage, since
it provides durable, replicated storage that ensures the schema data is not lost. It also
provides the added benefit of a convenient key/value API. Since Pulsar schemas are
applied and enforced at the topic level, the topic name is used as the key, and the val-
ues are represented by a data structure known as SchemaInfo that consists of the
fields shown in the following listing.

{ 
  “name”: “my-namespace/my-topic”,  B
  “type”: “STRING”,                 c
  “schema”: “”,                     d
  “properties”: {}                  e
}

Listing 7.1 A Pulsar SchemaInfo example
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B A unique name, which should match the topic name that the schema is associated with

c Will either be one of the predefined schema types, such as STRING or struct, if you are using a 
generic serialization library, such as Apache Avro or JSON

d If you are using a supported serialization type, such as Avro, then this will contain the raw schema 
data.

e A collection of user-defined properties

As you can see in figure 7.3, a Pulsar client relies on the schema registry to get the
schema associated with the topic it is connected to and invoke the associated serializer/
deserializer to transform the bytes into the appropriate type. This alleviates the con-
sumer code from the responsibility of having to do the transformation and allows it to
focus on the business logic.

The schema registry uses the values of the type and schema fields to determine how to
serialize and de-serialize the bytes contained inside the message body. The Pulsar
schema registry supports a variety of schema types, which can be categorized as either
primitive types or complex types. The type field is used to specify which of these catego-
ries the topic schema falls into.

PRIMITIVE TYPES

Currently, Pulsar provides several primitive schema types, such as BOOLEAN, BYTES,
FLOAT, STRING, and TIMESTAMP, just to name a few. If the type field contains the name
of one of these predefined schema types, then the message bytes will be automatically
serialized/deserialized into the corresponding programming language-specific type,
as shown in table 7.1.

Table 7.1 Pulsar primitive types

BOOLEAN A single binary value: 0 = false, 1 = true

INT8 An 8-bit signed integer

With a schema registry

Serialized
bytes

Get deserializer

Serializer

Serialized
bytes100110111010001110

Deserializer

Deserialized
bytes

Producer ConsumerLookup by topic

Get serializer

Inbound messages are serialized based
on the topic’s associated schema.
Non-compatible messages are rejected,
ensuring type-safety.

Outbound messages are
deserialized based on the
topic’s associated schema. 

Schema
registry

Figure 7.3 The Pulsar schema registry is used to serialize the bytes before they are published to a topic 
and to deserialize them before they are delivered to the consumers.
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For primitive types, Pulsar does not require or use any data in the schema field
because the schema is already implied and, thus, is not necessary. 

COMPLEX TYPES

When your messages require a more complex type, you should use one of generic seri-
alization libraries supported by Pulsar, such as Avro, JSON, or protobuf. This would be
denoted with an empty string in the type field of the SchemaInfo object associated
with the topic, and the schema field will contain a UTF-8 encoded JSON string of the
schema definition. Let’s consider how this is applied to an Apache Avro schema defi-
nition to better illustrate how the Schema registry simplifies the process.

 Apache Avro is a data serialization format that supports the definition of complex
data types via language-independent schema definitions in JSON. Avro data is serial-
ized into a compact binary data format that can only be read using the schema that
was used when writing it. Since Avro requires that readers have access to the original
writer schema in order to deserialize the binary data, the associated schema is typically
stored with it at the beginning of the file. Avro was originally intended to be used for
storing files with a large number of records of the same type, which allowed you to
store the schema once and reuse it as you iterated through the records. 

 However, in a messaging use case, the schema would have to be sent with every sin-
gle message, as shown in figure 7.4. Including the schema inside every Pulsar message
would be inefficient in terms of memory, network bandwidth, and disk space. This is
where Pulsar’s schema registry comes in. When you register a typed producer or con-
sumer that uses an Avro schema, the JSON representation of the Avro schema is
stored inside the schema field of the associated SchemaInfo object. The raw bytes of
the messages are then serialized or deserialized based upon the Avro schema defini-
tion stored inside the Schema registry, as shown in figure 7.3. This eliminates the need
to include it with every single message. Furthermore, the corresponding serializer or
deserializer is cached inside the producers/consumers, so it can be used on all subse-
quent messages until a different schema version is encountered.

INT16 A 16-bit signed integer

INT32 A 32-bit signed integer

INT64 A 64-bit signed integer

FLOAT A 32-bit, single precision floating point number (IEEE 754)

DOUBLE A 64-bit, double precision floating point number (IEEE 754)

BYTES A sequence of 8-bit unsigned bytes

STRING A Unicode character sequence

TIMESTAMP The number of milliseconds since Jan 1, 1970 stored as an INT64 value

Table 7.1 Pulsar primitive types (continued)
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7.2.2 Schema versioning
Every SchemaInfo object stored with a topic has a version associated with it. When a
producer publishes a message using a given SchemaInfo, the message is tagged with
the associated schema version, as shown in figure 7.5. Storing the schema version with
the message allows the consumer to use the version to look up the schema in the
schema registry and use it to deserialize the message.

This is a simple and efficient way to associate the Avro schema with each Avro message
without having to attach the schema’s JSON description. The schemas are versioned
in increasing order (e.g., v1, v2, …, etc.), and when the first typed consumer or pro-
ducer with a schema connects to a topic, that schema is tagged as version 1. Once the
initial schema is loaded, the brokers are provided the schema info for the topics they
are serving and retain a copy of it locally for schema enforcement. 

 Within a messaging system such as Pulsar, messages may be retained for an indefinite
period of time. Consequently, some consumers will need to process these messages with

Figure 7.4 Avro messages would require the associated schema to be included with every message 
to ensure you could parse the binary message contents.
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Figure 7.5 When using the Schema Registry, Avro messages would contain a 
schema version rather than the entire schema description. Consumers will use the 
schema version to retrieve the proper deserializer based on the version.
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older versions of the schema. Therefore, the schema registry retains a versioned history
of all the schemas used in Pulsar to serve these consumers of historical messages.

7.2.3 Schema compatibility
As you may recall, I started this chapter with a discussion of the importance of main-
taining compatibility of messages used by microservices, even as requirements and
applications evolve. In Pulsar, every producer and consumer is free to use their own
schema, so it is quite possible that a topic could contain messages that conform to dif-
ferent schema versions, as shown in figure 7.5, where the topic contains messages with
schema version 8 and messages with schema version 9. 

 It is important to point out that the schema registry does not ensure that every pro-
ducer and consumer is using the exact same schema but, rather, that the schemas they
are using are compatible with one another. Consider the scenario where a develop-
ment team changes the schema of the messages it is producing by adding or removing
a field or changing one of the existing field types from string to timestamp. In order
to maintain the implicit producer–consumer contract and avoid accidently breaking
consumer microservices, we need to ensure that the producers are publishing mes-
sages that contain all the information the consumers require. Otherwise, we run the
risk of introducing messages that will break existing applications because you have
removed a field that is required by these applications.

 When you configure the schema registry to validate schema compatibility, the Pul-
sar schema registry will perform a compatibility check when the producer connects to
the topic. If the change will not break the consumers and cause exceptions, the
change is considered compatible, and the producer is allowed to connect to the topic
and produce messages with the new schema type. This approach helps prevent dispa-
rate development teams from introducing changes that break existing applications
that are already consuming from Pulsar topics. 

PRODUCER SCHEMA COMPATIBILITY VERIFICATION

Every time a typed producer connects to a topic, as shown in figure 7.6, it will transmit
a copy of the schema it is using to the broker. A SchemaInfo object is created based on
the passed-in schema and is passed to the schema registry. If the schema is already
associated with the topic, the producer is allowed to connect and can then proceed to
publish messages using the specified schema. 
If the schema is not already registered with the topic, the schema registry checks the
AutoUpdate strategy setting for the associated namespace to determine whether or
not the producer is permitted to register a new schema version on the topic. At this
point, the producer will be rejected if the policy prohibits the registration of new
schema versions. If schema updates are permitted, then the compatibility strategy
check is performed, and if it passes, the schema is registered with the schema registry,
and the producer is allowed to connect with the new schema version. If the schema is
determined to be incompatible, then the producer is rejected.
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CONSUMER SCHEMA COMPATIBILITY VERIFICATION

Every time a typed consumer connects to a topic, as shown in figure 7.7, it will trans-
mit a copy of the schema it is using to the broker. A SchemaInfo object is created
based on the passed-in schema and is passed to the schema registry.

If the topic doesn’t have any active producers or consumers, any registered schemas,
or any existing data, then it is considered not in use. In the absence of all of the afore-
mentioned items, the schema registry checks the AutoUpdate strategy setting for the
associated namespace to determine whether or not the consumer is permitted to regis-
ter a new schema version on the topic. The consumer will be rejected if it is prohibited
from registering its schema; otherwise, the compatibility strategy check is performed,
and if it passes, the schema is registered with the schema registry, and the consumer is
allowed to connect with the new schema version. If the schema is determined to be
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Figure 7.6 The logical flow of 
the schema validation checks 
for a typed producer
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incompatible, then the consumer is rejected. The compatibility check is also per-
formed if the topic is in use.

7.2.4 Schema compatibility check strategies

The Pulsar schema registry supports six different compatibility strategies, which can be
configured on a per-topic basis. It is important to point out that all of the compatibility
checks are from the consumer’s perspective, even when it comes to the compatibility
checks for producers, as the goal is to prevent the introduction of messages that the
existing consumers cannot process. The Schema registry will use the underlying serial-
ization library’s (e.g., Avro’s) compatibility rules to determine whether or not the new
schema is compatible with the current schema. The Pulsar schema registry’s default
compatibility type is BACKWARD, which is described in greater detail, along with the oth-
ers, in the following sections.

BACKWARD COMPATIBILITY

Backward compatibility means that the consumer can use a newer version of the
schema and still be able to read messages from a producer that is using the previous
version. Consider the scenario where both the producer and consumer start out using
the same version of the Avro schema: v1. One of the teams responsible for developing
one of the consumers decides to add a new field called status to the schema to sup-
port a new customer loyalty program that has various status tiers, such as silver, gold,
and platinum, as shown in figure 7.8. In this case, the new schema version, v2, would
be considered backward compatible, since it specifies a default value for the newly
added field.

Consumer
V1

Writer
schema

Producer

Reader
schema

V1V1

Schema v1 Schema v2

Pulsar
topic 

{ "namespace": "manning.pulsar",

  "type": "record",

  "name": "user",

  "fields": [

    {"name": "name", "type": "string"},

    {"name": "dob", "type": "string"}, 

    {"name": "ssn", "type": "string"}

  ]

}

{ "namespace": "manning.pulsar",

   "type": "record",

   "name": "user",

   "fields": [

       {"name": "name", "type": "string"},

       {"name": "dob", "type": "string"}, 

       {"name": "ssn", "type" ": "string"},

       {"name": "status", "type": "string", "default": "Silver"}

    ]

}

Figure 7.8 Backward compatible changes are those that allow a consumer that is using a newer version of 
the schema to still be able to process messages that are written using the previous version of the schema.



202 CHAPTER 7 Schema registry

This allows data written with v1 of the schema to be read by the consumer, since the
default value specified in the newer schema will be used for the missing field when
deserializing the messages serialized with v1, thereby treating all members as having
silver status in the consuming application.

 To support this type of use case, you can use the BACKWARD schema compatibility
strategy. However, that only supports the case where you have consumers that are one
schema version ahead of your producers. If you want to support producers that are
more than one schema version behind your consumers, you can use the BACKWARD_
TRANSITIVE compatibility strategy instead.

 Let’s expand upon the use case from the previous example. Now we have a new
microservice added to the application that is responsible for determining a customer’s
loyalty status and is producing messages that contain the status field.

 Also, the microservice that originally introduced the need for the status field has
undergone a security review, and it has been determined that having the customer’s
social security number poses too big of a security risk, so it has been removed. As you
can see from figure 7.9, we still have the original producer that is using schema v1, the
new microservice that is using v2 of the schema that includes the status field, and a
consumer that is using a third schema version that has removed the ssn field. 

V2

V2

Schema v2

Producer B

Schema v3Schema v1

{ "namespace": "manning.pulsar",

  "type": "record",

  "name": "user",

  "fields": [

    {"name": "name", "type": "string"},

    {"name": "dob", "type": "string"}, 

    {"name": "ssn", "type": "string"},

    {"name": "status", "type": "string",

      "default": "Silver"}

  ]

}

     

     

     

     

   {"name": "name", "type": "string"},

{ "namespace": "manning.pulsar",

  "type": "record",

  "name": "user",

  "fields": [

    {"name": "dob", "type": "string"}, 

    {"name": "ssn", "type": "string"}

  ]

}

{ "namespace": "manning.pulsar",

   "type": "record",

   "name": "user",

   "fields": [

    ]

}

  {"name": "name", "type": "string"},

  {"name": "dob", "type": "string"}, 

 {"name": "status", "type": "string", 

    "default": "Silver"}
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Figure 7.9 Backward transitive compatible changes are those that allow a consumer that is using a newer 
version of the schema to still be able to process messages that are written using any of the previous versions 
of the schema.
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In order to be considered backward transitive compatible, the new consumer schema
version, v3, would have to be able to process messages from both active producers
(e.g., schema versions v1 and v2). Since v3 specifies a default value for the status
field, data written with v1 of the schema can be read by the consumer, since the
default value specified in v3 of the schema will be used for the missing field when
deserializing the messages serialized with v1. Similarly, since the messages serialized
with v2 of the schema contain all of the fields required in v3, the consumer can simply
ignore the extra ssn field in these messages.

FORWARD COMPATIBILITY

Forward compatibility means that the consumer can use an older version of the
schema and still be able to read messages from a producer that is using a new version.
Consider the scenario where both the producer and consumer start out using the
same version of the protobuf schema: v1. One of the teams responsible for developing
one of the producers decides to add a new field called age to the schema to support a
new marketing program based on different age groups, as shown in figure 7.10.

In this case, the new schema version, v2, would be considered forward compatible,
since it simply added a new field that wasn’t in the previous version. This allows data
written with v2 of the schema to be read by the consumer, since the newly added field
will be ignored when deserializing the messages serialized with v2. The consumer can
continue processing the messages, since it does not have any dependency on the
newly added age field.

 To support this type of use case, you can use the FORWARD schema compatibility
strategy. However, that only supports the case where you have consumers that are one
schema version behind the message producers. If you want to support producers that
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Schema v1Schema v2
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schema
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Reader
schema
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topic 

message Customer {

   required string name = 1; 

   required string dob = 2;

   optional string ssn = 3;

}

message Customer {

   required string name = 1; 

   required string dob = 2;

   optional string ssn = 3;

   required int2 age = 4;

}

Figure 7.10 Forward compatible changes are those that allow a consumer that is using 
an older version of the schema to still be able to process messages that are written 
using a newer version of the schema.
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are more than one schema version ahead of your consumers, then you can use the
FORWARD_TRANSITIVE compatibility strategy instead.

 Let’s expand upon the use case from the previous example. Now we have a new
microservice added to the application that is responsible for determining a customer’s
demographic based on the age field, and that returns a message containing a brand-
new field, demo, and eliminates the optional ssn field, as shown in figure 7.11

In order to be considered forward transitive compatible, the consumer schema ver-
sion, v1, would have to be able to process messages from both active producers (e.g.,
schema versions v2 and v3). Since v1 specifies that the ssn field is optional, data writ-
ten with v3 of the schema can be read by the consumer, because this field is not
required, and the consumer must be prepared to handle null values for this field.
Also, since the messages serialized with v2 and v3 both contain additional fields that
are not specified in v1, the consumer can simply ignore these extra fields in the mes-
sages, as they are not required by the consumer.

FULL COMPATIBILITY

Full compatibility means the schema is both backward and forward compatible. Data
serialized using an older version of the schema can be deserialized with the new
schema, and data serialized using a newer version of the schema can also be deserial-
ized with the previous version of the schema.

 In some data formats, such as JSON, there are no full-compatible changes. Every
modification is either only forward or backward compatible. But in other data for-
mats, like Avro or protobuf, where you can define fields with default values, adding or

Figure 7.11 Forward transitive compatible changes are those that allow a consumer using an older 
version of the schema to still be able to process messages that are written using any of the newer versions 
of the schema.
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   required string dob = 2;

   optional string ssn = 3;
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   required string name = 1; 
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}
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   required string name = 1; 

   required string dob = 2;

   required string demo = 3;
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removing a field with a default value is considered a fully compatible change. To sup-
port this type of use case, you can use either the FULL or FULL_TRANSITIVE schema
compatibility strategies.

7.3 Using the schema registry
Let’s consider a scenario from the GottaEat food delivery company that allows custom-
ers to find and order food from any participating restaurant in the company’s network
and have it delivered to any location they choose. Orders can be placed via the com-
pany website or mobile application. Delivery of the food order is handled via a net-
work of independent drivers who are required to download a specialized mobile
application onto their smartphones. The drivers will receive notifications of food
orders that are available for delivery within their area and have the option of accept-
ing or declining the orders.

 Once an order has been accepted by the driver, it is added to their itinerary for the
evening, and the driver will receive directions to the restaurant for pickup and the
customer location for delivery inside the driver’s mobile application. Participating
restaurateurs are notified of incoming orders and are responsible for reviewing the
incoming orders and providing a time window for pickup. This information allows the
system to better schedule the drivers and prevent them from arriving too early (and
wasting their time) or too late (and the food being cold or late).

 As the lead architect on this project, you have decided that a microservices archi-
tecture is best suited to meet the needs of the business. It also allows you to model the
problem as an event-driven problem, which lends itself nicely to message-based com-
munication between independent microservices. To this end, you have sketched out
the high-level design for the order entry use case shown in figure 7.12 and need to
determine how to implement this design using Pulsar. The overall flow of the use case
is as follows:

1 Customers submit their orders using the company website or mobile applica-
tion, and they are published to the customer order topic.

2 An order validation service subscribes to the customer order topic and validates
the order, including taking the provided payment information, such as the
credit card number or gift card, and obtaining confirmation of payment. 

3 Orders that are validated get published to the validated order topic and are con-
sumed by both the customer notification service (e.g., sending an SMS message to
the customer confirming the order was placed on the mobile app) and the restau-
rant notification service that publishes the order into the individual restaurant
order topic associated with the order (e.g., persistent://resturants/

orders/<resturant-id>).
4 The restaurants review the incoming orders from their topic, update the status

of the order from new to accepted, and provide a pickup time window of when
they feel the food will be ready.
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5 The order dispatcher service is responsible for assigning the accepted orders to
drivers and uses Pulsar’s regex subscription capability to consume from all of
the individual restaurant order topics (e.g., persistent://resturants/
orders/*) and filters on a status of accepted. It uses that information, along
with the driver’s existing list of deliveries, to select a handful of candidate driv-
ers to offer the order to and then publishes this list to a candidate driver’s topic.

6 The driver solicitation service consumes from the candidate driver’s topic and
pushes a notification to each of the drivers in the list, offering them the order.
When one of the drivers accepts the order, a notification is sent back to the
solicitation service, which in turn publishes the order to the driver’s individual
order topic (i.e., persistent://drivers/orders/<drivers-id>).

Additional use cases are required to handle the routing of the driver, the notification
of the customer regarding the order status, etc. But for now, I will focus on the order
entry use case and how Pulsar’s schema registry will simplify the development of these
microservices. Let’s examine the structure of the GitHub project associated with this
chapter of the book. For this section, please refer to the code in the 0.0.1 branch. As

Figure 7.12 Order entry use case
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you can see, it is a multi-module maven project that contains three submodules that I
will discuss in the upcoming sections.

7.3.1 Modelling the food order event in Avro

The first module, domain-schema, contains all of the Avro schema definitions for the
GottaEat order entry use case. Avro schemas can be defined in either plain JSON or
Avro IDL text files, but the schema files need to live somewhere, and this module
serves that purpose. 

 As you can see from the contents of the domain-schema module, I have created an
Avro IDL schema definition file named src/main/resources/avro/order/food-
order.avdl, which contains the schema definition shown in listing 7.2. This file rep-
resents the initial data model for the food order object that will be used across multi-
ple services, and it will be used to generate the Java classes that will be used by all of
the consuming Java-based microservices. 

@namespace("com.gottaeat.domain.order")                      B
protocol OrderProtocol {
  import idl "../common/common.avdl";                        c
  import idl "../payment/payment-commons.avdl";
  import idl "../resturant/resturant.avdl";
  
  record FoodOrder {                                         d
    long order_id;
    long customer_id;    
    long resturant_id;    
    string time_placed;    
    OrderStatus order_status;
    array<OrderDetail> details;                              e
    com.gottaeat.domain.common.Address delivery_location;    f
    com.gottaeat.domain.payment.CreditCard payment_method;
    float total = 0.0;
  }
  
  record OrderDetail {
     int quantity;
     float total;
     com.gottaeat.domain.resturant.MenuItem food_item;
  }
  
  enum OrderStatus {
    NEW, ACCEPTED, READY, DISPATCHED, DELIVERED
  }
}

B The namespace for these types, which corresponds with the Java package name

c We import Avro type definitions from other files, which enables compositional schemas.

d The FoodOrder record definition

e Each FoodOrder can contain one or more food items in it.

f Using a type defined inside one of the included schema definitions

Listing 7.2 food-order.avdl
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We will use the Avro plugin to automatically generate Java classes based on the schema
definitions in our project by adding the configuration shown in the following listing
to the plugins section of the Maven pom.xml file.

<plugin>
  <groupId>org.apache.avro</groupId>
  <artifactId>avro-maven-plugin</artifactId>
  <version>1.9.1</version>
  <executions>
     <execution>
       <phase>generate-sources</phase>                       B
       <goals>
          <goal>idl-protocol</goal>                          c
       </goals>
       <configuration>
        <sourceDirectory>
          ${project.basedir}/src/main/resources/avro/order   d
         </sourceDirectory>
         <outputDirectory>
            ${project.basedir}/src/main/java                 e
          </outputDirectory>
       </configuration>
    </execution>
  </executions>
</plugin>

B We want to generate Java source files.

c The definitions are in the IDL format.

d Use the directory containing the food-order.avdl as the source directory.

e Where to output the generated source files

With the Avro schemas defined and the Maven plugin configured, we can execute the
command shown in listing 7.4 to generate the Java classes into the project’s source
folder, as specified in listing 7.3. This command will generate the Java classes source
files, compile them, and jar them into the domain-schema-0.0.1.jar JAR file before
finally publishing that JAR file to your local Maven repository.

$ cd ./domain-schema
$ mvn install
[INFO] Scanning for projects...
[INFO] ---------------------< com.gottaeat:domain-schema >-------------------
[INFO] Building domain-schema 0.0.1
[INFO] --------------------------------[ jar ]-------------------------------
[INFO]
[INFO] --- avro-maven-plugin:1.9.1:idl-protocol (default) @ domain-schema ---
[INFO]
[INFO] --- maven-compiler-plugin:3.8.1:compile (default-compile) 
[INFO] Compiling 8 source files to domain-schema/target/classes

Listing 7.3 Configuring the Avro Maven plugin

Listing 7.4 Generating the Java classes from the Avro schema
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[INFO]
[INFO] --- maven-jar-plugin:2.4:jar (default-jar) @ domain-schema ---
[INFO] Building jar: /domain-schema/target/domain-schema-0.0.1.jar
[INFO]
[INFO] --- maven-install-plugin:2.4:install (default-install) 
[INFO] Installing /domain-schema/target/domain-schema-0.0.1.jar to ..
[INFO] ----------------------------------------------------------------------
[INFO] BUILD SUCCESS
[INFO] ----------------------------------------------------------------------

You will find the generated classes inside their respective subfolders, under the proj-
ect’s source folder, as shown in listing 7.5. These files are too lengthy to reproduce
here, but if you open them with a text editor, you will see that the files contain POJOs
that have been auto-generated by Avro and contain all the field definitions in the
schema definitions, along with methods to serialize and deserialize the object to and
from Avro’s binary format.

ls -R src/main/java/*
gottaeat

src/main/java/com/gottaeat:
domain

src/main/java/com/gottaeat/domain:
common        order        payment        resturant

src/main/java/com/gottaeat/domain/common:
Address.java

src/main/java/com/gottaeat/domain/order:
FoodOrder.java  OrderDetail.java  OrderProtocol.java  OrderStatus.java

src/main/java/com/gottaeat/domain/payment:
CardType.java  CreditCard.java

src/main/java/com/gottaeat/domain/resturant:
MenuItem.java

At this point, we have a domain model in Java for our food order event that can be
used by the other microservices in the project.

7.3.2 Producing food order events

Rather than create a dependency on the customer mobile application that is being
developed by a different team, we have decided to use this tool to generate load for
testing purposes. The customer-mobile-app-simulator module contains an IO Con-
nector intended to simulate the mobile application that customers will use to place
food orders. The connector is defined inside the CustomerSimulatorSource class, as
shown in the following listing.

Listing 7.5 Listing all of the generated Java classes
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import org.apache.pulsar.io.core.Source;
import org.apache.pulsar.io.core.SourceContext;
public class CustomerSimulatorSource implements Source<FoodOrder> {        B

  private DataGenerator<FoodOrder> generator = new FoodOrderGenerator();   c
    
  @Override
  public void close() throws Exception {
  }

  @Override
  public void open(Map<String, Object> map, SourceContext ctx) 
      throws Exception {

  }

  @Override
  public Record<FoodOrder> read() throws Exception {
     Thread.sleep(500);                                                    d
  return new CustomerRecord<FoodOrder>(generator.generate());              e
  }

  static private class CustomerRecord<V> implements Record<FoodOrder> {    f
    ...
  }

  ...                                                                      g
}

B Implements the source interface, which defines the three overridden methods

c The class that produces random food orders

d Pause a half second between orders.

e Publishes a newly generated food order to the output topic

f A wrapper class for sending the FoodOrder objects

g Where the LocalRunner code lives

As you may recall from chapter 5, the source connector’s read method is invoked by
Pulsar’s internal function framework repeatedly, and the return value gets published to
the configured output topic. In this case, the return value is a random food order based
on the Avro schemas in the domain-schema module generated by another class inside
the project, named FoodOrderGenerator. I have decided to use the LocalRunner for
debugging the CustomerSimulatorSource class, as shown in the following listing. 

...
public static void main(String[] args) throws Exception {
  SourceConfig sourceConfig = SourceConfig.builder()
    .className(CustomerSimulatorSource.class.getName())                    B
    .name("mobile-app-simulator")

Listing 7.6 The CustomerSimulatorSource IO connector

Listing 7.7 Using LocalRunner to debug the CustomerSimulatorSource IO connector
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    .topicName("persistent://orders/inbound/food-orders")                  c
    .schemaType("avro")
    .build();
        
  // Assumes you started docker container with --volume=${HOME}/exchange 
  String credentials_path = System.getProperty("user.home") +
                       File.separator + "exchange" + File.separator;

  LocalRunner localRunner = LocalRunner.builder()
  .brokerServiceUrl("pulsar+ssl://localhost:6651")                         d
  .clientAuthPlugin("org.apache.pulsar.client.impl.auth.AuthenticationTls")
  .clientAuthParams("tlsCertFile:" + credentials_path + 
       "admin.cert.pem,tlsKeyFile:" + credentials_path + "admin-pk8.pem") 
  .tlsTrustCertFilePath(credentials_path + "ca.cert.pem")                  e
  .sourceConfig(sourceConfig)
  .build();
        
 localRunner.start(false);                                                 f
 Thread.sleep(30 * 1000);
 localRunner.stop();                                                       g
   
}

B Specify the connector class we want to run.

c The topic the connector will publish messages to

d Specify the URL of the Pulsar broker we are going to interact with.

e Specify the TLS authentication credentials needed to connect to Pulsar.

f Starts the LocalRunner

g Stops the LocalRunner

As you can see from listing 7.7, I have configured the LocalRunner to connect to a
locally running instance of the pulsar-standalone-secure Docker image that I cre-
ated in chapter 6. This is why there are several security-related configuration settings
in the source code that rely on the security credentials generated for that container,
such as the TLS client certificate and trust store.

7.3.3 Consuming the food order events

Lastly, let’s look at the order-validation-service module, which contains a single
Pulsar function, named OrderValidationService, which, for the purposes of this
chapter, will be just a skeletal implementation of the microservice shown in figure 7.12
and will accept the incoming food orders and validate them for correctness and confir-
mation of payment, etc. Over time, additional logic will be added, but for now, the
function will simply write all of the food orders it receives to standard output (stdout)
before forwarding to the configured output topic. 

import org.apache.pulsar.functions.api.Context;
import org.apache.pulsar.functions.api.Function;
import com.gottaeat.domain.order.FoodOrder;

Listing 7.8 The OrderValidationService function
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public class OrderValidationService implements Function<FoodOrder, FoodOrder> {

@Override
public FoodOrder process(FoodOrder order, Context ctx) throws Exception {
    System.out.println(order.toString());
    return order;
}
  ... 
}

This class also includes a main method that contains a LocalRunner configuration, so
we can debug this class locally, as shown in the following listing.

public static void main(String[] args) throws Exception {
        
  Map<String, ConsumerConfig> inputSpecs = 
    new HashMap<String, ConsumerConfig> ();
  inputSpecs.put("persistent://orders/inbound/food-orders", 
                 ConsumerConfig.builder().schemaType("avro").build());   B
        
  FunctionConfig functionConfig = 
     FunctionConfig.builder()
      .className(OrderValidationService.class.getName())                 c
      .inputs(Collections.singleton(
          "persistent://orders/inbound/food-orders"))                    d
      .inputSpecs(inputSpecs)
      .name("order-validation")
      .output("persistent://orders/inbound/valid-food-orders")           e
      .outputSchemaType("avro")
      .runtime(FunctionConfig.Runtime.JAVA)
      .build();
    
  // Assumes you started docker container with --volume=${HOME}/exchange 
  String credentials_path = System.getProperty("user.home") +
                       File.separator + "exchange" + File.separator;

  LocalRunner localRunner = LocalRunner.builder()
  .brokerServiceUrl("pulsar+ssl://localhost:6651")                       f
  .clientAuthPlugin("org.apache.pulsar.client.impl.auth.AuthenticationTls")
  .clientAuthParams("tlsCertFile:" + credentials_path + 
       "admin.cert.pem,tlsKeyFile:" + credentials_path + "admin-pk8.pem") 
  .tlsTrustCertFilePath(credentials_path + "ca.cert.pem")                g
  .functionConfig(functionConfig)
  .build();
        
  localRunner.start(false);                                              h
  Thread.sleep(30 * 1000);
  localRunner.stop();                                                    i
}

B We will be consuming Avro messages.

Listing 7.9 The OrderValidationService LocalRunner code
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c The function class we want to run

d The topic the function will consume messages from

e The topic the function will publish messages to

f Specify the URL of the Pulsar broker we are going to interact with.

g Specify the TLS authentication credentials needed to connect to Pulsar.

h Starts the local runner

i Stops the local runner

As you can see from listing 7.8, we have configured the LocalRunner to connect to the
same Pulsar instance. This is why there are several security-related configuration set-
tings in the source code that rely on the security credentials generated inside that con-
tainer, such as the TLS client certificate and trust store.

7.3.4 Complete example

Now that we have walked through the code inside each of the Maven modules, it is
time to walk through an end-to-end demonstration of the interaction between the
CustomerSimulatorSource and the OrderValidationService. It is important to note
that, for this first demonstration, both of these classes will be using the exact same ver-
sion of the schema (e.g., the domain-schema-0.0.1.jar). Consequently, both the pro-
ducer’s and consumer’s schemas will be compatible with one another.

 First, we need to have a running instance of the pia/pulsar-standalone-secure
Docker image to serve as the Pulsar cluster we will use for testing. Therefore, you will
need to execute the commands shown in the following listing to start an instance (if
you don’t already have one running), publish the security credentials needed by both
of the LocalRunner instances, and create the topics that will be used.

$ docker run -id --name pulsar --hostname pulsar.gottaeat.com -p:6651:6651 

➥ -p 8443:8443 -p 80:80 --volume=${HOME}/exchange:/pulsar/manning/dropbox 

➥ -t pia/pulsar-standalone-secure:latest                                  B

$ docker exec -it pulsar bash                                              c

root@pulsar:/# /pulsar/manning/security/publish-credentials.sh             d
root@pulsar:/# /pulsar/bin/pulsar-admin tenants create orders              e
root@pulsar:/# /pulsar/bin/pulsar-admin namespaces create orders/inbound    
root@pulsar:/# /pulsar/bin/pulsar-client consume -n 0 -s my-sub 

➥ persistent://orders/inbound/food-orders                                 f

B Launches the Pulsar standalone image, and maps a volume for sharing the security credentials

c SSH into the Docker container you just launched.

d Publish all of the security credentials to the ${HOME}/exchange directory on your local machine.

e Create the tenant and namespace we are going to use.

f Start a consumer on the specified topic.

Listing 7.10 Preparing the Pulsar cluster
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The last line in listing 7.10 starts a consumer on the topic containing the FoodOrder
events generated by the CustomerSimulatorSource. This will automatically create the
topic and allow us to confirm that the messages are getting published. Leave this com-
mand shell open so we can monitor the messages as they come in, and switch to your
local IDE that you are using to review the code from the GitHub project associated
with this chapter of the book. Navigate to the customer-mobile-app-simulator mod-
ule, and run the CustomerSimulatorSource as a Java application, which will execute
the LocalRunner code shown in listing 7.7. 

 If everything goes as expected, you should start seeing Avro messages appear in the
command shell window as the messages are getting delivered to the consumer. When
you look at the example of the expected output that follows, you will see that payloads
contain a mix of readable text and binary data:

----- got message -----
?????????20200310?AFrench Fries
Large@?@Fountain Drink
Small??709 W 18th StChicagoIL
66012&5555 6666 7777 8888
66011123?A

This is because the consumer we launched from the command line does not have a
schema associated with it. Consequently, the raw bytes of the message, which in this
case are encoded in Avro’s binary format, are not deserialized before being delivered
to the consumer and are treated as raw bytes instead. This should give insight into the
actual content of the messages that are being transmitted from producer to consumer.

 Next, let’s switch back to your IDE, navigate to the order-validation-service
module and run the OrderValidationService as a Java application, which will exe-
cute the LocalRunner code shown in listing 7.9 to start the consumer. You should see
messages printed to stdout that contain food order data, but in JSON format now
instead of the Avro binary data we were seeing in the schema-less consumer window.
This is because the function has a schema associated with it, which means the Pulsar
framework is automatically serializing the raw message bytes into the appropriate Java
class based on the Avro schema definition:

{"order_id": 4, "customer_id": 471, "resturant_id": 0, "time_placed": "2020-
03-14T09:16:13.821", "order_status": "NEW", "details": [{"quantity": 10, 
"total": 69.899994, "food_item": {"item_id": 3, "item_name": "Fajita", 
"item_description": "Chicken", "price": 6.99}}], "delivery_location": 
{"street": "3422 Central Park Ave", "city": "Chicago", "state": "IL", 
"zip": "66013"}, "payment_method": {"card_type": "VISA", 
"account_number": "9999 0000 1111 2222", "billing_zip": "66013", "ccv": 
"555"}, "total": 69.899994}

{"order_id": 5, "customer_id": 152, "resturant_id": 1, "time_placed": "2020-
03-14T09:16:14.327", "order_status": "NEW", "details": [{"quantity": 6, 
"total": 12.299999, "food_item": {"item_id": 1, "item_name": 
"Cheeseburger", "item_description": "Single", "price": 2.05}}, 
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{"quantity": 8, "total": 31.6, "food_item": {"item_id": 2, "item_name": 
"Cheeseburger", "item_description": "Double", "price": 3.95}}], 
"delivery_location": {"street": "123 Main St", "city": "Chicago", 
"state": "IL", "zip": "66011"}, "payment_method": {"card_type": "VISA", 
"account_number": "9999 0000 1111 2222", "billing_zip": "66013", "ccv": 
"555"}, "total": 43.9}

One of the best features of Avro that makes it a great solution for message-based
microservice communication is its support for schema evolution. When a service that
is writing messages updates its schema, the services consuming the messages can con-
tinue processing them without requiring any coding changes, provided that the pro-
ducer’s new schema is compatible with the older version being used by the
consumers. 

 Currently, both our producer and consumer are using the same version of the
domain-schema JAR file (i.e. 0.0.1), and thus are also using the exact same schema ver-
sion. While this is the expected behavior, it does not effectively demonstrate Pulsar’s
schema evolution capabilities. I will demonstrate this capability in the next section by
walking through the project code on the 0.0.2 branch of the associated GitHub project.
Therefore, you will need to switch to the 0.0.2 branch before walking through the exam-
ples and, most importantly, leave your Docker container running as is.

7.4 Evolving the schema
During our weekly meeting with the customer mobile application team, we are
informed that their initial testing has revealed a gap in their requirements. Specifi-
cally, the current food order schema does not support the ability for customers to cus-
tomize their food orders to their particular tastes. Currently, a customer cannot
specify that they want no onions on their hamburgers or extra guacamole on their
burritos. Consequently, the schema will have to be revised, and an additional field
named customizations will be added to the original menu item type, as shown in the
following listing. 

@namespace("com.gottaeat.domain.resturant")

protocol ResturantsProtocol {

  record MenuItem {
    long item_id;
    string item_name;
    string item_description;
    array<string> customizations = [“”];      B
    float price;
  }
}

B The newly added field to support customizations of individual food items with a default value

Listing 7.11 Evolving the schema
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After making this change to the schema inside the domain-schema module, you
should also update the artifact version in the pom.xml file to 0.0.2 so we can differen-
tiate between the two versions. Once these changes have been made to the source
code, you should execute the command shown in the following listing to generate the
Java classes’ source files, compile them, and jar them into the domain-schema-0.0.2.jar
JAR file. 

$ cd ./domain-schema
$ mvn install

Make sure that the version being built is 0.0.2. If you fail to update the version number
in the pom.xml file and leave it as 0.0.1, you will overwrite the existing jar that has the
old schema version in it, and your results will differ from the ones shown. If you hap-
pen to inadvertently overwrite the domain-schema-0.0.1.jar, you can remove the newly
added field and rebuild the jar file. Then, add the field back, change the version num-
ber to 0.0.2, and rebuild it again. You can easily verify that the Java classes you gener-
ated were based on the new schema version by looking for the customizations field in
the src/main/java/com/gottaeat/domain/restaurant/MenuItem.java class. 

 Next, I will update the version number of the domain-schema dependency in the
customer-mobile-app-simulator module to use the updated schema, as shown in
the following listing. 

<dependency>
  <groupId>com.gottaeat</groupId>
  <artifactId>domain-schema</artifactId>
  <version>0.0.2</version>
</dependency>

The FoodGenerator was updated in the 0.0.2 branch to include customizations to the
food orders, so it will require the newer version of the jar that was built in listing 7.11.
If you experienced any compile errors, you most likely were still referencing the older
version. You can now refresh the Maven dependencies to ensure you are using the
0.0.2 version of the domain-schema jar and run the CustomerSimulatorSource’s
LocalRunner again. The updated logic inside the FoodGenerator always adds a cus-
tomization to every fountain drink to specify which type it is (e.g., Coca-Cola, Sprite,
etc.). It also randomly adds some customizations to the other food items:

----- got message -----
n?.2020-03-14T15:10:16.773?@Fountain Drink
SmallCoca-Cola??123 Main StChicagoIL           B
66011&1234 5678 9012 3456
66011000?@

Listing 7.12 Generating the Java classes from the updated Avro schema

Listing 7.13 Update the version of the domain-schema dependency
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----- got message -----
p?.2020-03-14T15:10:17.273?@Fountain Drink
Large
     Sprite@??@BurritBeefSour Cream??@?_A      c
                     FajitaChickenExtra Cheese??@ 844 W Cermark RdChicagoIL
66014&1234 5678 9012 3456
66011000???A

B Fountain drink customization of Coca-Cola

c Food item customization of Sour Cream

If you observe the schema-less consumer console window again, you will see an occa-
sional record with some customizations, as shown in the preceding code. This indicates
that we are producing messages based on the updated schema version 0.0.2, which is
what we expected. Lastly, I will now run the OrderValidationService LocalRunner
inside the order-validation-service module, which is still configured to use the
0.0.1 version of the domain-schema jar that contains the older version of the schema. 

 Since the 0.0.2 version of the schema is backward compatible with the 0.0.1 version
used by the OrderValidationService, it will be able to consume the messages based
on the newer schema version. As you can see from the deserialized Avro messages
shown next, since these newer messages are being deserialized with the older schema,
the newly added customizations field is ignored. This is as expected and does not
impact the functionality of the consumer whatsoever, since it was never aware of these
fields to begin with:

{"order_id": 55, "customer_id": 73, "resturant_id": 0, "time_placed": "2020-
03-14T15:10:16.773", "order_status": "NEW", "details": [{"quantity": 7, 
"total": 7.0, "food_item": {"item_id": 10, "item_name": "Fountain 
Drink", "item_description": "Small", "price": 1.0}}], 
"delivery_location": {"street": "123 Main St", "city": "Chicago", 
"state": "IL", "zip": "66011"}, "payment_method": {"card_type": "AMEX", 
"account_number": "1234 5678 9012 3456", "billing_zip": "66011", "ccv": 
"000"}, "total": 7.0}

{"order_id": 56, "customer_id": 168, "resturant_id": 0, "time_placed": "2020-
03-14T15:10:17.273", "order_status": "NEW", "details": [{"quantity": 2, 
"total": 4.0, "food_item": {"item_id": 11, "item_name": "Fountain 
Drink", "item_description": "Large", "price": 2.0}}, {"quantity": 1, 
"total": 7.99, "food_item": {"item_id": 1, "item_name": "Burrito", 
"item_description": "Beef", "price": 7.99}}, {"quantity": 2, "total": 
13.98, "food_item": {"item_id": 3, "item_name": "Fajita", 
"item_description": "Chicken", "price": 6.99}}], "delivery_location": 
{"street": "844 W Cermark Rd", "city": "Chicago", "state": "IL", "zip": 
"66014"}, "payment_method": {"card_type": "AMEX", "account_number": 
"1234 5678 9012 3456", "billing_zip": "66011", "ccv": "000"}, "total": 
25.97}

It is also worth pointing out that no code changes were required to the OrderValida-
tionService. Therefore, had this been a production environment, the currently run-
ning instance of the service could remain running without disruption even though
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the mobile application had made changes to its code base, making them completely
decoupled from one another even when an API change (message format) is made.

Summary
 We discussed the different microservice communication styles and why Pulsar is a

perfect fit for asynchronous publish/subscribe-based interservice communication.
 The Pulsar schema registry enables message producers and consumers to coor-

dinate on the structure of the data at the topic level and enforces schema com-
patibility for message producers.

 The Pulsar schema registry supports eight different compatibility strategies,
including forward, backward, and full, and each of the compatibility checks are
from the consumer’s perspective.

 The Avro’s interface definition language (IDL) is a great way to model events
consumed within Pulsar because it allows you to modularize your types and
share them across services easily.

 The Pulsar schema registry can be configured to enforce forward and/or back-
ward schema compatibility for a Pulsar topic by ensuring that the connecting
producer or consumer are using a schema that is compatible with all existing
clients.



Part 3

Hands-on application
 development with

 Apache Pulsar

In this part, we move beyond the theory and simplistic examples and dive into
the use of Pulsar Functions as a development framework for microservices appli-
cations by walking through a much more realistic use case based on a fictional food
delivery service called GottaEat. This section demonstrates how to implement
common design patterns from both the enterprise integration world and the
microservices world, highlighting the usage of various patterns, such as content-
based routing and filtering, resiliency, and data access within a real-world scenario.

 Chapter 8 demonstrates how to implement common messaging routing pat-
terns, such as message splitting, content-based routing, and filtering. It also
shows how to implement various message transformation patterns, such as value
extraction and message translation.

 Chapter 9 stresses the importance of having resiliency built into your micro-
services and demonstrates how to implement this inside your Java-based Pulsar
functions with the help of the resiliency4j library. It covers various scenarios that
can occur in an event-based program and the patterns you can use to insulate your
microservices from these failure scenarios to maximize your application uptime.

 Chapter 10 focuses on how you can access data from a variety of external sys-
tems from inside your Pulsar functions. It demonstrates different methods of
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acquiring information within your microservices and considerations you should take
in terms of latency.

 Chapter 11 walks you through the process of deploying different machine learning
model types inside of a Pulsar function, using various ML frameworks. It also covers
the very important aspect of how to feed the necessary information into the model to
get an accurate prediction

 Finally, chapter 12 covers the use of Pulsar Functions within an edge computing
environment to perform real-time analytics on IoT data. It starts with a detailed
description of what an edge computing environment looks like and describes the vari-
ous layers of the architecture before showing how to leverage Pulsar Functions to pro-
cess the information on the edge and only forward summaries, rather than the entire
dataset.
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Pulsar
 Functions patterns

In the previous chapter, I introduced a hypothetical food delivery service named
GottaEat and outlined the basic order entry use case in which customers place
orders with the company’s mobile application. As you may recall, the first microser-
vice in that process was the OrderValidationService, which is responsible for
ensuring that the order is valid before forwarding the order to the drivers for deliv-
ery if it is valid or notifying the customer of any errors with the order.

 However, the term validate is a bit more complicated than merely ensuring all
of the fields are of the proper type and format. In this particular scenario, an
order is only considered valid if the method of payment provided by the customer
is approved, the funds from the bank are authorized, there is at least one restau-
rant open and willing to provide all of the requested food items, and, most impor-
tantly, the delivery address provided by the customer can be resolved to both a

This chapter covers
 Designing an application based on Pulsar 

Functions

 Implementing well-established messaging 
patterns using Pulsar Functions
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latitude–longitude pair and a street address. If we are unable to confirm all of these,
then the order is considered invalid, and the customer must be notified accordingly.
Consequently, the OrderValidationService is not a simple microservice that can
make all of these decisions on its own, but instead, it must coordinate with other sys-
tems. It is, therefore, a good example of how a Pulsar application can be composed
of several smaller functions and services. 

 The OrderValidationService must integrate with several other microservices and
external systems to perform the payment processing, geo-encoding, and food order
placement required to fully validate an order. Therefore, it is best to look for existing
solutions to these types of challenges rather than reinvent the wheel, and the catalog of
patterns contained within the book Enterprise Integration Patterns, by Gregor Hohpe and
Bobby Woolf (Addison-Wesley Professional, 2003), serves as a great reference in this
regard. It contains several technology-agnostic, time-tested patterns to solve common
integration challenges. These patterns are categorized according to the type of prob-
lem they address and are applicable to most message-based integration platforms.
In the next sections, I will demonstrate how these patterns can be implemented using
Pulsar Functions.

8.1 Data pipelines
In order to effectively design your Pulsar Functions-based applications, you will want
to familiarize yourself with the concepts of Dataflow programming and data pipelines.
I will describe these programming models at a high level and point out how Pulsar
Functions is a natural fit for this programming style. 

8.1.1 Procedural programming

Traditionally, computer programs were modeled as a series of sequential operations
where each operation depended upon the output of the previous operation. These
programs could not be executed in parallel because they operated on the same data
and, therefore, had to wait for the previous operation to complete before executing
the next. Consider the logic for a basic order entry application in this programming
model. You would write a simple function called processOrder that would perform
the following sequence of steps (either directly or indirectly via a call to another func-
tion) to complete the process and return an order number to indicate success:

1 Check the inventory for the given item to make sure it is in stock.
2 Retrieve customer information (shipping address, payment method, coupons,

loyalty, etc.).
3 Calculate the price, including sales tax, shipping, coupons, loyalty discounts, etc.
4 Collect the payment from the customer.
5 Decrease the item count in the inventory.
6 Notify the fulfillment center of the order so it can be processed and shipped.
7 Return the order number to the customer.
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Each of these steps acts upon the same order and depends upon the output from the
previous step; for example, you cannot collect payment from the customer before you
have calculated the price. Thus, each step has to wait for the previous step to complete
before proceeding, making it is impossible to perform any of these steps in parallel.

8.1.2 DataFlow programming

In contrast, dataflow programming focuses on the movement of data through a series
of independent data processing functions that are connected via explicitly defined
inputs and outputs. These predefined sequences of operations are commonly
referred to as data pipelines and are what your Pulsar Functions applications should be
modelled as. Here the focus is on moving the data through a series of stages, each of
which processes the data and produces a new output. Each processing stage in a data
pipeline should be able perform its processing based solely on the content of the
incoming message. This eliminates any processing dependencies and allows each
function to execute as soon as data is available.

 A common analogy for a data pipeline is an assembly line in an automobile factory.
Rather than assembling a car in one location piece by piece, each car passes through a
series of stages during construction. A different piece of the car is added at each stage,
but this can be done in parallel rather than sequentially. Consequently, multiple cars
can be assembled in parallel, effectively increasing the throughput of the factory.

 Pulsar Functions-based applications should be designed as topologies consisting of
several individual Pulsar functions that perform the data processing operations and
are connected together via Pulsar input and output topics. These topologies can be
thought of as directed acyclic graphs (DAGs) with the functions/microservices acting
as the processing units and the edges representing the input/out topic pairings used
to direct data from one function to another, as shown in figure 8.1. 

Figure 8.1 A Pulsar application is best represented as a data pipeline through which data 
flows from left to right through the functions and microservices to implement the business 
logic in a series of steps.
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The data pipeline acts as a distributed processing framework where each function
inside the data pipeline is an independent processing unit that can execute as soon as
the next input arrives. Additionally, these loosely coupled components communicate
asynchronously with one another, which allows them to operate at their own rates and
not be blocked waiting for a response from another component. This, in turn, allows
you to have multiple instances of any component running in parallel to provide the
necessary throughput you require. Therefore, when you design your application, keep
this in mind, as you will want to keep your functions and services as independent as
possible to exploit this parallelism if needed. Let’s revisit the order entry use case to
demonstrate how you would implement it as a data pipeline similar to the one shown
in figure 8.2. As the term dataflow implies, it is best to focus on the flow of data shown
along the bottom of the figure. 

As you can see, each step in the process passes the original order through along with
an additional piece of information that is required in the subsequent step (e.g., the
customer ID and shipping address have been added to the message by the customer
lookup service). Since all of the data required for the processing at that stage is in the
message, each function can execute as soon as the next piece of data arrives. 

 The payment processor removes the payment information from the message and
publishes messages containing the newly generated order ID, the shipping address,
and the item SKU. Multiple functions are consuming these messages; the inventory
management function uses the SKU to decrease the item count from the available
inventory, while the order fulfillment function needs the SKU and the shipping

Inventory
check

Customer
lookup

Bad
orders

Payment
processor

Price
calculator

Inventory
management

Order
fulfillment

{   item_sku: 12345,

    customer_id: 34019,

    payment: {

       cc_num: XXXXXX

       exp_date:

      ....

    }

}

{  customer_id: 34019,

    shipping_address: {

       street: 456 maple, 

       city: Chicago,

       state: IL,

       zip: 66011

   },

   ... ALL PREVIOUS DATA

}

{  price: $87.45,

   ... ALL PREVIOUS DATA 

}

{  order_id: 72286,

shipping_address: {

       street: 456 maple, 

       city: Chicago,

       state: IL,

       zip: 66011

   }, 

   item_sku: 12345

}

New
orders

Figure 8.2 The data flow for the order entry use case. As the data flows through the various steps in the 
process, the original order data is augmented with additional information that will be used in the next step of 
the process.
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address to send the item to the customer. Hopefully, this gives you a better idea of how
Pulsar Functions-based applications should be designed and modelled before we
jump into some of the more advanced design patterns in the next section.

8.2 Message routing patterns
A message router is an architectural pattern that is used to control the flow of data
through the topology of a Pulsar application by directing messages to different topics
based on specific conditions. Each of the patterns covered in this section provide
proven guidelines for dynamically routing messages, and I will cover how you can
implement them using Pulsar Functions.

8.2.1 Splitter pattern

The OrderValidationService receives a message that contains three related pieces of
information that must be validated in different ways: the delivery address, the payment
information, and the food order itself. Validating each of these pieces of information
requires interacting with an external service that may have a slow response time. A naïve
approach to this problem would be to perform these steps in a serial fashion, one after
another. However, this approach will result in very high latency time for each incoming
order. This is due to the fact that when performing these three subtasks sequentially,
the overall latency will be equal to the sum of the individual latencies. 

Since there are no dependencies between the results of these intermediate validation
services (e.g., the payment validation isn’t dependent on the result of geo-encoding),
a better approach would be to have each of these tasks performed in parallel. With

Food order
topic

OrderValidationService

Geo-encoding
service

Order solicitation
service

Payment
service

Aggregator Validated food
order topic

Split order

Translator

Translator

Translator

Translator

Figure 8.3 The topology of the OrderValidationService is comprised of several other 
microservices and functions and utilizes the splitter pattern.
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parallel execution, the overall latency would be reduced to the latency of the longest-
running subtask. In order to achieve this parallel subtask execution, the Order-
ValidationService will implement the splitter pattern to break out the individual ele-
ments of the message so they may be processed with different services. As you can see
in figure 8.3, the OrderValidationService is composed of several smaller functions
that implement the entire validation process. 

 Our solution should also be efficient in terms of its use of network resources and
avoid sending the entire food order item to each microservice, since they only need a
portion of the message to perform their processing. As you can see from the code in
the next listing, we only send a portion of the message along with the order ID to each
of these intermediate services. The order ID will be used to combine the results from
these intermediate service calls into a final result, using the aggregator function. 

public class OrderValidationService implements Function<FoodOrder, Void> {
    
  private boolean initalized;
  private String geoEncoderTopic, paymentTopic, 
  private String resturantTopic, orderTopic;

  @Override
  public Void process(FoodOrder order, Context ctx) throws Exception {
    if (!initalized) {
        init(ctx);                                                       B
    }
        
    ctx.newOutputMessage(geoEncoderTopic, AvroSchema.of(Address.class))
      .property("order-id", order.getMeta().getOrderId() + "")           c
       .value(order.getDeliveryLocation()).sendAsync();                  d
    
    ctx.newOutputMessage(paymentTopic, AvroSchema.of(Payment.class))
      .property("order-id", order.getMeta().getOrderId() + "")
      .value(order.getPayment()).sendAsync();                            e

    ctx.newOutputMessage(orderTopic, AvroSchema.of(FoodOrderMeta.class))
      .property("order-id", order.getMeta().getOrderId() + "")
      .value(order.getMeta()).sendAsync();                               f

     ctx.newOutputMessage(resturantTopic, AvroSchema.of(FoodOrder.class))
      .property("order-id", order.getMeta().getOrderId() + "")
      .value(order).sendAsync();                                         g

    return null;
  }
private void init(Context ctx) { 
  geoEncoderTopic = ctx.getUserConfigValue("geo-topic").toString();
  paymentTopic = ctx.getUserConfigValue("payment-topic").toString();
  resturantTopic = ctx.getUserConfigValue("restaurant-topic").toString();
  orderTopic = ctx.getUserConfigValue("aggregator-topic").toString();
  initalized = true;
}

Listing 8.1 The OrderValidationService’s Implementation of the splitter pattern
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B Initialize all of the topic names so we know where to publish the messages.

c Add the order-ID to the message properties so we can use it to correlate the results.

d Send just the address element of the message to the GeoEncoder Service.

e Send just the Payment element of the message to the Payment Service.

f Send the food order metadata to the aggregator topic directly, since we don’t need to process it.

g Send just the FoodOrder element of the message to the OrderSolicititation Service.

The asynchronous nature of the processing of these individual message elements
makes collecting the results challenging. Each of these elements is processed by differ-
ent services with different response times (e.g., the geo-encoder will invoke a web ser-
vice, the payment service needs to communicate with a bank to secure the funds, and
each restaurant will need to respond manually to either accept or reject the order).
These types of issues make the process of combing multiple, but related, messages
complicated, which is where the aggregator pattern comes into play.

 An aggregator is a stateful component that receives all of the response messages
from the invoked services (e.g., GeoEncoder, Payment, etc.) and correlates the
responses back together using the order ID. Once a complete set of responses has
been collected, a single aggregated message is published to the output topic. When
you choose to implement the aggregator pattern, you must consider the following
three key factors:

 Correlation—How are messages correlated together?
 Completeness—When are we ready to publish the resulting message?
 Aggregation—How are the incoming messages combined into a single result?

For our particular use case, we have decided that the order ID will serve as the correla-
tion ID, which will help us identify which response messages belong together. The
result will be considered complete only after we have received all three messages for
the order. This is also referred to as the “wait for all” strategy. Lastly, the resulting
responses will be combined into a single object of type ValidatedFoodOrder. 

 Let’s take a look at the aggregator code shown in listing 8.2 for the implementa-
tion details. Given the strongly typed nature of Pulsar Functions, I cannot define the
interface to accept multiple response object types (e.g., an AuthorizedPayment object
from the Payment service, an Address type from the GeoEncoder service, etc.). There-
fore, I use a translator function between these services and the OrderValidation-
Aggregator. Each of these translator functions converts the intermediate services
natural return type into a ValidatedFoodOrder object, which allows me to accept mes-
sages from each of these services within a single Pulsar function.

public class OrderValidationAggregator implements 
Function<ValidatedFoodOrder, Void> {

 @Override
 public Void process(ValidatedFoodOrder in, Context ctx) throws Exception {

Listing 8.2 The OrderValidationService’s aggregator function
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    Map<String, String> props = ctx.getCurrentRecord().getProperties();
    String correlationId = props.get("order-id");
        
    ValidatedFoodOrder order;
    if (ctx.getState(correlationId.toString()) == null) {              B
      order = new ValidatedFoodOrder();
    } else {
      order = deserialize(ctx.getState(correlationId.toString()));     c
    }
        
    updateOrder(order, in);                                            d
        
    if (isComplete(order)) {                                           e
      ctx.newOutputMessage(ctx.getOutputTopic(),
                            AvroSchema.of(ValidatedFoodOrder.class))
        .properties(props)
        .value(order).sendAsync();

      ctx.putState(correlationId.toString(), null);                    f
    } else {
      ctx.putState(correlationId.toString(), serialize(order));        g
    }
        
    return null;
}
    
private boolean isComplete(ValidatedFoodOrder order) {                 h
  return (order != null && order.getDeliveryLocation() != null 
    && order.getFood() != null && order.getPayment() != null
    && order.getMeta() != null);
}
    
private void updateOrder(ValidatedFoodOrder val, 
                         ValidatedFoodOrder res) {                     i
  if (res.getDeliveryLocation() != null 
     && val.getDeliveryLocation() == null) {
    val.setDeliveryLocation(response.getDeliveryLocation());
  }
        
  if (resp.getFood() != null && val.getFood() == null) {
    val.setFood(response.getFood());
  }
        
  if (resp.getMeta() != null && val.getMeta() == null) {
    val.setMeta(response.getMeta());
  }
    
  if (resp.getPayment() != null && val.getPayment() == null) {
    val.setPayment(response.getPayment());
  }
        
}

private ByteBuffer serialize(ValidatedFoodOrder order) throws IOException {
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    ...                                                                j
}
    
private ValidatedFoodOrder deserialize(ByteBuffer buffer) throws IOException, 

➥ ClassNotFoundException {
    ...                                                                1)
  } 
}

B Check to see if we have already received some responses for this order.

c If we have, then deserialize the bytes into a ValidatedFood-Order object.

d Every message will be of type ValidatedFoodOrder but will only contain one of the four fields.

e Check to see if we have received all four messages, which indicates that we are done.

f Once the order is aggre-gated, we can purge it.

g If not, serialize the object, and store it in the context until the next message arrives.

h An object is only considered complete if we have received all four messages.

i Copies over whatever fields are in the received object

j Helper method to convert a ValidatedFoodOrder object into a ByteBuffer

1) Helper method to read a ValidatedFoodOrder object from a ByteBuffer

It is important to point out that due to the parallel nature of streaming architectures in
general, the aggregator may receive messages from multiple orders at any time and in
no particular order. Therefore, the aggregator maintains an internal list of active orders
it has already received messages for. If no list exists for a given order ID, then it is
assumed to be the first message in the collection, and an entry is added to the internal
list. This list needs to be purged periodically to ensure it doesn’t grow indefinitely, which
is why the aggregator makes sure to purge the list once an aggregation is complete.

8.2.2 Dynamic router pattern

The splitter pattern is useful when you want to process different pieces of the message
in parallel, and you already know in advance exactly how many elements you will have
and that the number will remain static. However, there are situations where you can-
not determine where the message will be routed ahead of time, and you must make
that determination based on the content of the message itself and other external con-
ditions. One such example is the OrderSolicitationService, which is one of the
three microservices invoked by the OrderValidationService. 

 This service notifies a subset of participating restaurants of incoming food orders
they can fulfill and awaits a response from each of the restaurateurs as to whether or
not they will accept the order, and if so, when it will be ready for pick up. Obviously, the
list of restaurants is dependent on several factors. We want to route the orders based on
the restaurants’ ability to provide the food (i.e., orders for Big Macs go to McDonalds,
etc.). At the same time, we don’t want to indiscriminately broadcast the order to every
single McDonald’s restaurant, so we narrow the list down based on their proximity to
the delivery location. Since this list is constructed in response to each message, the
recipient list pattern is the best choice. 
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 The overall flow of the OrderSolicitationService is depicted in figure 8.4, which
consists of three distinct phases. The first phase computes the intended list of recipi-
ents based on the factors we’ve already discussed. During the second phase, the recip-
ient list is iterated over, and the FoodOrder is forwarded to each recipient. The third
and final phase is when the service awaits the responses from each of the recipients and
selects a “winner” to fulfill the order. Once a winner is selected, all the other recipients
are notified that they have “lost” and that the food order is no longer available.

The actual implementation of this logic is shown in listing 8.3 and relies on the message
properties to convey metadata that is critical for the aggregator. First of all, the order ID
is included within the message to identify which FoodOrder the response is associated
with. The all-restaurants property is used to encode all of the candidates that have
been solicited for this order. Having this information in the message enables the aggre-
gator to know all of the restaurants it needs to send the “you didn’t win” message to. The
last piece of metadata contained within the message properties is the return-addr
property, which contains the name of the topic the aggregator is subscribed to. This
allows us to avoid having to hard-code this information into each message recipient’s
logic, and instead, we can provide this information dynamically. This is an implementa-
tion of the return address pattern defined in Enterprise Integration Patterns. 

public class OrderSolicitationService implements Function<FoodOrder, Void> {

  private String rendevous = "persistent://resturants/inbound/accepted";
    
  @Override

Listing 8.3 The OverSolicitationService’s implementation of the recipient list pattern

Compute
recipients

Winner

Lost

Lost

Lost

OrderSolicitionService

OrderSolicitation
aggregatorOrderValidation

service

Figure 8.4 The topology of the OrderSolicitationService, which implements the dynamic 
router pattern
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  public Void process(FoodOrder order, Context ctx) throws Exception {
        
  List<String> cand = getCandidates(order,
                             order.getDeliveryLocation());                B
        
  if (CollectionUtils.isNotEmpty(cand)) {
     String all = StringUtils.join(cand, “,”);
     int delay = 0;
     for (String topic: cand) {                                           c
        try {
         ctx.newOutputMessage(topic, AvroSchema.of(FoodOrder.class))
           .property("order-id", order.getMeta().getOrderId() + "")       d
           .property(“all-restaurants”, all)                              e
           .property("return-addr", rendevous)                            f
           .value(order).deliverAfter( (delay++ * 10), TimeUnit.SECONDS); g
        } catch (PulsarClientException e) {
           e.printStackTrace();
        }
      } 
  }

  return null;
 }

 private List<String> getCandidates(FoodOrder order, Address deliveryAddr) {
  ...                                                                     h
 }
}

B Build the recipient list based on the order and delivery address.

c Send the FoodOrder to every recipient in the list.

d Use the order ID for correlation.

e Include all the restaurants so we can notify the losers.

f Tell each recipient where to send their response message.

g Stagger the delivery of the messages to minimize the number of rejected responses.

h The logic to build the recipient list

The recipient list is returned in order of preference (e.g., the restaurant closest to the
delivery location, the one that has received the least amount of business from us
tonight, etc.), and we use Pulsar’s delayed message delivery capabilities to space out
the solicitation requests. The goal of this is to minimize the number of times we need
to reject a FoodOrder that was accepted by a restaurant. We don’t want to aggravate
our participating restauranteurs by bombarding them with orders that they accept but
are ultimately rejected. Therefore, we scale up the number of restaurants we notify
slowly to prevent having too many outstanding solicitations at the same time.

 Since the OrderSolicitationService can send the FoodOrder to multiple recipi-
ents, it will need to reconcile the responses and award the order to only one of the
respondents. While there are many strategies available, for now it will just accept the
first response. This reconciliation logic will be implemented using an aggregator simi-
lar to the one we used for the OverValidationService. As you can see in listing 8.3,
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I am using the message properties to pass along the name of the topic that each of the
recipients should respond to. The corresponding aggregator should be configured to
listen to this topic, so it receives the response messages and can notify the non-winning
restaurants that the order has been awarded to a different restaurant. This restauran-
teur’s mobile application can then react to the non-winning notification by removing
the order from view.

public class OrderSolicitationAggregator implements 
Function<SolicitationResponse, Void> {

 @Override
 public Void process(SolicitationResponse response, Context context) 
      throws Exception {

  Map<String, String> props = context.getCurrentRecord().getProperties();
  String correlationId = props.get("order-id");
  List<String> bids = Arrays.asList(
    StringUtils.split(props.get("all-restaurants")));      B
        
  if (context.getState(correlationId) == null) {           c
    // First response wins
    String winner = props.get("restaurant-id");            d
    bids.remove(winner);                                   e
    notifyWinner(winner, context);                         f
    notifyLosers(bids, context);                           g
            
    // Record the time we received the winning bid.
    ByteBuffer bb = ByteBuffer.allocate(32);
    bb.asLongBuffer().put(System.currentTimeMillis());
    context.putState(correlationId, bb);
  } 
        
  return null;
}

private void notifyLosers(List<String> bids, Context context) {
  ...
}

private void notifyWinner(String s, Context context) {
  ...
  }
}

B Decode all the IDs of all the solicited restaurants.

c First response back wins

d Get the restaurant ID of the winner from the response message.

e Remove the winner from the list of all restaurants.

f Send a message to the winning restaurant letting them know they won.

g Send a message to all the non-winning restaurants.

Listing 8.4 The OverSolicitationService’s implementation of the aggregator pattern



233Message routing patterns

As you can see in listing 8.4, the correlation will still be done by the order ID, but the
completeness criteria will be “first one wins” instead of waiting for a response from all
the message recipients as we did for the splitter pattern. Even though we do our best
to prevent sending multiple outstanding solicitation messages, the aggregator still
needs to accommodate this scenario. It does so by retaining the time that the winning
bid was received for each order. This allows the aggregator to ignore all subsequent
responses for the same order, since we know that another restaurant has already been
awarded the order. In order to prevent this data structure from growing too large and
causing an out-of-memory condition, I have incorporated a background process that
periodically wakes up and purges all records in the list that are older than a certain
period of time, which can be determined by the timestamp of the winning bid.

8.2.3 Content-based router pattern

A content-based router uses the message contents to determine which topic to route it
to. The basic concept is that the content of each message is inspected and then routed
to a specific destination based on values found or not found in the content. For the
order validation use case, the PaymentService receives a message that will vary,
depending on the payment type being used by the customer. 

 Currently, the system supports credit card payments, PayPal, Apple Pay, and elec-
tronic checks. Each of these payment methods must be validated by different external
systems. Therefore, the goal of the PaymentService is to direct the message to the
proper system based on the content of the message. Figure 8.5 depicts the scenario in

Content-based
routing

OrderValidation
service

Validated food
order topic 

PayPal
service

E-check
service 

CreditCard
service

ApplePay
service

External
service

External
service

External
service

External
service

PaymentService

Figure 8.5 The PaymentService topology implements the content-based router pattern and 
routes the payment information to the appropriate service based on the method of payment provided 
with the order.
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which the method of payment on the order was a credit card, and the payment details
are forwarded to the CreditCardService. 
Each of the supported payment types has an associated intermediate microservice (e.g.,
ApplePayService, CreditCardService, etc.) that is configured with the proper cre-
dentials, endpoint, etc. These intermediate microservices then make a call to the
proper external service to get payment authorization, and upon receipt of the autho-
rization, forward the response on to the OrderValidationService’s aggregator, where
it is combined with the other responses associated with the order. The next listing shows
the implementation of the content-based routing pattern inside the PaymentService. 

  public class PaymentService implements Function<Payment, Void> {
  private boolean initalized = false;
  private String applePayTopic, creditCardTopic, echeckTopic, paypalTopic;
    
  public Void process(Payment pay, Context ctx) throws Exception {
    if (!initalized) {
      init(ctx);
    }
        
    Class paymentType = pay.getMethodOfPayment().getType().getClass();
    Object payment = pay.getMethodOfPayment().getType();
        
    if (paymentType == ApplePay.class) {
      ctx.newOutputMessage(applePayTopic, AvroSchema.of(ApplePay.class))
         .properties(ctx.getCurrentRecord().getProperties())
        .value((ApplePay) payment).sendAsync();                          B
    } else if (paymentType == CreditCard.class) {
      ctx.newOutputMessage(creditCardTopic, AvroSchema.of(CreditCard.class))
        ➥ .properties(ctx.getCurrentRecord().getProperties())
        .value((CreditCard) payment).sendAsync();                        c
    } else if (paymentType == ElectronicCheck.class) {
      ctx.newOutputMessage(echeckTopic, AvroSchema.of(ElectronicCheck.class))
         .properties(ctx.getCurrentRecord().getProperties())
        .value((ElectronicCheck) payment).sendAsync();                   d
    } else if (paymentType == PayPal.class) {
      ctx.newOutputMessage(paypalTopic, AvroSchema.of(PayPal.class))
         .properties(ctx.getCurrentRecord().getProperties())
        .value((PayPal) payment).sendAsync();                            e
    } else {
      ctx.getCurrentRecord().fail();                                     f
    }
        
    return null;
  }
    
  private void init(Context ctx) {                                       g
    applePayTopic = (String)ctx.getUserConfigValue("apple-pay-topic").get();
    creditCardTopic = (String)ctx.getUserConfigValue("credit-topic").get();
    echeckTopic = (String)ctx.getUserConfigValue("e-check-topic").get();
    paypalTopic = (String)ctx.getUserConfigValue("paypal-topic").get();

Listing 8.5 The PaymentService’s implementation of the content-based router pattern
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    initalized = true;
  }
}

B Send ApplePay objects to the ApplePayService.

c Send CreditCard objects to the CreditCardService.

d Send ElectronicCheck objects to the ElectronicCheckService.

e Send PayPal objects to the PayPalService.

f Reject any other payment method.

g The output topics for the intermediate services are configurable.

After the CreditCardService receives an authorization number for the transaction, it
is then sent to the validatedFoodOrder topic, since we will need that authorization
number to collect the funds.

8.3 Message transformation patterns
Common examples of streaming data include IoT sensors, server and security logs,
real-time advertising, and click-stream data from mobile apps and websites. In each of
these scenarios, we have data sources that are continuously generating thousands or
millions of unstructured or semi-structured data elements—most commonly, plain
text, JSON, or XML. Each of these data elements must be transformed into a format
that is suitable for processing and analysis.

 This category of processing is common among all streaming platforms, and these
data transformation tasks are similar to traditional ETL processing, since the primary
concern is to ensure that the ingested data is normalized, enriched, and transformed
into a format more suitable for processing. Message transformation patterns are used
to manipulate the content of the messages as they flow through the DAG’s topology to
address these types of issues within your streaming architecture. Each of the patterns
covered in this section provides proven guidelines for dynamically transforming
messages.

8.3.1 Message translator pattern

As we saw earlier, the OrderValidationService makes several asynchronous calls to
different services, each of which produces messages with different schema types. All of
these messages must be combined by the OrderValidationAggregator into a single
response. However, a Pulsar function can only be defined to accept incoming mes-
sages of a single type, so we cannot publish these messages directly to the service’s
input topic, as shown in figure 8.6, as the schemas would not be compatible.

 To accommodate the consumption of messages with different schemas, the results
from each of these intermediate microservices must be routed through a message
translator function, which converts these response messages into the same type as the
OrderValidationAggregator’s input topic, which, in this case, is the schema shown in
listing 8.6. I have chosen to use an object type that is a composite of each of these mes-
sage types. This approach allows me to simply copy the response from each of the
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intermediate services directly into the corresponding placeholder inside the Validat-
edFoodOrder object.

record ValidatedFoodOrder {
  FoodOrderMeta meta;                                          B
  com.gottaeat.domain.resturant.SolicitationResponse food;     c
  com.gottaeat.domain.common.Address delivery_location;        d
  com.gottaeat.domain.payment.AuthorizedPayment payment;       e
}

B The FoodOrderMeta data forwarded from the OrderValidationService

c The response type from the OrderSolicitationService

d The response type from the GeoEncodingService

e The response type from the PaymentService

While the logic for consuming each response message type is slightly different, the
concept is essentially the same. As you can see in listing 8.7, the logic for handling the
AuthorizedPayment messages produced by the PaymentService is straightforward.
Simply create an object of the appropriate type, and copy over the AuthorizedPayment
object published by the PaymentService into the corresponding field in the wrapper
object before sending it to the aggregator for consumption.

  public class PaymentAdapter implements Function<AuthorizedPayment, Void> {

Listing 8.6 The ValidatedFoodOrder definition

Listing 8.7 The PaymentAdaptor implementation 

Aggregator
topic

Order solicitation
service

Payment
service

GeoEncoding
service

Aggregator

Incompatible
schemas

Order validation
service

Address

Payment AuthorizedPayment

FoodOrder

FoodOrderMeta

ValidatedFoodOrder

OrderSolicitationResponse

Address

Figure 8.6 Each of the intermediate microservices produce messages with different schema types. 
Therefore, they cannot publish them directly to the OrderValidationAggregator’s input topic.
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    @Override
    public Void process(AuthorizedPayment payment, Context ctx) 
           throws Exception {
      ValidatedFoodOrder result = new ValidatedFoodOrder();    B
      result.setPayment(payment);                              c
        
      ctx.newOutputMessage(ctx.getOutputTopic(),
            AvroSchema.of(ValidatedFoodOrder.class))           d
        .properties(ctx.getCurrentRecord().getProperties())    e
        .value(result).send();
        
        return null;
    }
} 

B Create the new wrapper object.

c Update the payment field with the Authorized-Payment.

d Publish a message of type ValidatedFoodOrder to the aggregator’s input topic.

e Copy over the order ID so we can correlate it with the other response messages.

There are similar adaptors for each of the other microservices as well. Once all of the
object values have been populated, the order is considered validated and can be pub-
lished to the validatedFoodOrder topic for further processing.

 It is worth noting that each of these adaptor functions must consume from a topic
that stores the microservice’s respective response messages before publishing the
wrapper objects to the OrderValidationAggregator’s input topic. Therefore, you will
need to create these response topics and configure the microservices to publish to
them, as shown in figure 8.7. In addition to being useful in situations where you need
to combine the results of several different Pulsar functions, this pattern can also be
used to accommodate the ingestion of data from external systems, such as databases,
and translate them into the required schema format for processing.

8.3.2 Content enricher pattern

When processing streaming events, it is often useful to augment the incoming mes-
sage with additional information that the downstream system requires. In our exam-
ple, the incoming customer order event to the OrderValidationService will contain
a raw, unvalidated street address, but the consuming microservices also require a geo-
encoded location with a latitude and longitude pair to provide navigation to the deliv-
ery drivers.

 This type of problem is typically addressed with the content enricher pattern, which is
the term for a process that uses information inside an incoming message to augment
the original message contents with the new information. In our particular use case, we
will retrieve data from an external source and add it to the outgoing message, as
shown in figure 8.8. Our GeoEncodingService will take the delivery address details
provided by the customer and pass them to the Google Maps API web service. The
resulting latitude and longitude that corresponds to the address will then be included
in the outbound message.
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The following listing shows the implementation of the GeoEncodingService that
invokes the Google Maps service and augments the incoming Address object with the
associated latitude and longitude value. 

GeoEncoding
results topic

Payment 
results topic

OrderSolicitation 
results topic

Address

AuthorizedPayment

OrderSolicitationResponse

Order solicitation
service

Payment
service

GeoEncoding
service

FoodOrderMeta
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service

Address

Payment

FoodOrder

FoodOrder 
results topic

Aggregator
topic

Address
adaptor

Payment
adapter

OrderSolicitation
ResponseAdapter

FoodMeta
adapter

ValidatedFoodOrder

Figure 8.7 Each of the intermediate microservices publish their response messages to topics with the 
appropriate schema type. The associated adapter functions then consume those messages and convert 
them to the ValidatedFoodOrder schema type expected in the aggregator topic.

GeoEncoding
input topic

GeoEncodingService

Content
enrichment

233 S Wacker Dr
Chicago, IL

60606

Lat: 41.878860 
Lon: -87.635747 GeoEncoding

output topic

{ street: 233 S Wacker Dr.
 city: Chicago
 state: IL
 zip: 60606
}

{ street: 233 S Wacker Dr.
  city: Chicago
  state: IL
  zip: 60606
  geo: { lat: 41.878860,
            lon: -87.635747}
} 

Figure 8.8 The GeoEncoderService implements the content enrichment pattern by using the provided 
street address to look up the corresponding latitude and longitude and add it to the address object.
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public class GeoEncoderService implements Function<Address, Address> {
  boolean initalized = false;
  String apiKey;
  GeoApiContext geoContext;
    
  public Void process(Address addr, Context context) throws Exception {
    if (!initalized) {
      init(context);
    }
        
    Address result = new Address();
    result.setCity(addr.getCity());
    result.setState(addr.getState());
    result.setStreet(addr.getStreet());
    result.setZip(addr.getZip());
        
    try {
      GeocodingResult[] results = 
         GeocodingApi.geocode(geoContext, formatAddress(addr)).await();
    
      if (results != null && results[0].geometry != null) {
         Geometry geo = results[0].geometry;
        LatLon ll = new LatLon();
        ll.setLatitude(geo.location.lat);
          ll.setLongitude(geo.location.lng);
          result.setGeo(ll);
        }
            
        } catch (InterruptedException | IOException | ApiException ex) {
          context.getCurrentRecord().fail();
          context.getLogger().error(ex.getMessage());
        } finally {
          return result;
        }
    }

    private void init(Context context) {
      apiKey = context.getUserConfigValue("apiKey").toString();
      geoContext = new GeoApiContext.Builder()
                .apiKey(apiKey).maxRetries(3)
               .retryTimeout(3000, TimeUnit.MILLISECONDS).build();
      initalized = true;
    }
}

The service uses an API key provided by the configuration properties to invoke the
Google Maps web service and uses the first response it gets as the source of the lati-
tude and longitude values. If the call to the web service isn’t successful, we fail the
message so it can be retried at a later time.

 While using an external service is one of the most common uses for the content
enrichment pattern, there are implementations that merely perform internal calcula-

Listing 8.8 The GeoEncoderService’s implementation of the content enricher pattern
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tions based on the message contents, such as computing the message size or MD5
hash of the message contents and adding that to the message properties. This allows
the message consumer to validate that the message contents have not been altered.

 Another common use case is to retrieve the current time from the operating sys-
tem and append that timestamp to the message to indicate when it was received or
processed. This information is useful for maintaining the message order if you wish to
process the messages in the order they were received, or for identifying bottlenecks in
the DAG if you appended a received timestamp at each step of the process.

8.3.3 Content filter pattern

Often, it can be useful to remove or mask one or more data elements from an incom-
ing message due to security or other concerns. The content filter pattern is essentially
the inverse of the content enricher pattern because it is designed to perform this type
of transformation.

 The OrderValidationService we discussed earlier is an example of a content fil-
ter that breaks up the incoming FoodOrder message into smaller pieces before routing
them to the appropriate microservice for processing. Not only does this minimize the
amount of data sent to each service, but it also hides the sensitive payment informa-
tion from all the other services that do not require access to that information. 

 Consider another scenario where an event contains a sensitive data element, such
as a credit card number. The content filter can detect such patterns in the messages
and remove the data element entirely; mask it with a one-way hashing function, such
as SHA-256; or encrypt the data field. 

Summary
 The Pulsar Functions framework is a distributed processing framework that is

well suited for Dataflow programming, where the data is processed in stages
that can be executed in parallel like an assembly line.

 Applications based on Pulsar Functions can be modelled as data pipelines,
where the functions perform the computations and direct data, using the
input/out topics.

 When designing your message-passing microservice application, it is often to
use existing design patterns, such as those found in Gregor Hohpe and Bobby
Woolf’s book Enterprise Integration Patterns and other sources.

 Well-established messaging patterns can be implemented using Pulsar Func-
tions, which allows you to use time-tested solutions inside your applications.
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As the architect of the GottaEat order entry microservice, your primary goal is to
develop a system that can accept incoming food orders from customers 24 hours a
day, 7 days a week, and within a response time acceptable to the customer. Your sys-
tem must be available at all times; otherwise, your company will not only lose reve-
nue and customers, but its reputation will suffer as well. Therefore, you must
design your system to be both highly available and resilient to provide continuity of
service. Everyone wants their systems to be resilient, but what does that actually
mean? Resilience is the ability of a system to withstand disruptions caused by
adverse events and conditions, while maintaining an acceptable level of perfor-
mance relative to any number of quantitative metrics, such as availability, capacity,
performance, reliability, robustness, and usability.

 Being resilient is important because no matter how well your Pulsar application
is designed, an unanticipated incident, such as the loss of electrical power or net-
work communications, will eventually emerge and disrupt the topology. Implicit in

This chapter covers
 Making your Pulsar Functions-based applications 

resilient to adverse events

 Implementing well-established resiliency patterns 
using Pulsar Functions
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this statement is the idea that adverse events and conditions will occur. It really isn’t a
matter of if but when. Resiliency is about what your software does when these disrup-
tive events occur. Does the Pulsar function detect these events and conditions? Does it
properly respond to them once they are detected? Does the function properly recover
afterward?

 A highly resilient system will utilize several reactive resiliency techniques to actively
detect these adversities and respond to them to return the system back to its normal
operating state automatically, as shown in figure 9.1. This is particularly useful in a
streaming environment, where any disruption of service can result in the data not
being captured from the source and being lost forever.

Obviously, the key to employing any reactive technique is the ability to detect the
adverse conditions. In this chapter we will cover how to detect faulty conditions with a
Pulsar Functions application and some of the resiliency techniques you can use within
your Pulsar functions to make them more resilient.

9.1 Pulsar Functions resiliency
As we saw in chapter 8, all Pulsar Functions-based applications are essentially topolo-
gies consisting of several individual Pulsar functions interconnected via input and out-
put topics. These topologies can be thought of as DAGs with data flowing through
different paths based on the values of the messages. From a resiliency perspective, it
makes sense to consider this entire DAG as the system that must be insulated from the
impact of adverse conditions. 

9.1.1 Adverse events

In order to implement an overall resiliency strategy, we must first identify all of the
adverse events that could potentially impact a running Pulsar application topology.
Rather than attempting to list out every single possible condition that can occur with a
Pulsar function, we will classify the adverse events into the following categories: func-
tion death, lagging function, and non-progressing function.

Adverse event
occurs

Normal
operation

Faulty or degraded
operation

Normal
operation

Degraded
operation

Faulty
operation
detected

Resiliency
technique
employed

Recovery
phase

Time

Figure 9.1 A resilient system will automatically detect adverse events or conditions and take 
proactive measures to return itself to a normal operating state.
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FUNCTION DEATH

Let’s start with the most drastic event first, function death, which is when a Pulsar func-
tion within the application topology terminates abruptly. This condition can be
caused by any number of physical factors, such as a server crash or power outage, or
non-physical factors, such as an out-of-memory condition within the function itself.
Regardless of the underlying reason, the impact on the system will be severe, as data
flowing through the DAG will come to an abrupt halt.

 If the function shown in figure 9.2 dies, all of the downstream consumers will stop
receiving messages, and the DAG will be essentially blocked at this point in the flow.
From an end-user perspective, the application will have stopped producing output,
which in our situation, means that the entire food order entry process will come to a
screeching halt. 

Fortunately, the functions input topic will act as a buffer and retain the incoming
messages up to the limit imposed by the message retention policy for the topic. I only
mention this caveat to impress upon you the importance of resolving this issue sooner
rather than later because eventually messages could get dropped if the function is not
restarted. 

 If you are using the recommend Kubernetes runtime to host your Pulsar functions,
then the Pulsar Functions framework will automatically detect the failure of the associ-
ated K8s pod and restart it for you as long as you have sufficient computing resources
in your Kubernetes environment. You should also have proper monitoring and alert-
ing in place to detect the loss of a physical host and respond accordingly as an addi-
tional layer of resiliency. 

Figure 9.2 When a function dies and stops consuming messages, the entire application is 
essentially blocked at that point in the DAG, and all downstream processing will stop.
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LAGGING FUNCTION

Another condition that will have a negative impact on the performance of a Pulsar
application is the lagging function, which occurs when there is a sustained arrival rate of
messages into a function’s input topic that is greater than the function is capable of pro-
cessing. Under these circumstances, the function will fall further and further behind in
the processing of the incoming messages, which will lead to a growing lag between the
time a message is ready to be processed and when it eventually is processed. 

 Let’s consider a scenario where function A is publishing 150 events per second to
another function’s input topic, as shown in figure 9.3. Unfortunately, function B can
only process 75 events per second, which leaves a 75-event-per-second deficit that is
getting buffered inside the topic. If this processing imbalance remains in place, the
volume of messages within the input topic will continue to grow. 

Initially, this lag will start to impact the business SLA, and in our use case, the order
entry process will be slow for our customers, as they have to wait for their orders to get
processed and confirmed. Eventually, the lag will be too great for customers to bear,
and they will abandon their orders due to the lack of responsiveness of the mobile
application. This could lead to situations where the customer’s order is placed into
the queue and processed after the customer has decided, due to lack of a response,
that their order was never placed, which would be a nightmare from a business per-
spective, as we would have to refund the charged amount and notify the restaurant
that the order had been cancelled.

 To put some numbers behind this statement, let’s imagine the scenario where such
a condition was to start inside our order validation DAG during a peak business time,
such as a Friday night around 7 p.m. Orders that were placed 10 minutes later would
be placed behind the 45,000 (75 eps × 60 sec × 10 minutes) other orders that have
built up inside function B’s input topic. At a processing rate of 75 per second, it would
take 10 minutes to process those existing messages before finally processing the order.
Thus, an order placed at 7:10 wouldn’t get processed until after 7:20 pm! Therefore,
in order to meet your business SLAs and avoid abandoned orders due to a lagging
function, we will need to conduct performance testing to determine the average pro-
cessing rate of each function in the order validation service and continuously monitor
it for any processing imbalance in the future. 

 Fortunately, if you are using the recommended Kubernetes runtime to host your Pul-
sar functions, then the Pulsar Functions framework allows you to scale up the parallelism
of any function using the command shown in listing 9.1, which should help alleviate the
imbalance. Therefore, the remedy for this adverse event is to update the function’s

Function A Function B

150 eps 75 eps

+75 eps

Figure 9.3 Function B is only able to process 
75 events per second, while function A is 
producing events at a rate of 150 per second. 
This leads to a backlog of 75 events per second, 
which introduces one second of latency per 
second.
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parallelism count to an acceptable level. Since the message input-versus-consumed ratio
is 2:1 in our hypothetical example, you would want the ratio of function A versus func-
tion B instances to be at least the same, if not more.

$ bin/pulsar-admin functions update \
  --name FunctionA \
  --parallelism 5 \
  ...

While adjusting the ratio of instances to be exactly 2:1 would theoretically alleviate the
problem, I recommend having one or two additional instances beyond that ratio on
the consumer side. Not only will this provide excess processing capacity that will allow
your application to handle any additional surge in messages, but it will also make your
function resilient to the loss of one or more instances before any lag is experienced. 

NON-PROGRESSING FUNCTION

A non-progressing function is different from a lagging function in two aspects; the first is
their ability to successfully process messages. With a lagging function, all of the messages
are processed successfully, albeit at too slow of a pace to keep up, whereas with a non-
progressing function, some or all of the messages cannot be processed successfully.

 The second aspect is the way in which the problem can be resolved. With a lagging
function, the most common remedy is to increase the parallelism of the function
instances to accommodate the incoming message volume. Unfortunately, there is no
easy fix for a non-progressing function, and the only resolution is to add processing
logic inside the Pulsar function itself to detect and react to these processing excep-
tions. So, let’s take a step back and review the limited number of options we have
when dealing with processing exceptions within a Pulsar function.

 You can effectively ignore the error entirely and explicitly acknowledge the mes-
sage, which tells the broker that you are done processing it. Obviously, this is not a via-
ble option for some use cases, such as our payment service where we need an
authorized payment to continue processing the order. Another option is to negatively
acknowledge (i.e., negative ack) the message within a catch block of your Pulsar func-
tion code, which tells the broker to redeliver the message Lastly, there is the possibility
that no acknowledgment is sent from your function at all due to an uncaught excep-
tion or a network timeout when calling a remote service. As you can see from figure
9.4, in either case these messages will be marked for redelivery. 

 As more and more of these negatively acknowledged messages build up in the
topic, the system will gradually slow, as they are repeatedly tried, fail, and tried again.
This wastes processing cycles on non-productive work, and what’s worse is that these
messages will never get cleared from the topic, which will only compound their
impact over time—hence, the term non-progressing function, as it is failing to make
progress on the new messages.

Listing 9.1 Increasing the function parallelism
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Let’s revisit the scenario in which a function can successfully process 75 events per sec-
ond, and that function is making a call to a remote service, such as a credit card
authorization service. Furthermore, the endpoint that the function is calling is actu-
ally a load balancer, which distributes the calls across three different instances of the
service, and one of them goes down. Every third message will immediately throw an
exception, and the message will be negatively acked, resulting in approximately 25
events per second not succeeding. This would drop the effective processing rate of the
function from 75 eps to 50 eps. This decrease in the processing rate is the first telltale
sign of a non-progressing function.

 Scaling up the instances will not solve the problem either because that will also
scale up the number of faults at a commensurate rate. If we were to double the paral-
lelism of the functions to achieve a 150 eps consumption rate, we would end up with
50 eps that are failing and getting reprocessed. In fact, no matter how many instances
we add, a third of all messages will still need reprocessing. It is also worth noting that
each of these reprocessed messages will experience a one-minute latency penalty as
well, which will have a negative impact on your application’s perceived responsiveness.

 Now let’s consider the impact of a network outage on this same function. Every time
a message is processed, a call is made to the load balancer, but since the network is
down, we cannot reach it. Not only do 100% of the messages fail, but each message
takes 30 seconds to process, since it has to wait for a network timeout exception to be
thrown. The impact to the DAG will be the same as if the function had died, but unfor-
tunately it hasn’t. Instead, this function is effectively in a zombie state, and even restart-
ing the function won’t help, since the underlying issue is external to the function itself.

 While the underlying issues preventing the messages from being processed can be
vastly different, they can be classified into two broad categories based on their likeli-
hood of self-correcting: transient faults and non-transient faults. Transient faults include
the temporary loss of network connectivity to components and services, the momen-
tary unavailability of a service, or timeouts that can occur when your Pulsar function
calls a remote service that is busy. These types of faults are often self-correcting, and if
the message is reprocessed after a suitable delay, it is likely to succeed. One such
scenario would be if the payment service is making a call to an external credit card
authorization service during a period when the service is overloaded with requests.
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Figure 9.4 When a Pulsar function sends 
a negative acknowledgement or fails to 
acknowledge a message within the 
configured time, the message is scheduled 
for redelivery after a one-minute delay.
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Figure 9.5 The condition where the message 
backlog for a particular subscription increases 
steadily over time is referred to as backpressure 
and is indicative of degraded performance within 
a Pulsar function or application.

There is a high probability of a subsequent call succeeding once the service has had a
chance to recover.

 Non-transient faults, in contrast, require external intervention in order to be
resolved and include things like catastrophic hardware failures, expired security cre-
dentials, or bad message data. Consider the scenario where the order validation ser-
vice publishes a message to the payment service’s input topic that contains invalid
payment information, such as a bad credit card number. No matter how many times
we attempt to get authorization to use the card as a method of payment, it will always
be declined. Another potential scenario would be where our credentials for the pay-
ment service have expired, and consequently, all of our attempts to authorize any cus-
tomer’s credit card will fail. 

 Oftentimes, it will be difficult to distinguish one scenario from the other, and we
need to be able to detect non-transient faults, such as the invalid credit card number,
from transient faults, such as an overloaded remote service, so we can respond to
them differently. Fortunately, we can use the corresponding exception types and
other data to make intelligent guesses as to the transient nature of a given fault and
determine the proper course of action accordingly.

9.1.2 Fault detection

When it comes to the detection of faulty conditions within a Pulsar Functions topol-
ogy, one only needs to examine the degree to which data is flowing through the entire
topology. Simply put, is the application keeping up with the data volume being fed to
it from the input topic, or is it falling behind? Data should flow through the DAG just
like blood flowing through your body: uninterrupted and at a steady pace. There
shouldn’t be any blockages that are cutting off the flow to certain areas. 

 All of the adverse events we have discussed thus far have a similar impact on the
flow of data: a steady increase in unprocessed messages. Within Pulsar, the key metric
that indicates such a blockage is message
backlog. The presence of an ever-increasing
message backlog at the Pulsar application’s
input topic is an indication of degraded or
faulty operation. To be clear, I am not
talking about the absolute number of mes-
sages in the backlog but rather the trend of
that number itself over a period of time,
such as your peak business hours. 

 When a Pulsar application or function
cannot keep up with the growing data vol-
ume in its input topic, as shown in figure
9.5, this condition is known as backpressure
and is indicative of a lack of processing
capacity and degraded performance within
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the application, which must be remedied to meet the business SLAs. The term back-
pressure is borrowed from fluid dynamics and used to indicate some resistance or
opposing force restricting the desired flow of data through the topology just like a
clog in your kitchen sink creates an opposing force to the water draining. Similarly,
this condition is not isolated to the Pulsar function that is consuming the messages,
but also has an impact throughout the entire topology.

 All of the adverse events we have discussed thus far—function death, function lag,
and non-progressing functions—can be detected by the presence of backpressure on
the function’s input topic(s). You should monitor the following topic-level metrics to
detect backpressure within a Pulsar function:

 pulsar_rate_in, which measures the rate at which messages are coming into
the topic in messages per second

 pulsar_rate_out, which measures the rate at which messages are being con-
sumed from the topic in messages per second

 pulsar_storage_backlog_size, which measures the total backlog size of the
topic in bytes

All of these metrics are periodically published to Prometheus and can be monitored
by any observability framework that integrates with that platform. Any increase in mes-
sage backlog within any of the function’s input topics is indicative of one or more of
these events and should trigger an alert.

9.2 Resiliency design patterns
In the previous section, we discussed some of the options for providing resiliency to
your Pulsar applications using features provided by the Pulsar Functions framework
itself, such as automatic restarts for functions that die. However, it is not uncommon
for your Pulsar functions to have to interact with an external system to perform their
processing. Doing so indirectly introduces the resiliency issues of these external sys-
tems into your Pulsar application. If these remote systems are unresponsive, the result
will be lagging or non-progressing functions inside your application.

 As we saw in chapter 8, the GottaEat order validation process depends on several
third-party services to accept any incoming food orders, and if we are unable to com-
municate with these external systems for any reason, our entire business will come to a
complete halt. Given that our all of our interaction with these services is over a net-
work connection, there is the distinct possibility of intermittent network failures, peri-
ods of high latency, and unreachable services, and other interruptions. Therefore, it is
critical that our application is resilient to these types of failures and is able to recover
from them automatically. While you could attempt to implement these patterns your-
self, this is one of those scenarios where it is best to use a third-party library that was
developed by experts to solve these types of problems. 

 Issues arising from interacting with remote services are so common that Netflix
developed its own fault tolerance library named Hystrix and open sourced it in 2013;
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it contained several resiliency patterns that deal with exactly these types of issues.
While this library is no longer being actively developed, several of its concepts have
been implemented in a new open source project called resilience4j. As we shall see,
this makes it easy to utilize these patterns inside your Java-based Pulsar functions
because the majority of the logic has already been implemented inside the resilience4j
library itself, allowing you to focus on which patterns to use. Therefore, we will need
to add the configuration shown in listing 9.1 to the dependencies section of the
Maven pom.xml file to add the library to our project.

<dependencies>
    <dependency>
         <groupId>io.github.resilience4j</groupId>
         <artifactId>resilience4j-all</artifactId>
         <version>1.7.1</version>
    </dependency>
        
    ...
</dependencies>

In the following sections, I will introduce these patterns and how they can be used to
make your Pulsar Functions-based microservices that interact with external systems
resilient to these failure scenarios. In addition to providing the context and problem
that the pattern solves, I will also cover the issues and considerations to take when
implementing the pattern and examples of when the pattern would be applicable to
your use case. Lastly, it is worth noting that these patterns were designed such that
they can be used in combination with one another. This is particularly useful when
you need to utilize more than one of these patterns within your Pulsar function (e.g.,
you may want to use both the retry and circuit breaker patterns when interacting with
an external web service).

9.2.1 Retry pattern

When communicating with a remote service, any number of transient faults may
occur, including a loss of network connectivity, the temporary unavailability of a ser-
vice, and service timeouts that can occur when the remote service is extremely busy.
These types of faults are generally self-correcting, and subsequent calls to the service
are likely to succeed. If you encounter such a failure inside your Pulsar function, then
the retry pattern allows you to handle the failure in one of three ways, depending on
the error; if the error indicates that the failure isn’t transient in nature, such as an
authentication failure due to bad credentials, then you should not retry the call, since
the same failure is likely to occur.

 If the exception indicates that the connection either timed out or otherwise indi-
cates that the request was rejected due to the system being busy, then it is best to wait
for a period of time before retrying the call to allow the remote service time to

Listing 9.2 Adding the resilience4j library to the project
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recover. Otherwise, you may want to retry the call immediately, since you have no rea-
son to believe the subsequent call will fail. In order to implement this type of logic
inside your function, you will need to wrap the remote service call inside a decorator,
as shown in the following listing.

import io.github.resilience4j.retry.Retry;
import io.github.resilience4j.retry.RetryConfig;
import io.github.resilience4j.retry.RetryRegistry;           B
import io.vavr.CheckedFunction0;
import io.vavr.control.Try;

public class RetryFunction implements Function<String, String> {

  public String apply(String s) {                            c

    RetryConfig config = 
       RetryConfig.custom()                                  d
         .maxAttempts(2)                                     e
         .waitDuration(Duration.ofMillis(1000))              f
         .retryOnResult(response -> (response == null))      g
         .retryExceptions(TimeoutException.class)            h
         .ignoreExceptions(RuntimeException.class)           i
         .build();
        
    CheckedFunction0<String> retryableFunction = 
       Retry.decorateCheckedSupplier(
        RetryRegistry.of(config).retry("name"),              j
        () -> {                                              1)
          HttpGet request = 
             new HttpGet("http://www.google.com/search?q=" + s);

          try (CloseableHttpResponse response = 
                  HttpClients.createDefault().execute(request)) {
            HttpEntity entity = response.getEntity();
            return (entity == null) ? null : EntityUtils.toString(entity);
          }
       });
        
    Try<String> result = Try.of(retryableFunction);          1!
    return result.getOrNull();                               1@
  }
}

B We rely on several classes within the resilience4j library.

c This is the method defined in the function interface that will be invoked for each message.

d Create our own custom retry configuration.

e Specifies a maximum of two retry attempts

f Specifies a pause of one second between retries

g Perform a retry if the returned result is null.

h Specifies the list of exceptions that are treated as transient faults and retried

Listing 9.3 Utilizing the retry pattern inside a Pulsar function
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i Specifies the list of exceptions that are treated as non-transient and not retried

j Decorate the function with our custom retry configuration.

1) Provide the lambda expression that will be executed and retried if necessary.

1! Execute the decorated function until a result is received or the retry limit is reached.

1@ Return the result or null if no response was received.

The code shown in listing 9.2 simply takes as input a string, calls the Google search
API with the given input string, and returns the result. Most importantly, it will make
multiple attempts to call the HTTP endpoint without having to negatively acknowl-
edge the message and have it redelivered to the function. Instead, the message is
delivered from the Pulsar topic just once, and the retries are all made within the same
call to the Pulsar function’s apply method, as shown in figure 9.6. This allows us to
avoid the wasteful cycle of having the same message delivered multiple times before
deciding to give up on the external system. 

The first parameter passed into the Retry.decorateCheckedSupplier method is the
retry object we configured earlier in the code, which defines the number of retry
attempts to make, how long to pause between them, and which exceptions indicate
that we should retry the function call and which ones indicate we should not. 

 For those of you not familiar with the use of lambda expressions inside Java, the
actual logic that will be called is encapsulated inside the second parameter, which
takes in a function definition, as indicated by the ()-> syntax, and includes all the
code inside the following brackets. The resulting object is a decorated function that is
then passed into the Try.of method, which handles all of the retry logic automatically
for you. The term decorated comes from the decorator pattern, which is a well-known
design pattern that allows behavior to be dynamically added to an object runtime.
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Figure 9.6 When using the 
retry pattern, the remote 
service is called repeatedly 
with the same message. 
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first two calls fail, but the 
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each time.
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 While you could have implemented similar logic using a combination of try/catch
statements and a counter for the number of attempts, one can easily argue that the
decorated function approach provided by the resilience4j library is a much more ele-
gant solution which also allows you to dynamically configure the retry properties via
user configuration properties provided when the Pulsar function is deployed.

ISSUES AND CONSIDERATIONS

While this is a very useful pattern to use when interacting with an external system,
such as a web service or a database, be sure to consider the following factors when
implementing it inside your Pulsar function:

 Adjust the retry interval to match the business requirements of your applica-
tion. An overly aggressive retry policy with very short intervals between retries
could generate additional load on a service that is already overloaded, making
matters even worse. One might want to consider using an exponential backoff
policy that increases the time between the retries in an exponential manner
(e.g., 1 sec, 2 sec, 4 sec, 8 sec, etc.).

 Consider the criticality of the operation when choosing the number of retries
to attempt. In some scenarios it may be best to fail fast rather than impact the
processing latency with multiple retry attempts. For a customer-facing applica-
tion, for example, it is better to fail after a small number of retries with a short
delay between them than to introduce a lengthy delay to the end user.

 Be careful when using this pattern on operations that are idempotent; otherwise
you might experience unintended side effects (e.g., a call made to an external
credit card authorization service that is received and processed successfully but
fails to send a response). Under these circumstances, if the retry logic sends the
request again, the customer’s credit card would be charged twice.

 It is important to log all retry attempts so the underlying connectivity issues can
be identified and corrected as soon as possible. In addition to regular log files,
Pulsar metrics can be used to communicate the number of retry attempts to the
Pulsar administrator.

9.2.2 Circuit breaker pattern

The retry pattern was designed to handle transient faults because it enables an appli-
cation to retry an operation in the expectation that it will succeed. The circuit breaker
pattern, on the other hand, prevents an application from performing an operation
that is likely to fail due to a non-transient fault.

 The circuit breaker pattern, which was popularized by Michael Nygard in his book
Release It! (Pragmatic Bookshelf, 2nd ed., 2018), is designed to prevent overwhelming
a remote service with additional calls when we already know that it is has been unre-
sponsive. Therefore, after a certain number of failed attempts, we will consider that
the service is either unavailable or overloaded and reject all subsequent calls to the
service. The intent is to prevent the remote service from becoming further overloaded
by bombarding it with requests that we already know are unlikely to succeed.
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 The pattern gets its name from the fact that its operation is modelled after the
physical electric circuit breakers found inside houses. When the number of faults
within a given period of time exceeds a configurable threshold, the circuit breaker
trips, and all invocations of the function that is decorated with the circuit breaker will
fail immediately. The circuit breaker acts as a state machine that starts in the closed
state, which indicates that the data can flow through the circuit breaker.

 As we can see in figure 9.7, all incoming messages result in a call to the remote ser-
vice. However, the circuit breaker keeps track of how many calls to the service produce
an exception. When the number of exceptions exceeds a configured threshold, it is
an indication that the remote service is either unresponsive or too busy to process
additional requests. Therefore, in order to prevent additional load on an already over-
loaded service, the circuit breaker transitions to the open state, as shown in figure 9.8.
This is analogous to what an electrical circuit breaker does when it experiences an
electrical surge and trips (opens) the circuit to prevent the flow of electricity into an
already overloaded power outlet. 

Once the circuit breaker has been tripped, it will remain so for a preconfigured
amount of time. No calls will be made to the service until that time period has
expired. This gives the service time to fix the underlying issue before allowing the
application to resume making calls to it. After the time period has elapsed, the circuit
transitions to the half-open state in which a limited number of requests are permitted
to invoke the remote service. 

 The half-open state is intended to prevent a recovering service from being flooded
with requests from all the backlogged messages. As the service recovers, its capacity to
handle requests might be limited at first. Only sending a limited number of requests

Figure 9.7 A circuit breaker starts in the closed state, which means that the service will be called 
for every message that is processed. The service call made when processing message 1 throws an 
exception, so the fault counter is incremented, and the message is negatively acked. If the counter 
exceeds the configured threshold, the circuit breaker will trip and transition to an open state.
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prevents the recovering system from being overwhelmed after it has recovered. The
circuit breaker maintains a success counter that is incremented for every message that
is allowed to invoke the service and completes successfully, as shown in figure 9.9. 

If all of these requests are successful, as indicated by the success counter, it is assumed
that the fault that was causing the previous issue has been resolved and that the ser-
vice is ready to accept requests again. Thus, the circuit breaker will then switch back to
the closed state and resume normal operations. However, if any of the messages sent
during the half-open state fail, the circuit breaker will immediately switch back to the
open state (no failure count threshold applies) and restart the timer to give the ser-
vice additional time to recover from the fault.

Figure 9.8 Once the circuit breaker’s fault counter exceeds the configured threshold, 
the circuit transitions to the open state, and all subsequent messages are immediately 
negatively acked. This prevents making additional calls to a service that are likely to fail 
and gives the service some time to recover.
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Figure 9.9 When the circuit breaker is in the half-open state, a limited number of 
messages are permitted to invoke the service. Once a sufficient number of these calls 
complete successfully, the circuit transitions back to the closed state. However, if any 
of the messages fail, the circuit breaker immediately transitions back to the open state.
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 This pattern provides stability to the application while the remote service recovers
from a non-transient fault by quickly rejecting a request that is likely to fail and might
lead to cascading failures throughout the entire application. Oftentimes, this pattern
is combined with the retry pattern to handle both transient and non-transient faults
within the remote service. To utilize the circuit breaker pattern inside your Pulsar
function, you need to wrap the remote service call inside a decorator, as shown in list-
ing 9.4 which shows the implementation of the CreditCardAuthorizationService
that is called from the GottaEat payment service when the customer uses a credit card
for payment.

...
import io.github.resilience4j.circuitbreaker.*;                      B
import io.vavr.CheckedFunction0;
import io.vavr.control.Try;

public class CreditCardAuthorizationService 
    implements Function<CreditCard, AuthorizedPayment> {
    
  public AuthorizedPayment process(CreditCard card, Context ctx) 
     throws Exception {
        
    CircuitBreakerConfig config = CircuitBreakerConfig.custom()
      .failureRateThreshold(20)                                      c
      .slowCallRateThreshold(50)                                     d
      .waitDurationInOpenState(Duration.ofMillis(30000))             e
      .slowCallDurationThreshold(Duration.ofSeconds(10))             f
      .permittedNumberOfCallsInHalfOpenState(5)                      g
      .minimumNumberOfCalls(10)                                      h
      .slidingWindowType(SlidingWindowType.TIME_BASED)               i
         .slidingWindowSize(5)                                       j
         .ignoreException(e -> e instanceof
            UnsuccessfulCallException && 
        ((UnsuccessfulCallException)e).getCode() == 499 )            1)
      .recordExceptions(IOException.class, 
                        UnsuccessfulCallException.class)             1!
     .build();
        
    CheckedFunction0<String> cbFunction = 
      CircuitBreaker.decorateCheckedSupplier(
         CircuitBreakerRegistry.of(config).circuitBreaker("name"),   1@
         () -> {                                                     1#
        OkHttpClient client = new OkHttpClient();
        StringBuilder sb = new StringBuilder()
          .append("number=").append(card.getAccountNumber())
          .append("&cvc=").append(card.getCcv())
          .append("&exp_month=").append(card.getExpMonth())
          .append("&exp_year=").append(card.getExpYear());

        MediaType mediaType = 
               MediaType.parse("application/x-www-form-urlencoded");

Listing 9.4 Utilizing the circuit breaker pattern inside a Pulsar function
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        RequestBody body = 
               RequestBody.create(sb.toString(), mediaType);

        Request request = new Request.Builder()
           .url("https://noodlio-pay.p.rapidapi.com/tokens/create")
           .post(body)
           .addHeader("x-rapidapi-key", "SIGN-UP-FOR-KEY")
           .addHeader("x-rapidapi-host", "noodlio-pay.p.rapidapi.com")
           .addHeader("content-type", 
                          "application/x-www-form-urlencoded")
           .build();
        try (Response response = client.newCall(request).execute()) {
          if (!response.isSuccessful()) {
             throw new UnsuccessfulCallException(response.code());
          }
          return getToken(response.body().string());
        }
          }
        );
            
        Try<String> result = Try.of(cbFunction);                    1$
        return authorize(card, result.getOrNull());                 1%
      }
    
    private String getToken(String json) {
      ...
    }
    
    private AuthorizedPayment authorize(CreditCard card, String token) {
      ...
    }
}

B We are using classes from the circuitbreaker package.

c The number of failures before transitioning to the open state

d The number of slow calls before transitioning to the open state

e How long to remain in the open state before transitioning to the half-open state

f Any call that takes more than 10 seconds is considered slow and added to the count.

g The number of calls that can be made in the half-open state

h The minimum number of calls before the failure count is applicable

i Using a time-based window for the failure count

j Use a time window of five minutes before restarting failure count.

1) List of exceptions that are not added to the failure count

1! List of exceptions that are added to the failure count

1@ Use our own custom circuit breaker configuration.

1# Provide the lambda expression that will be executed if permitted by the circuit breaker.

1$ Executes the decorated function until a result is received or the retry limit is reached

1% Return the authorized payment or null if no response was received.

The first parameter passed into the CircuitBreaker.decorateCheckedSupplier
method is a CircuitBreaker object based on the configuration defined earlier in the
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code, which specifies the failure count threshold, how long to remain in the open
state, and which exceptions indicate a failed method call and which ones do not.
Additional details on these parameters and others can be found in the resilience4j
documentation (https://resilience4j.readme.io/docs/circuitbreaker).

 The actual logic that will be called if the circuit breaker is closed is defined inside a
lambda expression which was passed in as the second parameter. As you can see, the
logic inside the function definition sends an HTTP request to a third-party credit card
authorization service named Noodlio Pay, which returns an authorization token that
can later be used to collect payment from the credit card provided. The resulting
object is a decorated function that is then passed into the Try.of method, which han-
dles all of the circuit breaker logic automatically for you. If the call is successful, the
authorization token is extracted from the Noodlio Pay response object and returned
inside the AuthorizedPayment object.

ISSUES AND CONSIDERATIONS

While this is a very useful pattern to use when interacting with an external system,
such as a web service or a database, be sure to consider the following factors when
implementing it inside your Pulsar function:

 Consider adjusting the circuit breaker’s strategy based on the severity of the
exception itself, as a request might fail for multiple reasons, and some of the
errors might be transient and others non-transient. In the presence of a non-
transient error, it might make sense to open the circuit breaker immediately
rather than waiting for a specific number of occurrences.

 Avoid using a single circuit breaker within a Pulsar function that utilizes multi-
ple independent providers. For example, the GottaEat payment service uses
four different remote services based on the method of payment provided by the
customer. If the call to the payment service went through a single circuit
breaker, then error responses from one faulty service could trip the circuit
breaker and prevent calls to the other three services that are likely to succeed.

 A circuit breaker should log all failed requests so the underlying connectivity
issues can be identified and corrected as quickly as possible. In addition to reg-
ular log files, Pulsar metrics can be used to communicate the number of retry
attempts to the Pulsar administrator.

 The circuit breaker pattern can be used in combination with the retry pattern.

9.2.3 Rate limiter pattern

While the circuit breaker pattern was designed to prohibit service calls only after a
preconfigured number of faults had been detected over a period of time, the rate lim-
iter pattern, on the other hand, prohibits service calls after a preconfigured number of
calls have been made within a given period, regardless of whether or not they were
successful. As the name implies, the rate limiter pattern is used to limit the frequency
at which a remote service can be called and is useful for situations where you want to

https://resilience4j.readme.io/docs/circuitbreaker
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restrict the number of calls made over a given period of time. One such example
would be if we called a web service, such as the Google API, that restricts the number
of calls you can make with a free API key to only 60 per minute. 

 When using this pattern, all incoming messages result in a call to the remote ser-
vice up to a preconfigured number. The rate limiter keeps track of how many calls
have been made to the service, and once the limit is reached, prohibits any additional
calls for the remainder of the preconfigured time window, as shown in figure 9.10. In
order to utilize the rate limiter pattern inside your Pulsar function, you need to wrap
the remote service call inside a decorator, as shown in listing 9.4. 

import io.github.resilience4j.decorators.Decorators;
import io.github.resilience4j.ratelimiter.*;

...
public class GoogleGeoEncodingService implements Function<Address, Void> {

  public Void process(Address addr, Context ctx) throws Exception {
        
   if (!initalized) {
      init(ctx);                                                      B
   }
        
   CheckedFunction0<String> decoratedFunction = 
          Decorators.ofCheckedSupplier(getFunction(addr))             c
        .withRateLimiter(rateLimiter)                                 d
        .decorate();
        
   LatLon geo = getLocation(                                          e

Listing 9.5 Utilizing the rate limiter pattern inside a Pulsar function

Figure 9.10 If the rate limiter is configured to permit 100 calls per minute, then the first 100 messages 
would be permitted to invoke the service. The 101st message and all subsequent messages will not be 
permitted to call the service and, instead, will be negatively acknowledged. After one minute elapses, 
another 100 messages can be processed.
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      Try.of(decoratedFunction)                                       f
          .onFailure(
            (Throwable t) -> ctx.getLogger().error(t.getMessage())
       ).getOrNull());

   if (geo != null) {
      addr.setGeo(geo);
      ctx.newOutputMessage(ctx.getOutputTopic(),
                           AvroSchema.of(Address.class))
           .properties(ctx.getCurrentRecord().getProperties())
        .value(addr)
        .send();
   } else {
     // We made a valid call, but didn't get a valid geo back
   }
   return null;
    }

    private void init(Context ctx) {
    config = RateLimiterConfig.custom()
            .limitRefreshPeriod(Duration.ofMinutes(1))                g
            .limitForPeriod(60)                                       h
            .timeoutDuration(Duration.ofSeconds(1))                   i
            .build();
        
    rateLimiterRegistry = RateLimiterRegistry.of(config);
    rateLimiter = rateLimiterRegistry.rateLimiter("name");
    initalized = true;
    }

      private CheckedFunction0<String> getFunction(Address addr) {    j
         CheckedFunction0<String> fn = () -> { 
          OkHttpClient client = new OkHttpClient();
          StringBuilder sb = new StringBuilder()            
        .append("https://maps.googleapis.com/maps/api/geocode")
          .append("/json?address=")
          .append(URLEncoder.encode(addr.getStreet().toString(),
          StandardCharsets.UTF_8.toString())).append(",")
          .append(URLEncoder.encode(addr.getCity().toString(), 
              StandardCharsets.UTF_8.toString())).append(",")
          .append(URLEncoder.encode(addr.getState().toString(), 
              StandardCharsets.UTF_8.toString()))
          .append("&key=").append("SIGN-UP-FOR-KEY");

       Request request = new Request.Builder()
        .url(sb.toString())
        .build();

      try (Response response = client.newCall(request).execute()) {
         if (response.isSuccessful()) {
        return response.body().string();                             1)
         } else {
        String reason = getErrorStatus(response.body().string());
          if (NON_TRANSIENT_ERRORS.stream().anyMatch(                1!
                  s -> reason.contains(s))) {
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            throw new NonTransientException();
          } else if (TRANSIENT_ERRORS.stream().anyMatch(
                  s -> reason.contains(s))) {
            throw new TransientException();
          }
        return null;
         }            
      }

     };
     return fn;
    }

    private LatLon getLocation(String json) {                        1@
    ...
    }
}

B Initializes the rate limiter

c Decorates the REST call to the Google Maps API

d Assigns the rate limiter

e Parses the response from the REST call

f Invokes the decorated function

g The rate interval is one minute.

h Sets a limit of 60 calls per rate interval

i Wait one second between subsequent calls.

j Returns a function containing the REST API call logic

1) If we got a valid response, return the JSON string with the latitude/longitude.

1! Determine the error type based on the error message.

1@ Parses the JSON response from the Google Maps REST API call

This function calls the Google Maps API and limits the number of attempts to 60 per
minute to stay in compliance with Google’s terms of use for a free account. If the
number of calls exceeds this amount, then Google will block access to the API for our
account as a preventative measure for a brief period of time. Therefore, we have taken
proactive steps to prevent that condition from occurring.

ISSUES AND CONSIDERATIONS

While this is a very useful pattern to use when interacting with an external system,
such as a web service or a database, be sure to consider the following factors when
implementing it inside your Pulsar function:

 This pattern will almost certainly decrease the throughput for the function, so
be sure to account for this throughout the entire data flow to make sure the
upstream functions don’t overwhelm the rate-limited function.

 This pattern should be used to protect a remote service from getting over-
whelmed with calls or to restrict the number of calls to avoid exceeding a quota
which would result in you getting locked out by the third-party vendor.
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9.2.4 Time limiter pattern

The time limiter pattern is used to limit the amount of time spent calling a remote ser-
vice before terminating the connection from the client side. This effectively short cir-
cuits the timeout mechanism on the remote service and allows us to determine when
to give up on the remote call and terminate the connection from the client side.

 This behavior is useful when you have a tight SLA on the entire data pipeline and
have allocated a small amount of time for interacting with the remote service. This
allows the Pulsar function to continue processing without a response from the web
service rather than waiting 30 or more seconds for the connection to timeout. Doing
so boosts the throughput of the function, since it no longer has to waste 30 seconds
waiting on a response from a faulty service.

 Consider the scenario where you first make a call to an internal caching service,
such as Apache Ignite, to see if you have the data you need prior to making a call to an
external service to retrieve the value. The purpose of doing so is to speed up the pro-
cessing inside your function by eliminating the need for a lengthy call to a remote ser-
vice. However, you run the risk of your caching service itself being unresponsive,
which would result in a lengthy pause while making that call. This would defeat the
entire purpose of the cache. Therefore, you decide to allocate a time budget to the
cache call of 500 milliseconds to limit the impact an unresponsive cache can have on
your function. 

import io.github.resilience4j.timelimiter.TimeLimiter;
import io.github.resilience4j.timelimiter.TimeLimiterConfig;
import io.github.resilience4j.timelimiter.TimeLimiterRegistry;

public class LookupService implements Function<Address, Address> {
private TimeLimiter timeLimiter;
private IgniteCache<Address, Address> cache;
private String bypassTopic;
private boolean initalized = false;

    public Address process(Address addr, Context ctx) throws Exception {
      if (!initalized) {
        init(ctx);                                                     B
      }
        
      Address geoEncodedAddr = timeLimiter.executeFutureSupplier(      c
        () -> CompletableFuture.supplyAsync(() -> 
         { return cache.get(addr); }));                                d
        
      if (geoEncodedAddr != null) {                                    e
        ctx.newOutputMessage(bypassTopic, AvroSchema.of(Address.class))
        .properties(ctx.getCurrentRecord().getProperties())
        .value(geoEncodedAddr)
        .send();
      }

Listing 9.6 Utilizing the time limiter pattern inside a Pulsar function
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      return null;
    }

    private void init(Context ctx) {
      bypassTopic = ctx.getUserConfigValue("bypassTopicName")
           .get().toString();                                          f
      TimeLimiterConfig config = TimeLimiterConfig.custom()
           .cancelRunningFuture(true)                                  g
        .timeoutDuration(Duration.ofMillis(500))                       h
        .build();
        
      TimeLimiterRegistry registry = TimeLimiterRegistry.of(config);
      timeLimiter = registry.timeLimiter("my-time-limiter");           i
        
      IgniteConfiguration cfg = new IgniteConfiguration();             j
       cfg.setClientMode(true);
       cfg.setPeerClassLoadingEnabled(true);

       TcpDiscoveryMulticastIpFinder ipFinder = 
        new TcpDiscoveryMulticastIpFinder();
 
        ipFinder.setAddresses(Collections.singletonList(
        ➥ "127.0.0.1:47500..47509"));
        
       cfg.setDiscoverySpi(new TcpDiscoverySpi().setIpFinder(ipFinder));
       Ignite ignite = Ignition.start(cfg);                            1)
       cache = ignite.getOrCreateCache("geo-encoded-addresses");       1!
    }
}

B Initializes the time limiter and the ignite cache

c Invokes the cache lookup and limits the duration of the call via the time limiter

d The cache lookup that is executed asynchronously

e If we have a cache hit, then publish the value to the different output topic.

f The bypass topic is configurable.

g Cancel running calls that exceed the time limit.

h Sets a time limit of 500 milliseconds

i Creates the time limiter based on the configuration

j Configures the Apache Ignite client

1) Connects to the Apache Ignite service

1! Retrieves the local cache that stores geo-encoded addresses

In order to utilize the time limiter pattern inside your Pulsar function, you need to
wrap the remote service call inside a CompletableFuture and execute it via the Time-
Limter’s executeFutureSupplier method, as shown in listing 9.6. This lookup func-
tion assumes that the cache is populated inside the function that calls the Google
Maps API. This allows us to restructure the geo-encoding process slightly to have the
lookup occur before the call to the GeoEncodingService, as shown in figure 9.11.

 Again, this type of design is intended to speed up the geo-encoding process, and
thus, we need to limit the amount of time we are willing to wait to get a response back
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from Apache Ignite before abandoning the call. If the cache lookup succeeds, then
the LookupService will publish a message directly to the same GeoEncoding output
topic as the GeoEncodingService does. The downstream consumer doesn’t care who
published the message as long as it has the correct contents.

ISSUES AND CONSIDERATIONS

While this is a very useful pattern to use when interacting with an external system such
as a web service or a database, be sure to consider the following factors when imple-
menting it inside your Pulsar function:

 Adjust the time limit to match the business SLA requirements of your applica-
tion. An overly aggressive time limit will cause successful calls to be abandoned
too soon, resulting in unnecessary work on the remote service and missing data
inside your Pulsar function. 

 Do not use this pattern on operations that are idempotent; otherwise you might
experience unintended side effects. It is best to only use this pattern on lookup
calls and other non-state changing functions or services.

9.2.5 Cache pattern

If you would prefer not to write a separate function just to perform lookups, the resi-
lency4j library also provides a way to decorate a function call with a cache as well. List-
ing 9.7 shows how to decorate a Java lambda expression with a cache abstraction. The
cache abstraction stores the result of every invocation of the function in a cache
instance and tries to retrieve a previous cached result from the cache before it invokes
the lambda expression.

 
 

GeoEncoding
input topic

GeoEncodingService

GeoEncoding
output topic

LookupService

Apache ignite

GeoEncoding
service topic

Time
limiter

Rate
limiter

{ street: 233 S Wacker Dr.
   city: Chicago
   state: IL
   zip: 60606 } 

Key: Address
Value: Lat/Lon

{  street: 233 S Wacker Dr.
   city: Chicago
   state: IL
   zip: 60606 
} 

Null
Lat: 41.878860 
Lon: -87.635747

If the lookup succeeds, we can bypass the GeoEncodingService

Figure 9.11 The lookup service can be used to prevent unnecessary calls to the GeoEncodingService 
if we already have the latitude/longitude pair for a given address. The cache is populated with the results 
from the Google Maps API calls.
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import javax.cache.CacheManager;
import javax.cache.Caching;
import javax.cache.configuration.MutableConfiguration;
import io.github.resilience4j.cache.Cache;
import io.github.resilience4j.decorators.Decorators;

...
public class GeoEncodingServiceWithCache implements Function<Address, Void> {

  public Void process(Address addr, Context ctx) throws Exception {
        
   if (!initalized) {
      init(ctx);                                                         B
   }
        
   CheckedFunction1<String, String> cachedFunction = Decorators
      .ofCheckedSupplier(getFunction(addr))                              c
      .withCache(cacheContext)                                           d
      .decorate();
        
   LatLon geo = getLocation(                                             e
  Try.of(() -> cachedFunction.apply(addr.toString())).get());            f

   if (geo != null) {
      addr.setGeo(geo);                                                  g
      ctx.newOutputMessage(ctx.getOutputTopic(),AvroSchema.of(Address.class))
        .properties(ctx.getCurrentRecord().getProperties())
        .value(addr)
        .send();
   } 
   return null;
  }

private void init(Context ctx) {
  CacheManager cacheManager = 
    Caching.getCachingProvider().getCacheManager();                      h
    
  cacheContext = Cache.of(cacheManager.createCache(                      i
    "addressCache", new MutableConfiguration<>()));
    initalized = true;
   }

  private CheckedFunction0<String> getFunction(Address addr) {           j
     // Same as before
  }

  private LatLon getLocation(String json) {                              1)
     // Same as before
  }
}

B Initializes the cache

c Decorates the REST call to the Google Maps API

Listing 9.7 Utilizing the resiliency cache inside a Pulsar function
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d Assigns the cache

e Parses the response from the cache or REST call

f Checks the cache before invoking the function

g If we have the latitude/longitude, then send it.

h Uses the configured cache implementation

i Creates the address cache

j Returns a function containing the REST API call logic

1) If we got a valid response, return the JSON string with the latitude/longitude.

You should configure the function to use a distributed cache implementation, such as
Ehcache, Caffeine, or Apache Ignite. If the cache retrieval from the distributed cache
fails, the exception will be ignored, and the lambda expression will be called to
retrieve the value instead. Please refer to your preferred vendor’s documentation for
more details on how to configure and use a vendor-specific implementation of the
JCache functional specification.

 The trade-off when using this approach versus the separate lookup service
approach is that you lose the ability to limit the amount of time you are willing to wait
for the cache call to complete. Therefore, in the unlikely event that the distributed
cache service is down, each call could take up to 30 seconds while waiting for a net-
work timeout. 

ISSUES AND CONSIDERATIONS

While this is a very useful pattern to use when interacting with an external system,
such as a web service or a database, be sure to consider the following factors when
implementing it inside your Pulsar function:

 This is only useful on datasets that are relatively static in nature, such as geo-
encoded addresses. Don’t try caching data that is likely to change frequently;
otherwise you run the risk of using incorrect data inside your application.

 Limit the size of the cache to avoid causing out-of-memory conditions within
your Pulsar function. If you need a larger cache, you should consider using a
distributed cache, such as Apache Ignite.

 Prevent data in your cache from becoming stale by implementing an aging pol-
icy on the data so it is automatically purged once it reaches a certain age.

9.2.6 Fallback pattern

The fallback pattern is used to provide your function with an alternative resource in
the event that the primary resource is unavailable. Consider the case where you are
calling an internal database through a load balancer endpoint, and the load balancer
fails. Rather than allowing the failure of that single piece of hardware to cause your
entire application to fail, you could bypass the load balancer entirely and connect
directly to the database instead. The following listing shows how to implement such a
function.
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import io.github.resilience4j.decorators.Decorators;
import io.vavr.CheckedFunction0;
import io.vavr.control.Try;

public class DatabaseLookup implements Function<String, FoodOrder> {
  private String primary = "jdbc:mysql://load-balancer:3306/food";    B
  private String backup = "jdbc:mysql://backup:3306/food";            c
  private String sql = "select * from food_orders where id=?";
  private String user = "";                                           d
  private String pass = "";
  private boolean initalized = false;

  public FoodOrder process(String id, Context ctx) throws Exception {
    if (!initalized) {
      init(ctx);
    }
        
    CheckedFunction0<ResultSet> decoratedFunction = 
      Decorators.ofCheckedSupplier( () -> {
       try (Connection con = 
            DriverManager.getConnection(primary, user, pass)) {       e
          PreparedStatement stmt = con.prepareStatement(sql);
          stmt.setLong(1, Long.parseLong(id));
          return stmt.executeQuery();
        }
       })        
      .withFallback(SQLException.class, ex -> {                       f
        try (Connection con = 
              DriverManager.getConnection(backup, user, pass)) {
          PreparedStatement stmt = con.prepareStatement(sql);
          stmt.setLong(1, Long.parseLong(id));
          return stmt.executeQuery();
        }
         })
      .decorate();
        
      ResultSet rs = Try.of(decoratedFunction).get();                 g
      return ORMapping(rs);                                           h
    }

  private void init(Context ctx) {
    Driver myDriver;
     try {
       myDriver = (Driver) Class.forName("com.mysql.jdbc.Driver")
       .newInstance();
      DriverManager.registerDriver(myDriver);                         i
      // Set local variables from user properties
       ...
      initalized = true;
     } catch (Throwable t) {
       t.printStackTrace();
     }
        

Listing 9.8 Utilizing the fallback pattern inside a Pulsar function
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  }
    
  private FoodOrder ORMapping(ResultSet rs) {
    // Performs the Relational-to-Object mapping
  }
}

B The primary connection goes through the load balancer.

c The backup connection goes directly to the database server.

d The DB credentials set inside the init method from user properties

e The first call is via the load balancer.

f If an SQLException was thrown, retry the query via the backup URL.

g Get the successful ResultSet.

h Perform the ORM to return the FoodOrder object.

i Loads the database driver class and registers it

Another scenario in which this pattern could come into play would be if we had multi-
ple third-party credit card authorization services to choose from, and we wanted to try
an alternative service in the event that we could not connect to the primary service for
some reason. Note that the first parameter to the withFallback method takes the
exception types that trigger the fallback code, so it would be important to only contact
the second credit card authorization service if the error indicated that the primary
service was unavailable, and not if the card was declined.

ISSUES AND CONSIDERATIONS

While this is a very useful pattern to use when interacting with an external system such
as a web service or a database, be sure to consider the following factors when imple-
menting it inside your Pulsar function:

 This is only useful in situations where you have either an alternative route to the
service that is reachable from the Pulsar function or an alternative (backup)
copy of the service that provides the same function.

9.2.7 Credential refresh pattern

The credentials refresh pattern is used to automatically detect when your session creden-
tials have expired and need to be refreshed. Consider the case in which you are inter-
acting with an AWS service from inside your Pulsar function that requires session
tokens for authentication. Typically, these tokens are intended to be used for short
periods of time, and thus have an expiration time associated with them (e.g., 60 min-
utes). Therefore, if you are interacting with a service that requires such a token, you
need a strategy for automatically generating a new token when the current one
expires to keep your Pulsar function processing messages. The next listing shows how
to automatically detect an expired session token and refresh it using the Vavr func-
tional library for Java.
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public class PaypalAuthorizationService implements Function<PayPal, String> {
private String clientId;
private String secret;                                                    B
private String accessToken;                                               c
private String PAYPAL_URL = “https://api.sandbox.paypal.com”;
    
public String process(PayPal pay, Context ctx) throws Exception {
  return Try.of(getAuthorizationFunction(pay))                            d
    .onFailure(UnauthorizedException.class, refreshToken())               e
    .recover(UnauthorizedException.class, 
        (exc) -> Try.of(getAuthorizationFunction(pay)).get())             f
    .getOrNull();                                                         g
}

private CheckedFunction0<String> getAuthorizationFunction(PayPal pay) {
  CheckedFunction0<String> fn = () -> {
    OkHttpClient client = new OkHttpClient();
    MediaType mediaType = 
       MediaType.parse("application/json; charset=utf-8");
    RequestBody body = 
RequestBody.create(buildRequestBody(pay), mediaType);                     h
            
    Request request = 
        new Request.Builder()
        .url("https://api.sandbox.paypal.com/v1/payments/payment")
        .addHeader("Authorization", accessToken)                          i
        .post(body)
        .build();
    
      try (Response response = client.newCall(request).execute()) {       j
       if (response.isSuccessful()) {
        return response.body().string();
       } else if (response.code() == 500) {
         throw new UnauthorizedException();                               1)
       }
        return null;
    }};
        
    return fn;
}

private Consumer<UnauthorizedException> refreshToken() {
    Consumer<UnauthorizedException> refresher = (ex) -> {
      OkHttpClient client = new OkHttpClient();
      MediaType mediaType =
        MediaType.parse("application/json; charset=utf-8");
      RequestBody body = RequestBody.create("", mediaType);

      Request request = new Request.Builder().url(PAYPAL_URL +
         “/v1/oauth2/token”?grant_type=client_credentials”)               1!
      .addHeader("Accept-Language", "en_US")
      .addHeader("Authorization", 
           Credentials.basic(clientId, secret))                           1@

Listing 9.9 Automatic credential refresh
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      .post(body)
      .build();

      try (Response response = client.newCall(request).execute()) {
        if (response.isSuccessful()) {
          parseToken(response.body().string());                           1#
        } 
      } catch (IOException e) {
         e.printStackTrace();
        }};
      return refresher;
  }
    
  private void parseToken(String json) {
  // Parses the new access token from the response object
  }
    
  private String buildRequestBody(PayPal pay) {
  // Build the payment authorization request JSON
  }
}

B Static credentials used to get an access token

c Local copy of the access token

d First attempt to authorize the payment using the current access token

e If an unauthorized exception is raised, invoke the refreshToken function.

f Attempt to recover from the unauthorized exception by calling the authorize method again.

g Return the final result.

h Build the JSON request body.

i Provide the current access token value for authorization.

j Authorize the payment.

1) Raise the unauthorized exception based on the response code.

1! Requesting new access token

1@ Provide the static credentials when requesting a new access token.

1# Parse the new access token from the JSON response.

The key to this pattern is wrapping the first call to the PayPal payment authorization
REST API inside of a try container type, which represents a computation that may
either result in an exception or return a successfully computed value. It also allows us
to chain computations together, which means we can handle exceptions in a more
readable manner. In the example shown in listing 9.9, the entire try/fail/refresh
token/retry logic is handled in just five lines of code. While you could easily imple-
ment the same logic using the more traditional try/catch logic constructs, it would be
much harder to follow.

 The first call wrapped in the try construct invokes the PayPal payment authorization
REST API and, if it is successful, returns the JSON response from that successful call. The
more interesting scenario is when that first call fails, because then the function inside
the onFailure method is called if and only if the exception type is Unauthorized-
Exception. That only occurs when the first call returns a status code of 500. 
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 The function inside the onFailure method attempts to remedy the situation by
refreshing the access token. Finally, the recover method is used to make another call
to the PayPal payment authorization REST API now that the access token has been
refreshed. Thus, if the initial failure was due to an expired session token, this code
block will attempt to resolve it automatically without manual intervention or any
downtime. The message won’t even have to be failed and retried at a later point,
which is critical, since our function is interacting directly with a client application
where response time is important.

ISSUES AND CONSIDERATIONS

While this is a very useful pattern to use when interacting with an external system,
such as a web service that uses expiring authorization tokens, be sure to consider the
following factors when implementing it inside your Pulsar function:

 This pattern is only applicable to token-based authentication mechanisms that
provide a token refresh API that is exposed to the Pulsar function.

 The tokens returned from the token refresh API should be stored in a secure
location to prevent unauthorized access to the service.

9.3 Multiple layers of resiliency
As you may have noticed, in the previous section I only used one of these patterns at a
time. But what if you want to use more than one of the previous patterns inside your
Pulsar function? There are situations where it would be quite useful to have your func-
tion utilize the retry, cache, and circuit breaker patterns. 

 Fortunately, as I mentioned at the beginning of the chapter, you can easily deco-
rate your remote service call with any number of these patterns from the resilience4j
library to provide multiple layers of resiliency inside your functions. The following list-
ing demonstrates just how easy this is to accomplish for the GeoEncoding function.

public class GeoEncodingService implements Function<Address, Void> {
  private boolean initalized = false;
    private Cache<String, String> cacheContext;
    private CircuitBreakerConfig config;
    private CircuitBreakerRegistry registry;
    private CircuitBreaker circuitBreaker;
    private RetryRegistry rertyRegistry;
    private Retry retry;

    public Void process(Address addr, Context ctx) throws Exception {
    if (!initalized) {
      init(ctx);
    }
        
    CheckedFunction1<String, String> resilientFunction = Decorators
       .ofCheckedSupplier(getFunction(addr))                   B
       .withCache(cacheContext)                                c

Listing 9.10 Multiple resiliency patterns inside a Pulsar function
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       .withCircuitBreaker(circuitBreaker)                     d
       .withRetry(retry)                                       e
       .decorate();
        
    LatLon geo = getLocation(Try.of(() ->
          resilientFunction.apply(addr.toString())).get());    f

    if (geo != null) {
      addr.setGeo(geo);
      ctx.newOutputMessage(ctx.getOutputTopic(),AvroSchema.of(Address.class))
        .properties(ctx.getCurrentRecord().getProperties())
        .value(addr)
        .send();
    } else {
      // We made a valid call, but didn't get a valid geo back
   }
        
    return null;
  }
    
  private void init(Context ctx) {                             g
    // Configure a cache (once)
    CacheManager cacheManager = Caching.getCachingProvider()
  .getCacheManager();

    cacheContext = Cache.of(cacheManager
      .createCache("addressCache", new MutableConfiguration<>()));
        
    config = CircuitBreakerConfig.custom()
    ...
    cbRegistry = CircuitBreakerRegistry.of(config);
    circuitBreaker = cbRegistry.circuitBreaker(ctx.getFunctionName());

    RetryConfig retryConfig = RetryConfig.custom()
    ...
    retryRegistry = RetryRegistry.of(retryConfig);
    retry = retryRegistry.retry(ctx.getFunctionName());
    initalized = true;
  }
}

B The Google Maps REST API call

c Decorated with a cache

d Decorated with a circuit breaker

e Decorated with a retry policy

f Calls the decorated function to get the actual latitude/ longitude

g Initialize the resiliency configurations as before.

In this particular configuration, the cache will be checked before the function is
invoked. Any calls that fail will be retried based on the defined configuration, and if a
sufficient number of calls fail, the circuit breaker will be tripped to prevent subse-
quent calls from being made to the remote service until sufficient time has passed to
allow the service to recover.
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 Remember that these code-based resiliency patterns are also used in conjunction
with the resiliency capabilities provided by the Pulsar Functions framework, such as
auto-restarting K8s pods. Together, these can help minimize your downtime and keep
your Pulsar Functions applications running smoothly.

Summary
 There are several different adverse events that can impact a Pulsar function,

and message backpressure is a good metric to use for fault detection.
 You can use the resiliency4j library to implement various common resiliency

patterns within your Pulsar functions, particularly those that interact with exter-
nal systems.

 You can utilize multiple patterns inside the same Pulsar function to increase its
resiliency to failures.
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Data access

Thus far all of the information used by our Pulsar Functions has been provided inside
the incoming messages. While this is an effective way to exchange information, it is
not the most efficient or desirable way for Pulsar Functions to exchange information
with one another. The biggest drawback to this approach is that it creates a depen-
dency on the message source to provide your Pulsar function with the information
it needs to do its job. This violates the encapsulation principle of object-oriented
design, which dictates that the internal logic of a function should not be exposed to
the outside world. Currently, any changes to the logic inside one function might
require changes to the upstream function that provides the incoming messages.

 Consider a use case where you are writing a function that requires a customer’s
contact information, including their cell phone number. Rather than passing a
message containing all of that information, wouldn’t it be easier to just pass the cus-
tomer ID, which can then be used by our function to query the database and

This chapter covers
 Storing and retrieving data with Pulsar Functions

 Using Pulsar’s internal state mechanism for data 
storage and retrieval

 Accessing data from external systems with Pulsar 
Functions



272 CHAPTER 10 Data access

retrieve the information we need instead? In fact, this is a common access pattern if
the information required by the function exists in an external data source, such as a
database. This approach enforces encapsulation and prevents changes in one func-
tion from directly impacting other functions by relying on each function to gather the
information it needs instead of providing it inside the incoming message.

 In this chapter, I will walk through several uses cases that need to store and/or
retrieve data from an external system and demonstrate how to do so using Pulsar
Functions. In doing so, I will cover a variety of different data stores and describe the
various criteria used to select one technology over another.

10.1 Data sources
The GottaEat application that we have been developing thus far is hosted within the
context of a much larger enterprise architecture that consists of multiple technologies
and data storage platforms, as shown in figure 10.1. These data storage platforms are
used by multiple applications and computing engines within the GottaEat organiza-
tion and act as a single source of truth for the entire enterprise. 

 As you can see, Pulsar Functions can access data from a variety of data sources, from
low-latency in-memory data grids and disk-backed caches to high-latency data lakes and
blob storage. These data stores allow us to access information supplied by other appli-
cations and computing engines. For instance, the GottaEat application we have been
developing has a dedicated MySQL database it uses to store customer and driver infor-
mation, such as their login credentials, contact information, and home address. This
information is collected by some of the non-Pulsar microservices shown in figure 10.1
that provide non-streaming services, such as user login, account update, etc. 

Figure 10.1 The enterprise architecture of the GottaEat organization will be comprised of 
various computing engines and data storage technologies. Therefore, it is critically important 
that we can access these various data repositories from our Pulsar functions.
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Within the GottaEat enterprise architecture there are distributed computing engines,
such as Apache Spark and Apache Hive, which perform batch processing of extremely
large datasets stored inside the data lake. One such dataset is the driver location data,
which contains the latitude and longitude coordinates of every driver that is logged
into our application. The GottaEat mobile application automatically records the
driver’s location every 30 seconds and forwards it to Pulsar for storage in the data lake.
This dataset is then used in the development and training of the company’s machine
learning models. Given sufficient information, these models can accurately predict
various key business metrics, such as estimated delivery times of placed orders or the
areas within a city most likely to have the most food orders in the next hour, so we can
position drivers accordingly. These computing engines are scheduled to run periodi-
cally to calculate various data points that are required by the machine learning models
and store them inside the Cassandra database so they can be accessed by the Pulsar
functions that are hosting the ML models to provide real-time predictions.

10.2 Data access use cases
In this section, I will demonstrate how to access data from various data stores using
Pulsar Functions. Before I jump right into the use cases, I wanted to discuss how to go
about deciding which data store is best for a given use case. From a Pulsar Functions
perspective, which data store to use will depend on a number of factors, including the
availability of the data and the maximum processing time allocated to a particular Pul-
sar function. Some of our functions, such as delivery time estimation, will be directly
interacting with the customer and driver and need to provide a response in near real
time. For these types of functions, all the data access should be limited to low-latency
data sources to ensure predictable response times. 

 There are four data stores within the GottaEat architecture that can be classified as
low-latency due to their ability to provide subsecond data access time. These include
the Pulsar state store backed by Apache BookKeeper, an in-memory data grid (IMDG)
provided by Apache Ignite, a disk-backed cache, and the distributed column store
provided by Apache Cassandra. The in-memory data retains all of the data in memory,
and thus provides the fastest access times. However, its storage capacity is limited by
the amount of RAM available on the machines hosting the Pulsar functions. It is used
to pass information between Pulsar functions that are not directly connected via topic,
such as two-factor authentication within the device validation use case.

10.2.1 Device validation

When a customer first downloads the GottaEat mobile application from the App Store
and installs it on their phone, the customer needs to create an account. The customer
chooses an email/password to use for their login credentials and submits them along
with the mobile number and device ID used to uniquely identify the device. As you
can see from figure 10.2, this information is then stored in the MySQL database to be
used to authenticate the user whenever they log in in the future.



274 CHAPTER 10 Data access

When a user logs into the GottaEat application, we will use the information stored in
the database to validate the provided credentials and authenticate the device they are
using to connect with. Since we recorded the device ID when the user first registered,
we can compare the device ID provided when the user logged in with the one on
record. This acts like a cookie does for a web browser and allows us to confirm that the
user is using a trusted device. As you can see in figure 10.3, after we validate the user’s
credentials against the values stored in the RegisteredUsers table, we place the user
record in the LoggedInUsers topic for further processing by the DeviceValidation
function to ensure that the user is using a trusted device. 

User Application
registration

{ user_id: customer@gmai.com.

  pass: XXXXXXXXXXXX,

  phone: 702-555-3456

  DeviceInfo : { 

      deviceID: VRSHRH3357BW,

      globalIPv4 : 98.10.5.63.72

   },

  ...

 }
RegisteredDevices

RegisteredUsers

Figure 10.2 A non-Pulsar microservice handles the application registration use case 
and stores the provided user credentials and device information in the MySQL database.

Customer Login

LoggedInUsers

{ userRole: CUSTOMER,

   userID: 12345,

   DeviceInfo : { 

      deviceID: VRSHRH3357BW,

      globalIPv4 : 98.10.5.63.72

   },

  ...

}

Device
validation

{ user_id: customer@gmai.com.

  pass: XXXXXXXXXXXX,

  DeviceInfo : { 

      deviceID: VRSHRH3357BW,

      globalIPv4 : 98.10.5.63.72

   },

  ...

 }

RegisteredUsers

Figure 10.3 The device ID is provided when the customer logs into the mobile application; 
we then cross-reference it against known devices that we have previously associated with 
the user.
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This provides an additional level of security and prevents identity thieves from placing
fraudulent orders using stolen customer credentials because it also requires the
would-be fraudsters to provide the correct device ID in order to place an order. You
might be asking yourself: What happens if the customer is simply using a new or dif-
ferent device? This is a perfectly valid scenario that we need to handle for situations
where they buy a new cell phone or log into their account from a different device. In
such a scenario, we will use SMS-based two-factor authentication in which we send a
randomly-generated 5-digit PIN code to the mobile number that the customer pro-
vided when they registered and wait for them to respond back with that code. This is a
very common technique used to authenticate users of mobile applications.

As you can see in figure 10.4, the device validation process first attempts to retrieve
the customer’s most recently used device ID from Pulsar’s internal state store, which,
as you may recall from chapter 4, is a key-value store that can be used by stateful Pulsar
functions to retain stateful information. The Pulsar state store uses Apache Book-
Keeper for storage to ensure that any information written to it will be persisted to disk
and replicated. This ensures that the data will outlive any associated Pulsar function
instance that is reading the data. 

 However, this reliance on BookKeeper for storage comes at a performance cost,
since the data has to be written to disk. Therefore, even though the state store pro-
vides the same key-value semantics as other data stores, such as the IMDG, it does so at
a much higher latency rate. Consequently, it is not recommended to use the state store
for data that will be read and written frequently. It is better suited for infrequent
read/write use cases, such as the device ID, which is only called once per user session. 

 Listing 10.1 shows the logical flow of the DeviceValidationService as it attempts
to locate the device ID from two different data sources. The base class contains all
of the source code related to connecting to the MySQL database and is also used by

AuthUsers

Unknown
devices

LoggedIn
users

Not
found

Not
found

Pulsar
StateStore

RegisteredDevices

DeviceValidationService

FoundFound

SMS validation

Figure 10.4 Inside the DeviceValidationService, we compare the given device ID with the device 
most recently used by the customer, and if it is the same, we authorize the user. Otherwise, we check 
to see if it is on the list of known devices for the user and initiate two-factor authentication if necessary.
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the DeviceRegistrationService to update the database if the SMS authentication is
successful.

public class DeviceValidationService extends DeviceServiceBase implements 

➥ Function<ActiveUser, ActiveUser> {

  ...
    
  @Override
  public ActiveUser process(ActiveUser u, Context ctx) throws Exception {
    boolean mustRegister = false;
        
    if (StringUtils.isBlank(u.getDevice().getDeviceId())) {                B
      mustRegister = true;
    } 
        
    String prev = getPreviousDeviceId(
         u.getUser().getRegisteredUserId(), ctx);                          c
        
    if (StringUtils.equals(prev, EMPTY_STRING)) {
      mustRegister = true;                                                 d
    } else if (StringUtils.equals(prev, u.getDevice().getDeviceId())) {
      return u;                                                            e
    } else if (isRegisteredDevice(u.getUser().getRegisteredUserId(), 
           u.getDevice().getDeviceId().toString())) {                      f
      ByteBuffer value = ByteBuffer.allocate(
             u.getDevice().getDeviceId().length());
      value.put(u.getDevice().getDeviceId().toString().getBytes());
      ctx.putState("UserDevice-" + u.getDevice().getDeviceId(), value);    g
    }
        
    if (mustRegister) {
     ctx.newOutputMessage(registrationTopic, Schema.AVRO(ActiveUser.class))
        .value(u)
        .sendAsync();                                                      h
       return null;
    } else {
       return u;
    }
  }

  private String getPreviousDeviceId(long registeredUserId, Context ctx) {
    ByteBuffer buf = ctx.getState("UserDevice-" + registeredUserId);       i
    return (buf == null) ? EMPTY_STRING : 
         new String(buf.asReadOnlyBuffer().array());
    }
    
  private boolean isRegisteredDevice(long userId, String deviceId) {
    try (Connection con = getDbConnection();
          PreparedStatement ps = con.prepareStatement( "select count(*) "
           + "from RegisteredDevice where user_id = ? "
          + " AND device_id = ?")) {
      ps.setLong(1, userId); 

Listing 10.1 The DeviceValidationService
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      ps.setNString(2, deviceId); 
      ResultSet rs = ps.executeQuery(); 
      if (rs != null && rs.next()) { 
        return (rs.getInt(1) > 0);                                         j
      } 
    } catch (ClassNotFoundException | SQLException e) { 
      // Ignore these 
    } 
    return false;  
  }
...
}

B If the user didn’t provide a device ID at all

c Get the previous device ID for this user from the state store.

d There is no previous device ID for this user.

e The provided device ID matches the value in the state store.

f See if the device id is in the list of known devices for the user.

g This is a known device, so update the state store with the provided device ID.

h This is an unknown device, so publish a message in order to perform SMS validation.

i Look up the device ID in the state store using the user ID.

j Return true if the provided device ID is associated with the user.

If the device cannot be associated with the current user, a message will be published to
the UnknownDevices topic that is used to feed the SMS validation process. As you may
have noticed in figure 10.4, the SMS validation process is comprised of a sequence of
Pulsar functions that must coordinate with one another to perform the two-factor
authentication. 

 The first Pulsar function within the SMS validation process reads messages off the
UnknownDevices topic and uses the registered user ID to retrieve the mobile number
we will be sending the SMS validation code to. This is a very straightforward data access
pattern in which we use the primary key to retrieve information from a relational data-
base and forward it to another function. While this approach is typically considered an
anti-pattern because it violates the encapsulation principle I mentioned earlier, I
decided to break it out into its own function for the two reasons. The first is reusability
of the code itself, as there are multiple use cases in which we will need to retrieve all of
the information about a particular user, and I want to have that logic contained within
a single class, rather than spread across multiple functions, so it is easy to maintain. The
second reason is that we will need some of this information later on within the Device-
Registration service, so I decided to pass all of the information along rather than per-
form the same database query twice to reduce processing latency.

 As you can see from the next listing, the UserDetailsByActiveUser function pro-
vides the registered user ID to the UserDetailsLookup class, which performs the data-
base query to retrieve the data and return a UserDetails object.
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public class UserDetailsByActiveUser implements 
   Function<ActiveUser, UserDetails> {

  private UserDetailsLookup lookupService = new UserDetailsLookup();   B
    
  @Override
  public UserDetails process(ActiveUser input, Context ctx) throws Exception{
    return lookupService.process(
      input.getUser().getRegisteredUserId(),                           c
      ctx);                                                            d
  }
}

B Create an instance of the class that performs the database lookup.

c Pass in the primary key field used in the lookup.

d Pass in the context object so that lookup class can access the database credentials, etc.

This pattern of extracting just the primary key from the incoming message and pass-
ing it to a different class that performs the lookup can be reused for any use case,
and in the case of the GottaEat application, it is used by a different Pulsar function
flow to retrieve the user information for a given food order, as shown in the follow-
ing listing.

 
 

Listing 10.2 The UserDetailsByActiveUser function

Unknown
devices

UserDetails
ByActiveUser

Verification
CodeSender

User

Verification
CodeValidator

SMS PIN

Device
registration

service

In-memory
data grid

SMS PIN

LoggedIn
users

RegisteredUsers

DeviceValidationService

RegisteredDevices

Figure 10.5 The SMS validation process is performed by a collection of Pulsar Functions that send 
a 5-digit code to the user’s registered mobile number and validate the code sent back from the user.
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public class UserDetailsByFoodOrder implements 
  Function<FoodOrder, UserDetails> {

  private UserDetailsLookup lookupService = new UserDetailsLookup();   B
    
  @Override
  public UserDetails process(FoodOrder order, Context ctx) throws Exception {
    return lookupService.process(
     order.getMeta().getCustomerId(),                                  c
     ctx);                                                             d
  }
}

B Create an instance of the class that performs the database lookup.

c Pass in the primary key field used in the lookup.

d Pass in the context object so that lookup class can access the database credentials, etc.

The underlying lookup class used to provide the information is shown in listing 10.4
and encapsulates the logic required to query the database tables to retrieve all of the
information. This data access pattern can be used to retrieve data from any relational
database table that you need to access from your Pulsar functions.

public class UserDetailsLookup implements Function<Long, UserDetails> {
    
  . . .
  private Connection con;
  private PreparedStatement stmt;
  private String dbUrl, dbUser, dbPass, dbDriverClass;

  @Override
  public UserDetails process(Long customerId, Context ctx) throws Exception {
        
    if (!isInitalized()) {                                               B
      dbUrl = (String) ctx.getUserConfigValue(DB_URL_KEY);
      dbDriverClass = (String) ctx.getUserConfigValue(DB_DRIVER_KEY);
      dbUser = (String) ctx.getSecret(DB_USER_KEY);
      dbPass = (String) ctx.getSecret(DB_PASS_KEY);
    }

    return getUserDetails(customerId);
  }  

  private UserDetails getUserDetails(Long customerId) {
    UserDetails details = null;

    try (Connection con = getDbConnection();
         PreparedStatement ps = con.prepareStatement("select ru.user_id, 
          + " ru.first_name, ru.last_name, ru.email, "
          + "a.address, a.postal_code, a.phone, a.district,"

Listing 10.3 The UserDetailsByFoodOrder function

Listing 10.4 The UserDetailsLookup function
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          + "c.city, c2.country from GottaEat.RegisteredUser ru "
          + "join GottaEat.Address a on a.address_id = c.address_id "
          + "join GottaEat.City c on a.city_id = c.city_id "
          + "join GottaEat.Country c2 on c.country_id = c2.country_id "
          + "where ru.user_id = ?");) {                                  c

    ps.setLong(1, customerId);                                           d
    
    try (ResultSet rs = ps.executeQuery()) {
      if (rs != null && rs.next()) { 
         details = UserDetails.newBuilder()                            
     .setEmail(rs.getString("ru.email"))
     .setFirstName(rs.getString("ru.first_name"))                            

.setLastName(rs.getString("ru.last_name"))                     

.setPhoneNumber(rs.getString("a.phone"))                     

.setUserId(rs.getInt("ru.user_id"))
     .build();                                                           e
      }
    } catch (Exception ex) {
      // Ignore
    }        
  } catch (Exception ex) {
    // Ignore
  }

  return details;
  }

  . . .

}

B Ensure we have all the required properties from the user context object.

c Perform the lookup for the given user ID.

d Use the user ID in the first parameter in the prepared statement.

e Map the relational data to the UserDetails object. 

The UserDetailsByActiveUser function passes the UserDetails to the Verification-
CodeSender function, which in turn sends the validation code to the customer and
records the associated transaction ID in the IMDG. This transaction ID is required by
the VerificationCodeValidator function to validate the PIN sent back by the user;
however, as you can see from figure 10.5, there isn’t an intermediate Pulsar topic
between the VerificationCodeSender function and the VerificationCodeValidator,
so we cannot pass this information inside a message. Instead we have to rely on this exter-
nal data store to pass along this information. 

 The IMDG is perfect for this task since the information is short lived and does not
need to be retained for longer than the time the code is valid. If the PIN sent back by
the user is valid, the next function will add the newly authenticated device to the
RegisterdDevices table for future reference. Finally, the user will be sent back to the
LoggedInUser topic so that the device ID can by updated in the state store.

 Since the VerificationCodeSender and VerificationCodeValidator functions
use the IMDG to communicate with one another, I decided to have them share a com-
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mon base class, which provides connectivity to the shared cache, as shown in the fol-
lowing listing.

public class VerificationCodeBase {

  protected static final String API_HOST = "sms-verify-api.com";    B
    
  protected IgniteClient client;                                    c
  protected ClientCache<Long, String> cache;                        d
  protected String apiKey;    
  protected String datagridUrl; 
  protected String cacheName;                                       e
    
  protected boolean isInitalized() {
    return StringUtils.isNotBlank(apiKey);
  }
    
  protected ClientCache<Long, String> getCache() {
    if (cache == null) {
     cache = getClient().getOrCreateCache(cacheName);
   }
    return cache;
  }
    
  protected IgniteClient getClient() {
    if (client == null) {
     ClientConfiguration cfg = 
     new ClientConfiguration().setAddresses(datagridUrl);
     client = Ignition.startClient(cfg);                            f
    }
    return client;
  }
}

B The hostname of the third-party service used to perform the SMS verification

c Apache Ignite thin client

d Apache Ignite cache used to store the data

e The name of the Cache both services will be accessing

f Connect the thin client to the in-memory data grid.

The VerificationCodeSender uses the mobile phone number from the UserDetails
object provided by the UserDetailsByActiveUser function to call the third-party SMS
validation service, as shown in the following listing. 

public class VerificationCodeSender extends VerificationCodeBase 
  implements Function<ActiveUser, Void> {

private static final String BASE_URL = "https://" + RAPID_API_HOST + 

  ➥ "/send-verification-code";                                           B

Listing 10.5 The VerificationCodeBase

Listing 10.6 The VerificationCodeSender function
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  private static final String REQUEST_ID_HEADER = "x-amzn-requestid";

  @Override
  public Void process(ActiveUser input, Context ctx) throws Exception {
    if (!isInitalized()) {                                               c
     apiKey = (String) ctx.getUserConfigValue(API_KEY);
     datagridUrl = ctx.getUserConfigValue(DATAGRID_KEY).toString();
     cacheName = ctx.getUserConfigValue(CACHENAME_KEY).toString();
    }

    OkHttpClient client = new OkHttpClient();
    Request request = new Request.Builder()
      .url(BASE_URL + "?phoneNumber=" + toE164FormattedNumber(
           input.getDetails().getPhoneNumber().toString()) 
           + "&brand=GottaEat")
      .post(EMPTY_BODY)
      .addHeader("x-rapidapi-key", apiKey)
      .addHeader("x-rapidapi-host", RAPID_API_HOST)
      .build();                                                          d
        
    Response response = client.newCall(request).execute();               e
    if (response.isSuccessful()) {                                       f
      String msg = response.message();  
      String requestID = response.header(REQUEST_ID_HEADER);             g
      if (StringUtils.isNotBlank(requestID)) {                           h
        getCache().put(input.getUser().getRegisteredUserId(), requestID);
      }
    }
    return null;
  }
}

B URL of the third-party service used to send the SMS verification code

c Ensure we have all the required properties from the user context object.

d Build the HTTP request object for the third-party service.

e Send the request object to the third-party service.

f Whether the request was successful

g Retrieve the request ID from the response object.

h If we have a request ID, store it in the IMDG.

If the HTTP call is successful, the third-party service provides a unique request ID
value in its response message that can be used by the VerificationCodeValidator
function to validate the response sent back by the user. As you can see in listing 10.6,
we store this request ID in the IMDG using the user ID as the key. Later, when the user
responds with a PIN value, we can then use this value to authenticate the user, as
shown in the following listing.

public class VerificationCodeValidator extends VerificationCodeBase 
  implements Function<SMSVerificationResponse, Void> {                   B

Listing 10.7 The VerificationCodeValidator function
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  public static final String VALIDATED_TOPIC_KEY = "";
  private static final String BASE_URL = "https://" + RAPID_API_HOST 
     + "/check-verification-code";                                       c
  private String valDeviceTopic;                                         d
    
  @Override
  public Void process(SMSVerificationResponse input, Context ctx) 
    throws Exception {

    if (!isInitalized()) {
     apiKey = (String) ctx.getUserConfigValue(API_KEY).orElse(null);
     valDeviceTopic = ctx.getUserConfigValue(VALIDATED_TOPIC_KEY).toString();
   }
    
   String requestID = getCache().get(input.getRegisteredUserId());       e
 
   if (requestID == null) {
      return null;                                                       f
    }

   OkHttpClient client = new OkHttpClient();
   Request request = new Request.Builder()
      .url(BASE_URL + "?request_id=" + requestID + "&code=" 
           + input.getResponseCode())
      .post(EMPTY_BODY)
      .addHeader("x-rapidapi-key", apiKey)
      .addHeader("x-rapidapi-host", RAPID_API_HOST)
      .build();                                                          g
        
      Response response = client.newCall(request).execute();
      if (response.isSuccessful()) {                                     h
        ctx.newOutputMessage(valDeviceTopic,
               Schema.AVRO(SMSVerificationResponse.class))
         .value(input)
         .sendAsync();                                                   i
        
      }
   return null;
  }    
}

B Takes in an SMS verification response object

c URL of the third-party service used to perform the SMS verification

d Pulsar topic to publish validated device info to

e Get the request ID from the IMDG.

f If there was no request ID found for the user, then we are done.

g Construct the HTTP request to the third-party service.

h If the user responded with the correct PIN, then the device was validated.

i Publish a new message to the validated device topic.

This flow between the two Functions involved in the SMS validation process demon-
strates how to exchange information between Pulsar functions that are not connected
by an intermediate topic. However, the biggest limitation to this approach is the
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amount of data that can be retained inside the memory of the data grid itself. For
larger datasets that need to be shared across Pulsar functions, a disk-backed cache is a
better solution.

10.2.2 Driver location data

Every 30 seconds, a location message is sent from the driver’s mobile application to a
Pulsar topic. This driver location data is one of the most versatile and critical datasets
for GottaEat. Not only does this information need to be stored in the data lake for
training the machine learning models, but it is also useful for several real-time use
cases, such as in-route travel time estimation to a pickup or drop-off location, provid-
ing driving directions, or allowing the customer to track the location of their order
when it is in route to them, just to name a few. 

 The GottaEat mobile application uses the location services provided by the
phone’s operating system to determine the latitude and longitude of the driver’s cur-
rent location. This information is enriched with the current timestamp and the
driver’s ID before it is published to the DriverLocation topic. The driver location
information will be consumed in a variety of ways, which in turn dictates how the data
should be stored, enriched, and sorted. One of the ways in which the location data will
be accessed is directly by driver ID when we want to find the most recent location of a
given driver.

 As you can see in figure 10.6, the LocationTrackingService consumes these mes-
sages and uses them to update the driver location cache, which is a global cache that
stores all of the location updates as key/value pairs, where the key is the driver ID and
the value is the location data. I have decided to store this information in a disk-backed
cache so it is accessible to any Pulsar Function that needs it. Unlike an IMDG, a disk-
backed cache will spill any data that it cannot hold in memory to local disk for storage,

{ driver_id: 12345,
  time: 2020-11-05 13:47:28,
  lat: 66.324155,
  lon: 117.424630
}

Driver
location

Grid cell
calculator

Driver

Location
tracking service

EnrichedDriver
location

Driver location
cache

Used for driver-specific
lookups (e.g., when a driver
has been paired with an order
and customer, etc.)

Figure 10.6 Each driver periodically sends their location information to the DriverLocation topic. 
This information is then processed by multiple Pulsar functions before being persisted to a data store.
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whereas an IMDG will silently drop the data. Given the anticipated volume of driver
location data we are expecting to have once the company is up and running, a disk-
backed cache is the best choice for storing this time-critical information, while ensur-
ing that none of it is lost.

 For simplicity’s sake, we have decided to use the same underlying technology
(Apache Ignite) to provide both the IMDG and the disk-backed cache for GottaEat.
Not only does this decision reduce the number of APIs that our developers need to
learn and use, but it also simplifies life for the DevOps team as well because they only
need to deploy and monitor two different clusters running the same software, as shown
in figure 10.7. The only difference between the two clusters is the value of a single Bool-
ean configuration setting called persistenceEnabled that enables the storage of cache
data to disk, which allows it to store more data.

As you can see in the code in listing 10.8, the data access for both the IMDG and disk-
backed cache use the same API (i.e., you read and write values using a single key). The
difference is in the expected data lookup time when retrieving the data. For an IMDG,
all of the data is guaranteed to be in memory, and thus will provide a consistently fast
lookup time. However, the trade-off is that the data is not guaranteed to be available
when you attempt to read it.

 In contrast, a disk-backed cache will retain only the most recent data in memory
and will store a majority of its data on disk as the data volume grows. Given that a

Disk-backed ignite cluster

IMDG ignite cluster

Node

In-memory

Node

On-disk

In-memory

Node

On-disk

In-memory

Node

On-disk

In-memory

Node

In-memory

Node

In-memory

imdg.gottaeat.com:10880

dbcache.gottaeat.com:10880

Figure 10.7 Inside the GottaEat enterprise architecture there are two different 
clusters running Apache Ignite—one that is configured to persist cache data to disk 
and one that isn’t.
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significant amount of the data resides on disk, the overall lookup time for a disk-
backed cache will be orders of magnitude slower. Therefore, it is best to use this type
of data store when data availability is more important than lookup times.

public class LocationTrackingService implements 
   Function<ActiveUser, ActiveUser> {

  private IgniteClient client;
  private ClientCache<Long, LatLon> cache;

  private String datagridUrl;
  private String locationCacheName;

  @Override
  public ActiveUser process(ActiveUser input, Context ctx) throws Exception {

    if (!initalized()) {
      datagridUrl = ctx.getUserConfigValue(DATAGRID_KEY).toString();
      locationCacheName = ctx.getUserConfigValue(CACHENAME_KEY).toString();
    }
  
    getCache().put(
      input.getUser().getRegisteredUserId(),                     B
      input.getLocation());                                      c
  
    return input;
  }
    
  private ClientCache<Long, LatLon> getCache() {
    if (cache == null) {
      cache = getClient().getOrCreateCache(locationCacheName);   d
    }
    return cache;
  }
    
  private IgniteClient getClient() {                             e
    if (client == null) {
      ClientConfiguration cfg = 
         new ClientConfiguration().setAddresses(datagridUrl);
      client = Ignition.startClient(cfg);
    }
    return client;
  }
}

B Use the userID as the key.

c Add the location to the disk-backed cache.

d Creates the location cache

e Using an Apache Ignite client

Listing 10.8 The LocationTrackingService
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The location information stored in the disk-backed
cache can then be used to determine the current
location of the specific driver assigned to the cus-
tomer’s order, and is then sent to the mapping soft-
ware on the customer’s phone so they can track the
status of their order visually, as shown in figure 10.8.
Another use of the driver location data is determin-
ing which drivers are best suited to be assigned an
order. One of the factors in making this determina-
tion is the driver’s proximity to the customer and/or
restaurant that is fulfilling the order. While it is the-
oretically possible, it would be too time-consuming
to calculate the distance between every driver and
the delivery location each time an order is placed.

 Therefore, we need a way to immediately identify
drivers who are close to an order in near-real-time.
One way to do this is to divide the map into smaller
logical hexagonal areas, known as cells, as shown in
figure 10.9, and then group the drivers together
based on which of these cells they are currently
located in. This way, when an order comes in, all we
need to do is determine which cell the order is in,
and then look first for drivers that are currently in
that cell. If no drivers are found, we can expand our
search to adjacent cells. By presorting the drivers in
this manner, we are able to perform a much more
efficient search.

Figure 10.8 The driver location data 
is used to update the map display on 
the customer’s mobile phone so they 
can see the driver’s current location 
along with an estimated delivery 
time.

Figure 10.9 We use a 
global grid system of 
hexagonal areas that is 
overlaid onto a two-
dimensional map. Each 
latitude/longitude pair 
maps to exactly one cell on 
the grid. Drivers are then 
bucketed together based 
on the hexagons they are 
currently located in.
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The other Pulsar function in figure 10.6 is the GridCellCalculator, which uses the
H3 open source project (https://github.com/uber/h3-java) developed by Uber to
determine which cell the driver is currently located in and appends the correspond-
ing cell ID to the location data before publishing it to the EnrichedDriverLocation
topic for further processing. I left the code for that function out of this chapter, but
you can find it in the GitHub repo associated with this book if you want more details.

 As you can see from figure 10.10, there is a global collection of disk-backed caches
(one for each cell ID) used to retain the location data for drivers within a given cell
ID. Pre-sorting the drivers in this manner allows us to narrow our search to only the
few cells we are interested in and ignore all the rest. In addition to speeding up driver
assignment decisions, bucketing the drivers together by cell ID enables us to analyze
geographic information to set dynamic prices and make other decisions on a city-wide
level, such as surge pricing and incentivizing our drivers to move into cells without suf-
ficient drivers to accommodate the order volume, etc. 

As you can see from the code in listing 10.9, the GridCellTrackingService uses the cell
ID from each incoming message to determine which cache to publish the location data
into. The disk-backed caches use the following naming convention: “drivers-cell-XXX,”
where the XXX is the H3 cell ID. Therefore, when we receive a message with a cell ID
of 122, we place it inside the drivers-cell-122 cache.

import com.gottaeat.domain.driver.DriverGridLocation;
import com.gottaeat.domain.geography.LatLon;

public class GridTrackingService 
   implements Function<DriverGridLocation, Void> {

Listing 10.9 The GridCellTrackingService

{ driver_id: 12345,
time: 2020-11-05 13:47:28,
lat: 66.324155,
lon: 117.424630,
h3_cell_id: 122 }

EnrichedDriver
location

Data lakeDriverLocation
sink

GridCell
tracking service Disk-backed

caches

One cache per cell_ID allows us to
bucket drivers together by location.

Figure 10.10 Messages inside the EnrichedDriverLocation topic have been 
enriched with the H3 cell ID, which is then used to group drivers together.

https://github.com/uber/h3-java
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  static final String DATAGRID_KEY = "datagridUrl";
  
  private IgniteClient client;
  private String datagridUrl;

  @Override
  public Void process(DriverGridLocation in, Context ctx) throws Exception {
    if (!initalized()) {
      datagridUrl = ctx.getUserConfigValue(DATAGRID_KEY).toString();
     }

     getCache(input.getCellId())                                      B
       .put(input.getDriverLocation().getDriverId(),                  c
        input.getDriverLocation().getLocation());                     d
      return null;
  }

  private ClientCache<Long, LatLon> getCache(int cellID) {
    return getClient().getOrCreateCache("drivers-cell-" + cellID);    e
  }

  private IgniteClient getClient() {
     if (client == null) {
        ClientConfiguration cfg = 
            new ClientConfiguration().setAddresses(datagridUrl);
        client = Ignition.startClient(cfg);
      }
    return client;
  }

  private boolean initalized() {
    return StringUtils.isNotBlank(datagridUrl);
  }
}

B Get the cache for the given cell ID we calculated.

c Use the userID as the key.

d Add the location to the disk-backed cache.

e Return or create the cache for the specified cell ID.

The other consumer of the enriched location messages is a Pulsar IO connector
named DriverLocationSink that batches up the messages and writes them into the
data lake. In this particular case, the final destination of the sink is the HDFS filesys-
tem, which allows other teams within the organization to perform analyses on the data
using various computing engines, such as Hive, Storm, or Spark. 

 Since the incoming data is of higher value to our delivery time estimation data
models, the sink can be configured to write the data to a special directory inside
HDFS. This allows us to pre-filter the most-recent data and group it together for faster
processing by the process that uses this data to precompute data for the delivery time
feature vector in the Cassandra database. 
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Summary
 Pulsar’s internal state store provides a convenient location for storing infre-

quently accessed data without having to rely on an external system.
 You can access a variety of external data sources from inside Pulsar functions,

including in-memory data grids, disk-backed caches, relational databases, and
many others.

 Consider the latency and data storage capabilities when determining the data
storage system you want use. Lower-latency systems are typically better for
stream processing systems.
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Machine
 learning in Pulsar

One of the primary goals of machine learning is the extraction of actionable
insights from raw data. Having insights that are actionable means you can use them
to make strategic, data-driven decisions that result in a positive outcome for your
business and customers. For instance, every time a customer places an order on the
GottaEat application, we want to be able to provide the customer with an accurate
estimated delivery time. To accomplish this, we would need to develop a machine

This chapter covers
 Exploring how Pulsar Functions can be used to 

provide near real-time machine learning

 Developing and maintaining the collection of 
inputs required by the machine learning model 
to provide a prediction

 Executing any PMML-supported model inside a 
Pulsar function

 Executing non-PMML models inside a Pulsar 
function
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learning model that predicts the delivery time of any given order based on a number
of factors that allow us to make a more accurate decision.

 Typically, these actionable insights are generated by machine learning (ML) mod-
els that have been developed and trained to take in a predefined set of inputs, known
as a feature vector, and use that information to make predictions, such as when an order
will arrive at the customer’s location. It is the responsibility of the data science team to
develop and train these models, including the feature vector definitions. Since this is
a book about Apache Pulsar and not data science, I will focus primarily on the deploy-
ment of these ML models inside the Pulsar Functions framework rather than the
development and training of the models themselves. 

11.1 Deploying ML models
ML models are developed in a variety of languages and toolkits, each with their own
respective strengths and weaknesses. Regardless of how these ML models are devel-
oped and trained, they must eventually be deployed to a production environment to
provide real business value. At a high level, there are two execution modes for ML
models that are deployed to production: a batch-processing mode and a near real-time pro-
cessing mode. 

11.1.1 Batch processing

As the name suggests, executing a model in batch processing mode refers to the pro-
cess where you feed a large batch of data into your model to produce multiple predic-
tions at the same time rather than on a case-by-case basis. These batches of predictions
can then be cached and reused as needed. 

 One such example is marketing emails from an e-commerce site that provides a list
of product recommendations based on your purchase history with the retailer and
what similar customers have purchased. Since these recommendations are based on a
historical and slow-changing dataset (i.e., your purchase history) they can be gener-
ated at any time. Typically, these marketing emails are generated once per day and
delivered to customers based on the customers’ local time zones. Since these recom-
mendations are generated for all customers who haven’t opted out, this is a great can-
didate for batch processing with the ML model. However, if your recommendations
need to factor in the users’ most recent activities, such as the current contents of their
shopping cart, then you cannot execute the ML model in batch mode because that
data won’t be available. In such a scenario, you will want to deploy your ML model in
the near real-time processing mode.

11.1.2 Near real-time

Utilizing a ML model to generate predictions on a case-by-case basis using data that is
only available in the incoming payload is commonly referred to as near real-time
processing. This type of processing is considerably more complex than batch processing,
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primarily due to the latency constraints placed on systems that need to serve the
predictions.

 A perfect candidate for near real-time deployment is the estimated time-to-delivery
component of the GottaEat food delivery service that provides an estimate of when
the food will be delivered for every newly placed food order. Not only does the feature
vector of this ML model depend on data provided as part of the order (i.e., the deliv-
ery address), but it also needs to generate the estimate within a few hundred millisec-
onds. In short, when deciding which of these execution modes to use for your ML
models you should consider the following factors:

 The availability of all the data required in the model’s feature vector and where
that data is stored. Whether all the data you need to execute the model is read-
ily available in the system or if some of it is provided in the request itself.

 How quickly the accuracy of the recommendations degrades over time. Can you
precompute the recommendation and reuse it for a specific period?

 How quickly you can retrieve all the data used in the feature vector. Is it stored
in memory or on non-real-time systems, such as HDFS, traditional databases,
and so on.

As you might have guessed, Pulsar functions are great candidates for deploying your
ML models in near real-time mode for a multitude of reasons. First and foremost, they
get executed immediately when a request comes in and have direct access to the data
provided as part of the request, which eliminates any processing and data lookup
latency. Secondly, as we saw in the previous chapter, you can retrieve data from a vari-
ety of external data sources to populate the feature vector with any necessary data that
exists outside of the request itself. Finally, and most importantly, is the flexibility Pul-
sar Functions provides when it comes to deployment options. The ability to write your
functions in Java, Python, or Go allows your data science team to develop a model in
the language/framework of their choice and still deploy it inside a Pulsar function
using third-party libraries that are bundled with the function to execute the model
at runtime. 

11.2 Near real-time model deployment
Because there are so many ML frameworks, and everything is evolving so quickly, I
have decided to present a generic solution that provides all the essential elements
required to deploy an ML model within a Pulsar Function. Pulsar Function’s broad
programming language support enables you to deploy ML models from a variety of
frameworks, provided there is a third-party library that supports the execution of
those models. For instance, the existence of a Java library for TensorFlow allows you to
deploy and execute any ML models that were developed using the TensorFlow toolkit.
Similarly, if your ML model relies on the pandas library written in Python, you can eas-
ily write a Python-based Pulsar function that includes the pandas library. Regardless of
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the language of choice, the deployment of a near real-time model within a Pulsar
function follows the same high-level pattern.

 As you can see from figure 11.1, there is a sequence of one or more Pulsar func-
tions that are responsible for the collection of data required by the feature vector of
the model from external data sources based on the original message. This acts as a
sort of data enrichment pipeline that augments the incoming data from the message
with additional data elements that are needed by the ML model. In the delivery time
estimation example, we might only be given the ID of the restaurant that is preparing
the order. This pipeline would then be responsible for retrieving the geographical
location of that restaurant so it can be given to the model.

 Once this data is collected, it is fed into the Pulsar function that will invoke the ML
model using a third-party library to execute the model with the proper framework
(e.g., TensorFlow, etc.). It is worth noting that the ML model itself is retrieved from

Feature collection

Feature
vectors

Original
message

ML execution
engine

[1,1,1,1,0,0,1]
[0,0,1,0,1,0,1]
[1,0,1,0,1,0,1]

Feature vector

[0,1,0,1,0,1,0]

ML-enabled function
Predictions

ML model
Pulsar statestore

Develops and
trainsPublished

Data science
team

Figure 11.1 The original message that necessitates the need for a prediction is enriched with a 
sequence of ancillary Pulsar functions to produce a feature vector suited for the ML model. The       
ML-enabled function can then further populate the feature vector with data from other low-latency 
data sources before sending it along with the ML model it retrieves from Pulsar’s internal state store 
to the ML execution engine for processing.
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the Pulsar function context object, which allows us to deploy the model inde-
pendently of the function itself. This decoupling of the model from the packaged and
deployed Pulsar function provides us the opportunity to dynamically adjust our mod-
els on the fly, and, more importantly, allows us to change models based on external
factors and conditions. 

 For example, we might require an entirely different delivery time estimation
model for high-volume periods, such as lunch and dinner, than for non-peak hours.
An external process would then be used to rotate in the proper model for the current
time. In fact, the data science team could train the same model with time-specific data-
sets to produce different models based on the time of day or day of the week. For
instance, training the time-estimation model with data from only 4–5 p.m. could pro-
duce a model for that specific timeframe.

 The ML-enabled function then sends the completed feature vector along with the
correct version of the ML model that it retrieved from Pulsar’s internal state store to
the ML execution engine (e.g., a third-party library), which produces both a predic-
tion and an associated level of confidence in the prediction. For instance, the engine
might produce a prediction of an ETA of seven minutes with an 84% degree of confi-
dence. This information can then be used to provide an estimated time of arrival to
the customer that placed the order. 

 While your Pulsar function might differ based on the ML framework you are using,
the general outline remains the same. First, get the ML model from Pulsar’s state
store, and keep a copy in memory. Next, take the incoming precomputed features
from the incoming message and map them to the expected input fields of the feature
vector. Compute and/or retrieve any additional features that weren’t already precom-
puted, and then call the ML library for your programming language to execute the
model with the given dataset and publish the result.

11.3 Feature vectors
In ML, the term feature refers to an individual numeric or symbolic property that
represents a unique aspect of an object. These features are often combined into an
n-dimensional vector of numerical features, or a feature vector, that is then used as an
input to a predictive model. 

 Every feature in the feature vector represents an individual piece of data that is
used to generate the prediction. Consider the estimated time-to-delivery feature of
the GottaEat food delivery service. Every time a user orders food from a restaurant, an
ML model estimates when the food will be delivered. Features for the model include
information from the request (e.g., the time of day or delivery location), historical
features (e.g., the average meal prep time for the last seven days), and near real-time
calculated features (e.g., the average meal prep time for the last hour). These features
are then fed into the ML model to produce a prediction, as shown in figure 11.2.
Many algorithms in ML require a numerical representation of features, since such
representations facilitate processing and statistical analysis, such as linear regression.



295Feature vectors

Therefore, it is common that each feature is represented as a numerical value, as it
makes them useful across various ML algorithms.

11.3.1 Feature stores

Models intended for deployment in near real-time mode have stringent latency
requirements and cannot reliably be expected to compute features that require access
to traditional data stores in a performant manner. You cannot consistently achieve
sub-second query response times with a traditional relational database. 

Feature vector

[1,1,1,1,0,0,1],[0,0,1,0,0,1,0]
,[1,0,1,0,1,0,1],[1,1,1,0,0,1,0]
,[1,1,1,1,1,1,1],[1,0,0,0,0,1,0]

Customer order
feature

Average meal
prep feature

Delivery time
feature

ML model

Inputs Output

Estimated
delivery

time

Figure 11.2 The delivery time estimation model requires a feature vector comprised of features from multiple 
sources. Each feature is an array of numerical values between 0 and 1.

Row key Features

. . .1 23 21 4.3

. . .2 7 9 3.9

. . .3 18 16

.

.

.

restaurant_id prep_time_last_hourprep_time_last_7 avg_rating

Figure 11.3 The restaurant feature store uses the unique restaurant_id field as 
the row key, and each row contains several features for each restaurant. Some of the 
features are specific to the delivery time estimation model, while others are not.
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Therefore, it is necessary to establish ancillary processes to precompute and index
these necessary model features. Once computed, these features should be stored in a
low-latency datastore, known as a feature store, where they can be accessed quickly at
prediction time, as shown in figure 11.3.

 As I mentioned earlier, our feature store is kept inside a low-latency column-centric
database, such as Apache Cassandra, which is designed to permit a large number of col-
umns per row without incurring a performance penalty during the data retrieval pro-
cess. This allows us to store features required by various ML models in the same table
(e.g., delivery time estimation fields, such as average prep time, can be stored alongside
features used by the restaurant recommendation model, such as the average customer
rating). Consequently, we don’t need to maintain a separate table for each model we
want to use (restaurant_time_delivery_features, etc.). Not only does this simplify
the management of the feature store database, but it also promotes the usage of features
across ML models.

 In most organizations, the design of the tables within the feature store falls squarely
on the data science team, since they are the primary consumers of the feature store.
Therefore, you will often only be provided the ML model along with a list of the features
it requires as input when your company is ready to roll out the model to production. 

11.3.2 Feature calculation

Typically, features are associated with an entity type (restaurant, driver, customer, etc.)
because each feature represents a “has a(n)” relationship with each particular entity—
for instance, a restaurant has an average meal preparation time of 23 minutes, or a
driver has an average customer review of 4.3 stars. The feature store is then populated
via an ancillary process that precomputes the various features, such as the average
meal prep time for the last seven days for every restaurant or the average delivery time
in the city for the last hour. 

 These processes need to be scheduled to run periodically to cache the results in
the feature store and ensure that these features can be retrieved with sub-second
response times when the order arrives. A batch-oriented processing engine is best
suited for performing the pre-calculation of the features, as it can process a large vol-
ume of data efficiently. For instance, a distributed query engine, such as Apache Hive
or Spark, can execute multiple concurrent queries against a large dataset stored on
HDFS, using standard SQL syntax, as shown in figure 11.4. These jobs can asynchro-
nously compute the average meal prep time for all restaurants over a specific period
of time and can be scheduled to run hourly to keep these features up to date.

 As you can see in figure 11.4, a scheduled job can kick off multiple concurrent
tasks to complete the work in a timely manner. For example, the scheduled job could
first query the restaurant table itself to determine the exact number of restaurant IDs,
and then split the work by providing each instance of the restaurant feature calcula-
tion job with a subset of restaurant IDs. This divide-and-conquer strategy will speed up
the process considerably, allowing you to complete the work in a timely manner. 
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It is also important that you coordinate with the proper team(s) to develop, deploy,
and monitor these feature calculation jobs, as they are now business-critical applica-
tions that need to work continuously, or else the predictions made by your ML models
will degrade if the feature data is not updated in a timely manner. Using stale data in
your ML models will result in inaccurate predictions, which can lead to poor business
outcomes and dissatisfied customers.

11.4 Delivery time estimation
Now that we have sufficiently covered the background and theory, it is time to see how
to deploy an ML model that has been developed and trained by the data science team
at GottaEat. A perfect candidate would be the delivery time estimation ML model we
have been discussing throughout the chapter. As with any ML model that needs to be
deployed to production, the data science team is responsible for providing us with a
copy of the trained model to be used.

11.4.1 ML model export

Just like most data science teams, the data science team at GottaEat uses a variety of
languages and frameworks to develop their ML models. One of the biggest challenges

Restaurant
table

Restaurant
feature table

Feature
calculation

job_N

Feature
calculation

job_1

. . .

Scheduled
job

select avg(prep_time) from restaurant
WHERE restaurant_id = ? AND

DATEDIFF(day,order_date,GETDATE())
BETWEEN 0 and 7 

UPDATE restaurant_features SET
prep_time_last_7 = ?

WHERE restaurant_id = ? 

Figure 11.4 Feature calculation jobs will need to run periodically to update the 
features with new values based on the most recent data. A batch processing engine, 
such as Apache Hive or Spark, allows you to process many of these jobs in parallel.
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is finding a single execution framework that supports the models developed in differ-
ent languages.

 Fortunately, there several projects seeking to standardize ML model formats to
support separate languages for model training and deployment. Projects such as the
Predictive Model Markup Language (PMML) allow data scientists and engineers to
export ML models developed from a variety of languages into a language-neutral
XML format.

As you can see from figure 11.5, the PMML format can be used to represent models
developed in a variety of ML languages. Consequently, this approach can be used on
any of the supported model types developed in one of the supported languages
and/or frameworks.

 In the case of the delivery time estimation model, the data science team used the R
programming language to develop and train this model. However, since there isn’t
direct support for running R code inside Pulsar Functions, the data science team must
first translate their R-based ML model into the PMML format, which can easily be
accomplished using the r2pmml toolkit, as shown in the following listing.

  // Model development code

  dte <-(distance ~ ., data = df)                   B
  
  library(r2pmml)                                   c
  r2pmml(dte, "delivery-time-estimation.pmml");     d

B Finalize the development of the ML model.

c Import the library that translates the R model into PMML.

d Perform the translation from R to PMML.

The r2pmml library does a direct translation of the R-based model object into the
PMML format and saves it to a local file named delivery-time-estimation.pmml.

Listing 11.1 Exporting an R-based model to PMML

Languages/toolkits Model types

 - MatLab
 - Python
 - Python/PyTorch
 - Python/sci-kit-learn
 - Python/pandas
 - R
 - sklearn
 - Spark ML
 - TensorFlow
 - XGboost

 - Clustering
 - General regression model
 - Mining model
 - Naive Bayes model
 - Nearest neighbor model
 - Neural network
 - Regression model
 - RuleSet model
 - Scorecard
 - Support vector machine model
 - Tree model

Figure 11.5 A list of program-
ming languages, toolkits, and    
ML model types supported by the 
PMML. Any supported models   
developed in these languages can 
be exported to PMML and execut-
ed inside a Pulsar function.
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The PMML file format specifies the data fields to use for the model, the type of calcu-
lation to perform (regression), and the structure of the model. In this case, the struc-
ture of the model is a set of coefficients, which is defined as shown in the following
listing. We now have a model specification that we are ready to productize and apply
to our production data set to generate delivery time predictions.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<PMML version="4.2" xmlns="http://www.dmg.org/PMML-4_2">
    <Header description="deliver time estimation">
       <Application name="R" version="4.0.3"/>
       <Timestamp>2021-01-18T15:37:26</Timestamp>
    </Header>
    <DataDictionary numberOfFields="4">
       <DataField name="distance" optype="continuous" dataType="double"/>
       <DataField name="prep_last_hour" optype="continuous"  
         dataType="double"/>
       <DataField name="prep_last_7" optype="continuous" dataType="double"/>
            ...
    </DataDictionary>
    <RegressionModel functionName="regression">
      <MiningSchema>
        <MiningField name="distance"/>
            ...
      </MiningSchema>
      ...
      <NumericPredicitor name="travelTime" coefficient="7.6683E-4"/>
      <NumericPredicitor name="avgPreptime" coefficient="-2.0459"/>
      <NumericPredicitor name="avgDeliveryTime" coefficient="9.4778E-5"/>
            ..
  </RegressionModel>
</PMML>

Once the trained model has been exported to PMML, a copy of it should be pub-
lished to the Pulsar state store so the Pulsar Function can access it at runtime. This can
be accomplished by using the pulsar-admin putstate command, as shown in listing
11.3, which uploads the given file to a specified namespace inside Pulsar’s state store.
It is critically important that the namespace be the same as the one you will use to
deploy the Pulsar function that will be using the model in order for it to have read
access to the PMML file.

./bin/pulsar-admin functions putstate \                                B
  --name MyMLEnabledFunction \ 
  --namespace MyNamespace \
  --tenant MyTenant \                                                  c
  --state "{\"key\":\"ML-Model\", 
       \"byteValue\": <contents of delivery-time-estimation.pmml >}"   d

Listing 11.2 The delivery time estimation model in PMML format

Listing 11.3 Upload machine learning model to Pulsar’s state store
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B Using the pulsar-admin CLI tool to upload the PMML file

c You need to specify the correct tenant, namespace, and function name.

d Upload the contents of the generated PMML file.

Having the ability to automatically push model changes to production fits nicely
within the emerging field of machine learning operations (ML ops), which applies
the agile principles of continuous integration, delivery, and deployment to the ML
process to accelerate and simplify ML model deployment. In this case, we use a script
or CI/CD pipeline tool to check out the latest version of a model from source control
and upload it to Pulsar using a simple shell script. Additionally, ancillary jobs can be
scheduled to rotate different versions of the same model automatically based on a fac-
tor such as the time of day.

11.4.2 Feature vector mapping

The data science team must also provide us with a complete definition of the feature
vector we need to provide to the ML model, along with a map of where these features
reside inside the feature store(s), so we can retrieve these values at runtime and pro-
vide them to the model. The development team at GottaEat decided it would be eas-
ier to store the feature vector mapping information inside a protobuf object because
of its built-in support for associated maps in the protocol. This allows us to store the
data in the correct format and easily serialize/deserialize the data into a format that is
compatible with the Pulsar state store (i.e., a byte array). The protobuf protocol is also
language neutral, so it can be used by any of the programming languages supported
by Pulsar Functions, including Java, Python, and Go. The definition of the protobuf
object used to store the feature mapping information is shown in listing 11.4 and con-
tains three elements: the name of the table to query inside the feature store, a list of
all the features stored in the specified table that are required by the ML model, and
an associated map that defines the mapping between the features in the feature store
and the fields in the feature vector sent to the model.

syntax = "proto3";

message FeatureVectorMapping {
  string featureStoreTable = 1;              B
  repeated string featureStoreFields = 2;    c
  map<string, string> fieldMapping = 3;      d
}

B The name of the table inside the feature store that contains the fields specified

c A list of all of the fields we need to retrieve from the feature store table

d A mapping of each field name to its corresponding feature name inside the model’s feature vector

The list of features is used to dynamically construct the SQL query used to retrieve the
features to make the query as efficient as possible by returning only those values that

Listing 11.4 The feature vector mapping protocol
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we actually need instead of the entire row. The list also serves as a complete list of all
the keys in the map data structure, which allows us to iterate over the list and retrieve
all the feature-to-vector mappings contained in the map. 

 Once this information is captured inside a Protobuf object, it should be published
to the Pulsar state store using the putstate command. However, the Pulsar function
name will be that of the Pulsar function inside the feature collection pipeline that will
perform the feature lookup for the deployed model. In the case of the delivery time
estimation model, the feature extraction pipeline contains a Pulsar function named
RestaurantFeaturesLookup that queries the restaurant table of the feature store
using the ID of the restaurant that will be preparing the food for the customer.

public class RestaurantFeaturesLookup implements 
  Function<FoodOrder, RestaurantFeatures> {

    private CqlSession session;
    private InetAddress node;
    private InetSocketAddress address;
    private SimpleStatement queryStatement;
  
    @Override
    public RestaurantFeatures process(FoodOrder input, Context ctx) 
      throws Exception {
      if (!initalized()) {
      hostName = ctx.getUserConfigValue(HOSTNAME_KEY).toString();            B
      port = (int) ctx.getUserConfigValueOrDefault(PORT_KEY, 9042);          c
         dbUser = ctx.getSecret(DB_USER_KEY);    
         dbPass = ctx.getSecret(DB_PASS_KEY);                                d
         table = ctx.getUserConfigValue(TABLE_NAME_KEY);                     e
         fields = new String(ctx.getState(FIELDS_KEY));                      f
         sql = "select “ + fields + “ from “ + table + 
            “ where restaurant_id = ?”                                       g
      queryStatement = SimpleStatement.newInstance(sql);                     h
      }
      return getRestaurantFeatures(input.getMeta().getRestaurantId());
    }
    
    private RestaurantFeatures getRestaurantFeatures (Long id) {
      ResultSet rs = executeStatement(id);                                   i
        
       Row row = rs.one();                                                   j
       if (row != null) {
         return CustomerFeatures.newBuilder().setCustomerId(customerId)   ...1)
      .build();
   }
   return null;
  }
    
  private ResultSet executeStatement(Long customerId) {
    PreparedStatement pStmt = getSession().prepare(queryStatement);

Listing 11.5 The restaurant feature lookup function
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    return getSession().execute(pStmt.bind(customerId));
  }
  private CqlSession getSession() {
    if (session == null || session.isClosed()) {
      CqlSessionBuilder builder = CqlSession.builder()
        .addContactPoint(getAddress())
        .withLocalDatacenter("datacenter1")
      .withKeyspace(CqlIdentifier.fromCql("featurestore"));
            
       session = builder.build();
    }
     return session;
  }
}

B Get the feature store hostname from the configs.

c Get the feature store port from the configs.

d Get the credentials for the feature store.

e Get the name of the table in the feature store to query.

f Get all of the features we need to retrieve from the feature store.

g Construct an SQL statement using the specified fields and table name.

h Construct a prepared statement using the specified fields.

i Execute the prepared statement for the given ID.

j There is only one record for any given ID.

1) Map the fields to the outgoing schema.

The RestaurantFeaturesLookup function will connect to the feature store and
retrieve only the features from the feature store that were specified by the data science
team when they published them to the state store. Next, it maps those values to the
outgoing schema type and publishes the message to the incoming topic of the Pulsar
function that will execute the delivery time estimation model.

11.4.3 Model deployment

The final step in the process of deploying an ML model in near real-time mode is writ-
ing the Pulsar function itself. Fortunately, once an ML model is exported to the
PMML format, it can be deployed to production using a wide variety of execution
engines available in Java. In our case, we will use an open-source library called JPMML,
which we can include in our Maven dependencies, as shown in the next listing. 

  <dependency>
    <groupId>org.jpmml</groupId>
    <artifactId>pmml-evaluator</artifactId>
    <version>1.5.15</version>
  </dependency>

This library allows us to import PMML models and use them to generate predictions.
Once the PMML model has been loaded into the JPMML evaluator class, we are ready

Listing 11.6 The JPMML library dependency
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to generate delivery time predictions on incoming food orders. Therefore, as you can
see from listing 11.8, the very first step in the process is to retrieve the PMML model
that is stored inside Pulsar’s state store and use it to initialize the appropriate model
evaluator. In this case, we need a regression model evaluator, since the delivery time
estimation model uses linear regression.

import org.dmg.pmml.FieldName;
import org.dmg.pmml.regression.RegressionModel;
import org.jpmml.evaluator.ModelEvaluator;
import org.jpmml.evaluator.regression.RegressionModelEvaluator;         B
import org.jpmml.model.PMMLUtil;

import com.gottaeat.domain.geography.LatLon;
import com.gottaeat.domain.order.FoodOrderML;

public class DeliveryTimeEstimator implements 
  Function<FoodOrderML, FoodOrderML> {                                  c

    private IgniteClient client;
    private ClientCache<Long, LatLon> cache;                            d
    private String datagridUrl;
    private String locationCacheName;
    
    private byte[] mlModel = null;
    private ModelEvaluator<RegressionModel> evaluator;                  e

    
   @Override
    public FoodOrderML process(FoodOrderML order, Context ctx) 
      throws Exception {
        
      if (initalized()) {
        mlModel = ctx.getState(MODEL_KEY).array();                      f
        evaluator = new RegressionModelEvaluator(
         PMMLUtil.unmarshal(new ByteArrayInputStream(mlModel)));        g
      }
        
      HashMap<FieldName, Double> featureVector = new HashMap<>();
        
      featureVector.put(FieldName.create("avg_prep_last_hour"), 
        order.getRestaurantFeatures().getAvgMealPrepLastHour());
        
      featureVector.put(FieldName.create("avg_prep_last_7days"), 
        order.getRestaurantFeatures().getAvgMealPrepLast7Days());       h
    
      ...
    
      featureVector.put(FieldName.create("driver_lat"),
        getCache().get(order.getAssignedDriverId()).getLatitude());
        
      featureVector.put(FieldName.create("driver_long"),

Listing 11.7 The delivery time estimation function
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        getCache().get(order.getAssignedDriverId()).getLongitude());    i
        
      Long travel = (Long)evaluator.evaluate(featureVector)
    .get(FieldName.create("travel_time"));                              j
        
      order.setEstimatedArrival(System.currentTimeMillis() + travel);   1)
      return order;
   }

...

}

B Using the JPMML regression evaluator for the linear regression ML model

c The incoming message contains order details and retrieved features from the feature store.

d The model requires information from the in-memory data grid.

e The JPMML model evaluator

f Retrieve the model from the Pulsar state store.

g Load the model into the regression evaluator class.

h Populate the feature vector with values stored inside the incoming message.

i Populate the feature vector with the driver location data from the IMDG.

j Pass the feature vector to the model and retrieve the prediction.

1) Compute the estimated arrival time by adding the predicted travel time to the current time.

Once the evaluator has been initialized, the DeliveryTimeEstimator constructs a fea-
ture vector and populates it with values contained inside the incoming message along
with some values from other low-latency data sources, such as an in-memory datagrid.
In this case, the model requires the driver’s current location (latitude/longitude),
which is only available from the IMDG. 

11.5 Neural nets
While the PMML format is very flexible and supports a wide variety of languages and
ML models, there are instances when you will need to deploy an ML model that isn’t
supported by PMML. Neural net models, which can be used to solve a variety of busi-
ness problems, such as sales forecasting, data validation, or natural language process-
ing, cannot be represented as PMML, and therefore a different approach is required
for them to be deployed in near real-time mode.

 Modeled loosely on the human brain, a neural net consists of thousands or even
millions of artificial neurons (nodes) that are interconnected. Most of today’s neural
nets are organized into multiple layers of nodes, as shown in figure 11.6. Each node
gets weighted input data that is fed into the computing node function and outputs the
result of the function to the subsequent layer in the network. The data is fed forward
through the network until a single value is produced.

 The basic concept of layering is that each additional layer of the network increases
the accuracy of the model itself. In fact, the term deep learning refers to the use of neu-
ral nets that are several layers deep. In this section, I will demonstrate the process of
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training and deploying a neural net using the popular high-level neural network API
known as Keras, which is written in Python.

11.5.1 Neural net training

Neural nets are designed to recognize patterns in data, and they learn to do this by
analyzing large training datasets. The process of training a neural net involves using a
training dataset to determine the proper model weights for each node in the network.
The training sets are often labelled, so the expected outputs are known in advance,
and then the weights are adjusted until the model produces the expected results.
Therefore, it is important to remember that these weights are critical to the perfor-
mance and accuracy of the models.

 The first step is to train a model using the Keras library in Python using your train-
ing data, as shown in listing 11.8. The input to the model shown is ten binary features
that describe the various features of a food order, such as average order price of the
customer, the distance between the customer’s home address and the delivery address
of the order, and other features. The output is a single variable that describes the
probability that the order is fraudulent. 

import keras
from keras import models, layers                         B
# Define the model structure
model = models.Sequential()                              c
model.add(layers.Dense(64, activation='relu', input_shape=(10,)))
...
model.add(layers.Dense(1, activation='sigmoid'))
model.compile(optimizer='rmsprop',loss='binary_crossentropy',
              metrics=[auc])

Listing 11.8 Training the neural net using Python

. . .

Input layer Output layerComputational layers

Figure 11.6 A neural net is comprised of an input layer, an output layer, and any number of hidden 
computational layers. The term deep learning refers to a neural network that is several computational 
layers deep.
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history = model.fit(x, y, epochs=100, batch_size=100,
                    validation_split = .2, verbose=0)    d

model.save("games.h5")                                   e

B Use the Keras libraries.

c Define the model structure.

d Compile and fit the model.

e Save the model in H5 format.

As you can see in figure 11.7, each node inside a neural net takes in a feature vector as
input along with a set of weights associated with each feature. These weights allow us
to assign more importance to some features than to others when generating our pre-
diction, such as the distance between the delivery address of the order and the cus-
tomer’s home address. If that feature is a good indicator of a fraudulent transaction,
then it should have a higher weight. The process of training and fitting the model
yields a set of optimal weights for each input node in the neural net. 

Once the model has been properly trained (i.e., you have calculated the optimal
weights for each input node) and is ready to deploy, you can save it in a specialized
Keras-specific format known as H5. This format retains the complete models, includ-
ing the architecture, weights and training configuration, whereas Keras models
exported to JSON format only contain the model architecture but not the calculated
weights. Therefore, be sure to always use the H5 format when exporting your Keras-
based neural nets.

11.5.2 Neural net deployment in Java

To execute the Keras model within a Java runtime environment, we’ll use the Deep-
learning4J (DL4J) library. It provides functionality for deep learning in Java and can

Feature vector

[ x1, x2, x3,  ..]

[ w1, w2, w3,  ..]

Weight vector

xi * wi

n

i =1

Each input xi has an associated weight wi
that has been precomputed during the
model training phase. 

Figure 11.7 Each node in the neural net takes a feature vector as input along with 
a precomputed set of weights that are associated with each feature. These weights 
are calculated during the model training phase and are critical to the accuracy of the 
neural net.



307Neural nets

load and utilize models trained with Keras. One of the key concepts to become famil-
iar with when using DL4J is tensors. Java does not have a built-in library for efficient
tensor options, which is why I included the NDJ4 library in the Maven dependencies,
as shown in the following listing.

<dependency>      
    <groupId>org.deeplearning4j</groupId>      
    <artifactId>deeplearning4j-core</artifactId>
    <version>1.0.0-M1</version>    
  </dependency>         
  <dependency>      
    <groupId>org.deeplearning4j</groupId>      
    <artifactId>deeplearning4j-modelimport</artifactId>      
    <version>1.0.0-M1</version>    
  </dependency>                       
  <dependency>      
    <groupId>org.nd4j</groupId>      
    <artifactId>nd4j-native-platform</artifactId>
    <version>1.0.0-M1</version>    
  </dependency>

Now that we have the DL4J libraries set up, we can start using the neural net in near
real-time mode by embedding it inside a Pulsar function, as shown in the following
listing.

import org.deeplearning4j.nn.modelimport.keras.KerasModelImport;
import org.deeplearning4j.nn.multilayer.MultiLayerNetwork;        B
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.factory.Nd4j;

public class FraudDetectionFunction implements 
  Function<FraudFeatures, Double> {                               c

  public static final String MODEL_KEY = "key";
  private MultiLayerNetwork model;                                d

  public Double process(FraudFeatures input, Context ctx) 
    throws Exception {
    if (model == null) {
      InputStream modelHdf5Stream = new ByteArrayInputStream(
        ctx.getState(MODEL_KEY).array());                         e
      model = KerasModelImport.importKerasSequentialModelAndWeights(
        modelHdf5Stream);                                         f
  }

      INDArray features = Nd4j.zeros(10);                         g
      features.putScalar(0, input.getAverageSpend());
      features.putScalar(1, input.getDistanceFromMainAddress());

Listing 11.9 Deeplearning4J library dependencies

Listing 11.10 Deploying the neural net inside a Java-based Pulsar function
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      features.putScalar(2, input.getCreditCardScore());          h
      . . .

     return model.output(features).getDouble(0);                  i
    }
  }

B Using the DL4J libraries

c Input is a collection of features used for fraud detection.

d The ML model

e Retrieve the trained model from the state store.

f Initalize the model with the HDF5 file.

g Create an empty feature vector for 10 features.

h Populate the feature vector with values.

i Execute the model using the given feature vector, and return the predicted fraud probability.

The model object provides predict and output methods. The predict method
returns a class prediction (fraud or not fraud), while the output method returns a
numeric value representing the exact probability. In this case, we will return the
numeric value, so we can evaluate it further (e.g., compare it to a configurable thresh-
old used to define our threshold for fraud).

Summary 
 Pulsar Functions can be used to provide near real-time machine learning on

streaming data to produce actionable insights.
 Providing near real-time predictions requires an ML model that takes a pre-

defined set of inputs, known as a feature set.
 A feature is a numeric representation of an individual aspect of an object, such

as the average meal preparation time of a restaurant.
 Most features within a feature vector cannot be calculated using the data from a

single message, nor can they be computed in a timely manner. Therefore, it is
common to have ancillary processing compute these values in the background
and store them in a low-latency data store.

 The predictive model markup language (PMML) is a standard format for repre-
senting ML models developed in a variety of languages, which helps make ML
models portable.

 There is an open-source Java-based project that supports the evaluation of
PMML models, which allows us to easily execute any PMML-supported model
inside a Pulsar function.

 You can use other language-specific libraries to execute non-PMML models
inside Pulsar Functions as well.



308

Edge analytics

If you are like most people, when you hear the term the Internet of Things (IoT), you
tend to think of smart thermostats, internet-connected refrigerators, or personal
data assistants, such as Alexa. While these consumer-oriented IoT devices tend to get
a lot of attention, there is a subset of IoT called the industrial internet of things (IIoT),
which focuses on the use of sensors that are connected to machinery and vehicles
within the transport, energy, and industrial sectors. Companies use the information
collected from sensors that are physically embedded inside industrial equipment to
monitor, automate, and predict all kinds of industrial processes and outcomes.

 The data collected from these IIoT sensors has several practical applications,
including monitoring tens of thousands of miles of remote industrial equipment
within the energy industry to ensure that there are no imminent failures that could
lead to a catastrophic event resulting in a large environmental impact. Sensor data

This chapter covers
 Using Pulsar for edge computing

 Using Pulsar to perform edge analytics

 Performing anomaly detection on the edge using 
Pulsar Functions

 Performing statistical analytics on the edge using 
Pulsar Functions
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can also be gathered from non-stationary IIoT sensors, such as in a large fleet of
refrigerated tractor trailers used to distribute a vaccine that must be kept below a cer-
tain temperature in order to remain effective across the globe. These sensors allow us
to detect a gradual warming within any given refrigeration unit and reroute the cargo
to a nearby maintenance facility for repairs.

 In such a situation, it is important that we detect the change in temperature within
the refrigeration units as soon as possible so we can react in time to preserve the heat-
sensitive cargo. If we waited until the cargo arrived at its intended destination before
we checked the temperature, it would be too late, and the vaccine would be useless.
This phenomenon is often referred to as the diminishing time value of data, since the
value obtained from the information is at its highest point immediately after the event
occurs, and it rapidly diminishes over time. In the case of the refrigeration unit fail-
ure, the sooner we can react to that information, the better. If we are unaware of the
failure for hours, the cargo is most likely going to spoil, and the information will no
longer be actionable because it will be too late to do anything about it. As you can see
in figure 12.1, the longer the response time to such a catastrophic event, the less
impact any remedial action will have on the system. 

Figure 12.1 The value of any piece of information diminishes rapidly over time, and the goal 
of edge computing is to reduce the overall decision latency by eliminating the capture latency 
produced by transmitting the data from the sensor to the cloud for analysis.
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The amount of time between when an event occurs and when a corresponding action
is taken in response is known as the decision latency and is comprised of two compo-
nents: the capture latency, which is the amount of time required to transfer the data to
your analysis software, and the analysis latency, which is the amount of time required to
analyze the data to determine what action to take.

 From a technological perspective, the IIoT provides the same basic capability as
any other “smart” consumer IoT device, which refers to the automated instrumenta-
tion and reporting capabilities of physical devices that previously did not have those
capabilities. For example, the defining characteristic of a “smart” thermostat is that it
can communicate its current reading and be adjusted remotely via a smartphone app.
That being said, the scale of a typical IIoT deployment is significantly larger than a
simple system that lets you adjust your thermostat from your phone. 

 With potentially millions of sensors spread across a single factory plant floor or a
large fleet of tractor trailers, each of which is producing a new metric every second,
one can easily see that these IIoT datasets are both high volume and high frequency. A
common approach to processing these datasets is to collect all of the individual data
elements, transfer them to the cloud, and use traditional SQL-based data analysis
tools, such as Apache Hive, or more traditional data warehouses. This ensures that the
analysis is done on a complete dataset from all of the sensors, so any inter-sensor read-
ing relationships can be observed and used for analysis (e.g., the correlation between
a temperature sensor and the overall plant humidity from a different sensor can be
tracked and analyzed). 

 However, this approach has some serious disadvantages, such as significant deci-
sion latency (the time between when the event occurred and when it gets processed),
cost inefficiencies associated with having to provision sufficient network bandwidth
and computing resources to process such large datasets, and the storage cost of retain-
ing all of this information. 

 From a practical perspective, the amount of the time required to transfer data
from most IIoT platforms to a cloud computing environment for analysis makes it
nearly impossible to perform any real-time reaction to a potentially catastrophic
event. While some of the most dramatic examples of such an event include the detec-
tion of faults in power plants or airplanes before they explode or crash, the speed of
data analysis in most IIoT applications is critical as well.

 In order to overcome this limitation, some of the data processing and analysis of
IIoT data can be performed on infrastructure that is physically located closer to the
source of the data itself. Bringing computation closer to the source of the data
decreases the capture latency and allows applications to respond to data as it’s being
created almost instantaneously rather than having to wait for the information to be
transmitted over the internet before processing it. This practice of processing data
near the edge of the network where the data is being generated, instead of in a cen-
tralized data collection point such as a data center or cloud, is often referred to as edge
computing.
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 In this chapter, I’ll demonstrate how we can deploy Pulsar Functions inside an
edge computing environment to provide near real-time data processing and analysis
to react more quickly to events within an IIoT environment and minimize the deci-
sion latency between the time a high-value event is perceived and when the appropri-
ate response is made. 

12.1 IIoT architecture
An IIoT platform acts as a bridge between the physical world of industrial equipment
and the computational world of automated control systems used to monitor and react
to it. As such, one of the primary goals of any IIoT system is the collection and process-
ing of the data generated by all of the physical sensors distributed across various
pieces of industrial equipment. While every IIoT deployment is different, they are all
comprised of the three logical architectural layers, shown in figure 12.2, which play an
important role in the data acquisition and analysis process. 

Within an IIoT environment, there can be millions of sensors, controllers, and actua-
tors distributed across various pieces of industrial equipment within a single factory
location. All of these sensors and devices collectively form what is commonly referred
to as the perception and reaction layer because they allow us to perceive what is going on
within the physical world.

12.1.1 The perception and reaction layer

The perception and reaction layer contains all of the hardware components (i.e., the
things within the Internet of Things). As the basis for every IIoT system, these connected
devices are responsible for perceiving the physical conditions of the industrial
equipment and surrounding environment as sensed through numerous sensors that are
either embedded in the devices themselves or implemented as standalone objects. These
sensors emit a continuous, real-time stream of sensor readings either over lightweight
machine-to-machine (LwM2M) protocols, such as Bluetooth, Zigbee, and Z-Wave, or
longer-range protocols, such as MQTT or LoRa, if they have a wired connection.

Perception and
reaction layer Transportation layer Data processing layer

Sensor hubs IoT gateways Edge server Cloud

LwM2M MQTT TCP/IP TCP/IP

Sensors and actuators

Figure 12.2 The three logical layers of an IIoT architecture ingest data, analyze it, and then present the 
information so that can be used by humans or by autonomous systems for making contextually relevant 
decisions in real time.
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 In practice, most IIoT environments require multiple network protocols to sup-
port the various devices within the environment. Battery-powered sensors, for exam-
ple, can only communicate over short distances using lightweight protocols designed
for short-range use. In general, the larger the distance the signal needs to travel, the
more power that is required by the device to send it. Battery-operated devices using a
longer-range protocol to send their data aren’t practical.

 One of the primary responsibilities of the perception and reaction layer is to per-
ceive the environment via the sensors by capturing their readings and relaying them
up to the data processing layer. The other critical responsibility of this layer is reacting
to the actionable insights produced by the processing layer and translating them into
an immediate physical action when we detect a potentially dangerous condition.
Being able to detect a potentially dangerous condition doesn’t provide much business
value if you can’t respond to it in a meaningful way. 

 Several decades before the emergence of the IIoT, most large manufacturers
invested large amounts of time and effort into specialized software systems known as
supervisory control and data acquisition (SCADA) systems that allow them to monitor and
control their industrial equipment. These systems contain control networks that per-
mit the automated operation of the mechanical or electro-mechanical devices known
as actuators that can perform a variety of manual operations, such as opening a pressure
valve on a piece of equipment or completely turning off the power to a given machine. 

 By leveraging the existing control network within these SCADA systems, we are
able to programmatically utilize these actuators from within our IIoT application by
simply sending the correct command to activate the actuator. Where the sensors act as
the “eyes” of this layer, the actuators serve an equally important role as the “hands”
that allow us to respond to the data. Without them, our ability to react to a cata-
strophic sensor reading would be nonexistent. The information collected within the
perception and reaction layer is sent over the transportation layer which, as the name
implies, is responsible for the secure transmission of the sensor data up to a central-
ized data processing layer.

12.1.2 The transportation layer

The sensor readings that are generated inside the perception and reaction layer and
transmitted over LwM2M protocols are detected by intermediary devices, known as
sensor hubs, which sit at the outermost edge of the transmission layer. These special-
ized devices can receive the sensor readings being broadcast over the LwM2M proto-
cols by low-power devices.

 The primary purpose of the sensor hubs is to provide a bridge between short-range
and long-range communication technologies. Battery-enabled IoT devices communi-
cate with the sensor hubs, using short-range wireless transmission modes, such as
Bluetooth LE, Zigbee, and Z-Wave. Upon receipt of the messages, the sensor hubs
immediately relay the messages over a longer-range protocol, such as CoAP, MQTT, or
LoRa, to a device known as an IoT gateway. Among these longer-range protocols, the
message queuing telemetry transport (MQTT) specializes in low-bandwidth, high-latency
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environments, which makes it the one of the most commonly used protocols within
the IIoT space. 

 An IoT gateway is a physical device that serves as the connection point between the
cloud and the sensor hubs. These devices provide a communication bridge between
the MQTT protocol and the Pulsar messaging protocol and are responsible for aggre-
gating all of the incoming sensor readings sent over the lightweight, binary MQTT
protocol and aggregating them before forwarding them to the data processing layer
using Pulsar’s messaging protocol. 

12.1.3 The data processing layer
As you can see in figure 12.2, the processing layer spans two physical layers: the edge
servers that are located close to the industrial equipment and the corporate data cen-
ter or cloud infrastructure. The edge servers are used to aggregate, filter, and priori-
tize data from the massive volume of data that a large IIoT deployment typically
generates to minimize the volume of information that needs to be forwarded to the
cloud. This preprocessing of the data helps reduce transmission costs and response
times. From a hardware perspective, the edge processing layer consists of one or more
traditional computers or servers that are located within the industrial location itself
(e.g., inside the factory). While the computing capacity at this layer might be con-
strained due to physical space limitations of the given location, these devices always
have an internet connection that allows them to forward the data they have collected
to the company’s data center and/or cloud provider for further analysis and archival. 

12.2 A Pulsar-based processing layer
Now that we have a basic understanding of an IIoT architecture, I want to demonstrate
how we can use Apache Pulsar to enhance the processing capabilities of the architec-
ture by extending the data processing layer in closer proximity to the sensors and actu-
ators than in a traditional IIoT setting. First, let’s review the computing resources that
are available on each of the hardware devices within the IIoT platform. As you can see,
figure 12.3 shows that there is an inverse relationship between the available computing
resources and their proximity to the industrial equipment. The sensors, actuators, and
other smart devices located within the perception and reaction layer are microcontrol-
ler based with limited memory and processing power. They are primarily battery oper-
ated and, therefore, are not good candidates for performing any sort of computation.
While these wireless devices can be augmented with energy-harvesting devices that
convert ambient energy into electrical energy, their power is best reserved for wireless
communication with the sensor hubs rather than for computation.

 Sensor hubs are typically hosted on slightly larger devices, referred to as systems on
a chip (SoCs), that can have some or all of the components of a traditional computer,
including a CPU, RAM, and external storage, although at a smaller scale. But given
the sheer number of these devices, their specifications are kept to a minimum to be
economically feasible to deploy in large number. Since these devices are primarily
used to receive and transmit data, they only require a limited amount of memory to
buffer the messages before retransmitting them over a different protocol.
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IoT gateways are also hosted on SoC hardware with one of the most popular platforms
for these devices being the Raspberry Pi, which can have up to 8 GB of RAM, a quad-
core CPU, and one MicroSD card slot for up to one terabyte (1 TB) of storage. These
devices can also run traditional operating system software, such as Linux, which makes
them an ideal candidate for running complex software applications, such as Pulsar.

 The last physical piece of hardware is edge servers, which are an optional feature
within the IIoT architecture. Depending on the nature of the industrial environment,
these devices can range in size from multiple servers with terabytes of RAM, multiple
cores, and terabytes of disk storage residing inside a server closet on a factory floor, to
a single desktop computer on a remote drilling site. Just like the IoT gateways, devices
at this layer run more traditional operating systems and resemble what most people
think of when using the term computer.

 From a computing perspective, any device that has sufficient computing resources
(8 GB of RAM and a multi-core x86 CPU) to run a traditional operating system and an
internet connection is a potential hardware platform for hosting a Pulsar broker.
Within an IIoT architecture, this would include not only the edge servers and the IoT
gateway devices, but also any sensor hub that is running on a sufficiently equipped
SoC device as well.

 Installing a Pulsar broker on these devices enables us to deploy Pulsar functions
directly on them to perform the analysis much closer to the source of the data. Doing
so effectively extends the data processing layer closer to the origin of the sensor data,
as shown in figure 12.4. We are effectively extending the edge closer to the industrial
equipment, and doing so creates a large distributed computational framework where
Pulsar functions can be deployed across two tiers of the architecture to perform paral-
lel computation on the data.

Sensor hubs IoT gateways Edge server CloudSensors and actuators

100,000s 10,000s 1,000s 10s 1

Number of instances

Negligible 100s KB
1 core

1s GB
1 core

100s GB
Multi-core Immeasurable

Computing resources per device

LwM2M MQTT TCP/IP TCP/IP

Figure 12.3 There is an inverse relationship between the number of devices deployed at each layer and the 
computing resources found within each device.
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The key takeaway from this is the fact that we can deploy our Pulsar functions on any
of the devices inside the IIoT environment that are capable of hosting a Pulsar broker
and have them perform complex data analysis on the edge, rather than just collecting
the events and forwarding upstream for processing, as is done in a more traditional
IIoT environment.

 To be fair, some IIoT vendors do provide software packages that can be used to
process data on IoT gateway devices as well, but the features are typically limited to
more rudimentary capabilities, such as filtering and aggregation. Furthermore, these
software packages are closed source and do not allow for you to extend the framework
to add your own data processing functions. However, with Pulsar Functions, you can
easily create and use your own functions to perform more complex data analysis.

 It is also worth noting that Apache Pulsar provides support for the MQTT protocol
via a plugin, which allows devices using the MQTT protocol, such as the sensor hubs, to
publish messages directly to a topic on a Pulsar broker. This allows us to use Pulsar as
an IoT gateway device without the need for another piece of software to act as the
MQTT message broker to consume and process the sensor data directly on the gateway
itself, as you can see in figure 12.5. A Pulsar-based IoT gateway supports bidirectional
communications over the MQTT protocol, which allows the Pulsar functions to send
messages to the actuators in response to potentially catastrophic events they detect. 

Sensor hubs IoT gateways Edge server Cloud

LwM2M MQTT TCP/IP TCP/IP

Sensors and actuators

Perception and
reaction layer Data processing layerTransportation layer

Figure 12.4 By installing Pulsar brokers on the IoT gateways and edge servers, we can extend the data 
processing layer closer to the source of the data itself, which will enable us to react to it much quicker.

Sensor hubsSensors and actuators Pulsar-based IoT gateway

Broker
Thread pool

MQTTLwM2M TCP/IP

Figure 12.5 The complete functionality of an IoT gateway can be performed using a Pulsar broker that has 
the MQTT plugin enabled, which allows it to receive messages from the sensor hubs, while the Pulsar functions 
can be administered via the TCP/IP connection.
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The TCP/IP connection not only enables users to deploy, update, and administer Pul-
sar Functions directly on the IoT gateway device, but it also allows the Pulsar broker to
communicate with an Apache BookKeeper-based storage layer hosted in a remote
location. Last, and certainly not least, the TCP/IP connection allows us to communi-
cate with other Pulsar clusters within the IIoT architecture—particularly ones that
have been deployed on the edge servers. This allows us to forward data generated on
all of the IoT gateways up to a centralized location for additional edge processing
before finally being sent to the cloud for archival. 

12.3 Edge analytics
The practice of performing some or all of the data analysis on infrastructure outside
of a traditional data center or cloud computing environment is commonly referred to
as edge analytics and differs from traditional analytics in a few other key ways that must
be kept in mind when you are designing your overall analytics strategy. For starters,
the analysis must be done on streaming datasets, where each piece of information will
be provided to your Pulsar function only once. Since there is very limited physical disk
space in an edge environment, these sensor values are not retained, and thus cannot
be reread at a future point in time. If you wanted to determine the average reading of
a sensor over the previous hour in a cloud environment, for example, you could sim-
ply execute an SQL query to calculate it for you from the historical data. This is not an
option with edge analytics. Another big difference is that the closer you move the pro-
cessing to the sensors, the less information you have in your dataset, which makes the
detection of patterns between sensors that are not co-located within the range of the
same IoT gateway impossible.

12.3.1 Telemetric data

In order to get a better understanding of the term edge analytics and what we are trying
to accomplish by performing some of the data analysis on the edge, it is best to start
with a basic understanding of the type of data we are processing in an IIoT environ-
ment. The overarching function of any IIoT system is the collection of sensor data so
it can be used to monitor and manage the company’s industrial infrastructure. Once
the data is collected, it can then be analyzed for any potential events of interest that
might need to be addressed.

 These sensors are constantly emitting a stream of observations obtained through
repeated measurements of the same variable over time, such as a sensor that sends the
temperature reading of a specific piece of equipment every second. These sequences
of numerical data points taken at fixed intervals in chronological time order are
referred to as time-series data. The entire process of collecting this time-series informa-
tion in the form of measurements or statistical data and forwarding it to remote sys-
tems is often referred to as telemetry. Like nearly all time-series datasets, this telemetric
data will often have one or more of the following characteristics:
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 Trend—When referring to the trend in time series data, we are referring to the
fact that the data has a pronounced trajectory in one direction (either up or
down) over a specified timeframe. A good example of a trend would be a steady
long-term increase in network traffic.

 Cycles—Repeating and predictable fluctuations in the data that are not at a
fixed frequency and, thus, cannot be correlated to any specific time period or
interval.

 Seasonality—If there are regular and predictable cycles within the data that are
correlated with the calendar (e.g., daily, weekly, etc.), the data has a seasonality
characteristic. This differs from a trend because the cycle fluctuates for a short
period of time and is usually driven by outside factors, such as a spike in net-
work traffic to a popular e-commerce site during Cyber Monday.

 Noise—This refers to randomness in the data points that cannot be correlated
with any explained trends. Noise is unsystematic and short-term, and needs to
be filtered out to minimize its detrimental impact on our predictions. Consider
a temperature sensor that has consistently reported a value of 200 degrees Fahr-
enheit over the past hour. Any sensor reading that is significantly different than
the previous values we have received is most likely just noise and should be
ignored. For instance, a single sensor reading of 25 degrees Fahrenheit is
mostly likely not an accurate reading and should be ignored.

In the context of IIoT, edge analytics are used to detect these characteristics of the
data so they can then be used to predict future values based on previously observed
values, as shown in figure 12.6. The real observed values can then be compared to the
predicted values to determine whether some sort of action needs to be taken. For
instance, if a pressure reading is trending downward, this might indicate a loss of pres-
sure in the line, and a maintenance team should be dispatched to investigate.

Figure 12.6 Time series forecasting is the use of time-series data to predict future 
values based on previously observed values.
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12.3.2 Univariate and multivariate

The other aspect of telemetric datasets is the number of variables that are being
tracked within them. The most common scenario is when the data contains a set of
observations of a single variable (e.g., the readings from the exact same sensor). The
more formal term for this type of dataset is univariate, and for our purposes we will
assume that all of the datasets collected at the IoT gateway layer are univariate. As you
may have guessed, any dataset that tracks more than one variable is known as multivar-
iate and allows us to track the relationship between multiple sensor readings over the
same timeframe. Rather than containing a single value at a given point in time, these
datasets contain several values. Within a Pulsar-enabled IIoT architecture, multivariate
datasets are generated using Pulsar Functions by combining several univariate datasets
together, as shown in figure 12.7, where the values from each sensor taken at the same
time are combined into a tuple of three values.

Multivariate datasets can be used to perform more complex and accurate analysis by
including data from multiple sources that is strongly correlated. Since there is no limit
to the number of variables that can be contained within these datasets, any number of
readings may be combined as needed. In fact, these datasets are well suited to serve as
feature stores for any ML model you wish to deploy on the edge. As you may recall
from chapter 11, feature stores contain a set of precalculated values required by ML
models. These feature sets are populated by external processes that rely on historical
data to calculate the values. In a Pulsar-enabled IIoT environment, these multivariate
datasets are populated from the univariate datasets being collected on the edge, which
ensures that your ML models are using the most-recent data to make their predictions.

Sensor A

...72.0, 72.0, 71.9, 71.9

Sensor B

Sensor C

...101, 101, 96, 107

...38.6, 38.5, 38.6, 38.6

38.6
71.9
107

38.6
71.9
96

38.5
72.0
101

38.6
72.0
101

...

Univariate datasets

Multivariate dataset

Figure 12.7 Each sensor emits a sequence of readings at a predetermined interval. Upon receipt on the 
IoT gateway, these univariate datasets are combined into a multivariate dataset that contains the values 
of all three sensors at a given point in time. This allows us to detect patterns and correlations between 
these sensor values.
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12.4 Univariate analysis
The endless streams of readings taken from the same sensor are the foundation of
edge analytics. These univariate datasets represent the raw data used to perform the
analysis of the IIoT data as a whole. Therefore, it is best to start by covering the type of
analysis that can be performed on these univariate datasets. A summary of the various
types of analytic processing commonly performed is depicted in figure 12.8.

This processing is accomplished using Pulsar functions deployed on the IoT gateways
closest to the source of the data. Therefore, it is important that these functions mini-
mize the amount of memory and CPU required to perform their analysis.

12.4.1 Noise reduction

I previously mentioned how there can be noise (i.e., randomness) within the sensor
data. In order to better forecast future data values, an important preprocessing step is
the reduction of the noise in these univariate datasets. A common technique used to
smooth out these fluctuations of the data is to simply compute the mathematical aver-
age of the data points within a predefined time window to produce a value. This com-
puted moving average is then retained rather than the raw values. Doing so minimizes
the impact that any individual sensor reading has on the reported value (e.g., if you
have 99 sensor readings with the same value of 70 and one with a value of 100, then

SMA

Pulsar-based IoT gateway

LwM2M
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overTCP/IP
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TimeSeries
summary

Anomaly
detection

Pulsar-based
edge server
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Figure 12.8 The sensor publishes its readings to the Sensor A Raw Data topic that is used 
as input to three Pulsar functions. Two of the functions, SMA and TimeSeriesSummary, use 
the values to compute statistical values from the raw data before publishing these statistics 
to local topics that are configured to be geo-replicated to the Pulsar cluster running on the 
edge server. The third function determines whether the sensor value is anomalous and should 
activate an actuator in response to any potentially catastrophic event it detects.
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using a computed average of 70.3 would effectively smooth out the data and provide a
value that is more indicative of the sensor reading over that interval).

 While there are many different moving average models, for the sake of brevity, I
will only cover the simple moving average in this chapter. A simple moving average is cal-
culated by retaining the most recent subset of the time-series data, such as the last 100
sensor readings. When a new reading arrives, it is used to replace the oldest value in
the collection. Once the newest value has been added, the mathematical average of
these remaining values is computed and returned. 

public class SimpleMovingAverageFunction implements Function<Double, Void> {

    private CircularFifoQueue<Double> values;           B
    private PulsarClient client;                        c
    private String remotePulsarUrl, topicName;
    private boolean initalized;
    private Producer<Double> producer;
    
    @Override
     public Void process(Double input, Context ctx) throws Exception {    
      if (!initalized) {
        initalize(ctx);
      }
        
      values.add(input);                                d
      double average = values.stream()
        .mapToDouble(i->i).average().getAsDouble();     e
      publish(average);                                 f
      return null;
   }

    private void publish(double average) {
      try {
        getProducer().send(average);
      } catch (PulsarClientException e) {
        e.printStackTrace();
      }
    }

    private PulsarClient getEdgePulsarClient() throws PulsarClientException {
      if (client == null) {
        client = PulsarClient.builder().serviceUrl(remotePulsarUrl).build();
      }
      return client;
    }
        
    private Producer<Double> getProducer() throws PulsarClientException {
      if (producer == null) {
             producer = getEdgePulsarClient()
                       .newProducer(Schema.DOUBLE)
               .topic(topicName).create();

Listing 12.1 A Pulsar function to calculate the simple moving average
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      }
      return producer;
    }
    
    private void initalize(Context ctx) {
      initalized = true;
      Integer size = (Integer) ctx.getUserConfigValueOrDefault("size", 100);
      values = new CircularFifoQueue<Double> (size);
      remotePulsarUrl = ctx.getUserConfigValue("pulsarUrl").get().toString();
      topicName = ctx.getUserConfigValue("topicName").get().toString();
    }
}

B The circular buffer of values that automatically removes the oldest item

c A Pulsar client for the Pulsar cluster running on the edge servers

d Add the sensor reading to the list of values.

e Calculate the simple moving average.

f Publish the computed value to a topic on the edge server.

Fortunately, it is relatively straightforward to implement the calculation of moving
averages using Pulsar Functions. As you can see from listing 12.1, the key is using a cir-
cular buffer to retain the last n values required to calculate the moving average. You
can then use this Pulsar function to preprocess the individual sensor readings and
publish the calculated SMA rather than the raw value itself. This ensures that all down-
stream analysis is performed on less-noisy data.

12.4.2 Statistical analysis

Moving averages aren’t the only meaningful statistic that can be calculated from uni-
variate datasets. In fact, it is quite easy to calculate just about any of the statistics that
are commonly used in statistical analysis using a Pulsar function. Take, for example,
the function code shown in the next listing, which computes the following statistics in
a single function: geometric mean, population variance, kurtosis, root mean square
deviation, skewness, and standard deviation.

import org.apache.commons.math3.stat.descriptive.DescriptiveStatistics;
import org.apache.commons.math3.stat.descriptive.SummaryStatistics;
import org.apache.commons.math3.stat.regression.*;                        B
import org.apache.pulsar.functions.api.Context;
import org.apache.pulsar.functions.api.Function;

public class TimeSeriesSummaryFunction implements 
  Function<Collection<Double>, SensorSummary>  {

   @Override
    public SensorSummary process(Collection<Double> input, Context context) 
      throws Exception {                                                  c

      double[][] data = convertToDoubleArray(input);                      d

Listing 12.2 A Pulsar function to calculate multiple statistics
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     SimpleRegression reg = calcSimpleRegression(data);
     SummaryStatistics stats = calcSummaryStatistics(data);
     DescriptiveStatistics dstats = calcDescriptiveStatistics(data);
      double rmse = calculateRSME(data, reg.getSlope(), reg.getIntercept());
        
    SensorSummary summary = 
      SensorSummary.newBuilder()
        .setStats(TimeSeriesSummary.newBuilder()
          .setGeometricMean(stats.getGeometricMean())                     e
             .setKurtosis(dstats.getKurtosis())
             .setMax(stats.getMax())
             .setMean(stats.getMean())
             .setMin(stats.getMin())
             .setPopulationVariance(stats.getPopulationVariance())
             .setRmse(rmse)
             .setSkewness(dstats.getSkewness())
             .setStandardDeviation(dstats.getStandardDeviation())
             .setVariance(dstats.getVariance())
             .build())
      .build();
        
      return summary;
    }
    
    private SimpleRegression calcSimpleRegression(double[][] input) {
      SimpleRegression reg = new SimpleRegression();
      reg.addData(input);
      return reg;
    }
    
    private SummaryStatistics calcSummaryStatistics(double[][] input) {
      SummaryStatistics stats = new SummaryStatistics();
      for(int i = 0; i < input.length; i++) {
        stats.addValue(input[i][1]);            
      }
      return stats;
    }
    
    private DescriptiveStatistics calcDescriptiveStatistics(double[][] in)
 {
      DescriptiveStatistics dstats = new DescriptiveStatistics();
      for(int i = 0; i < in.length; i++) {
         dstats.addValue(in[i][1]);            
      }
      return dstats;
    }
    
    private double calculateRSME(double[][] input, double slope, double 

intercept) {
      double sumError = 0.0;
      for (int i = 0; i < input.length; i++) {
        double actual = input[i][1];
        double indep = input[i][0];
        double predicted = slope*indep + intercept;
                sumError += Math.pow((predicted - actual),2.0);
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                }
            return Math.sqrt(sumError/input.length);
    }

        private double[][] convertToDoubleArray(Collection<Double> in) 
          throws Exception {
            double[][] newIn = new double[in.size()][2];
            int i = 0; 
            for (Double d : in) {
            newIn[i][0] = i;
            newIn[i][1] = d;
            i++;
            }
            return newIn;
        }    
    }

B This function relies on external libraries to perform the statistical calculations.

c The input collection contains all of the sensor readings within the specified window.

d Convert the data from a collection to a two-dimensional array.

e Use the various computed statistics to populate the result.

Obviously, these statistics cannot be computed from a single data point in the time-
series data, but rather need to be computed from a larger collection of data elements.
Attempting to calculate the geometric mean of a single number makes no sense.
Therefore, we need to specify a strategy for splitting the endless stream of metric data
into finite sets of data, known as windows, which we will use to calculate these statistics.
So how do we go about defining the boundaries of a data window? Within Pulsar
Functions, there are two policies used to control window boundaries:

 Trigger policy—Controls when our function code is executed. These are the rules
that the Apache Pulsar Functions framework uses to notify our code that it is
time to process all of the data collected in the window.

 Eviction policy—Controls the amount of data retained in the window. These are
the rules used to decide if a data element should be retained or evicted from
the window.

Both of these policies are driven by either time or the quantity of data in the window
and can be defined in terms of time or length (number of data elements). Let’s
explore the distinction between these two policies and how they work in concert with
one another. While there are a variety of windowing techniques, the most prominent
ones are tumbling and sliding windows. 

 Tumbling windows are contiguous, non-overlapping windows that are either of
fixed-size, such as 100 elements, or taken at fixed intervals, such as every five minutes.
The eviction policy for tumbling windows is always disabled to allow the window to
become completely full. Therefore, you only need to specify the trigger policy you
want to use as either count-based or time-based. Figure 12.9 shows the behavior of a
tumbling window with a length-based trigger policy set to 10, which means that at the
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point in time at which 10 items are in the window, the Pulsar function code will be
executed, and the window will be cleared. This behavior is irrespective of time;
whether it takes five seconds or five hours for the window count to reach 10 items
doesn’t matter—all that matters is when the count reaches the specified length.
Therefore, the first window takes approximately 15 seconds to become full, while the
last one requires 25 seconds to elapse before the window fills up.

The sliding window technique, on the other hand, utilizes a combination of a trigger
policy that defines the sliding interval and an eviction policy that limits the amount of
data retained within the window for processing. Figure 12.10 shows the behavior of a
sliding window with the eviction policy configured to be 20 seconds, meaning that any
data older than 20 seconds will not be retained or used in the calculation. The trigger
policy is also configured to be 20 seconds, which means that every 20 seconds the asso-
ciated Pulsar function code will be executed, and we will have access to all of the data
within the entire window length to perform our calculation.

 Thus, in the scenario shown in figure 12.10, the first window contains 15 events,
while the last one contains only two. In this example, both the eviction and trigger
policies are defined in terms of time; however, it is also possible to define one or both
of these in terms of length instead. Additionally, the window length and sliding interval

Time
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Windows

Figure 12.9 When using a count-based trigger, each tumbling window will contain 
the exact same number of metrics, but may span different durations of time.
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Figure 12.10 When using a time-based sliding window, each window will span the 
exact same amount of time and will most likely contain different numbers of metrics.
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don’t have to be the exact same value. For instance, if you wanted to perform the SMA
using this technique, you could achieve that by setting the window length to 100 and
the sliding interval to 1.

 Once these statistical summaries have been calculated, they can be sent upstream
to the edge servers to be compared to the stats computed for similar equipment
within the industrial infrastructure to detect potential problems, or they could be for-
warded to a database within the cloud for longer-term storage and future analysis. Per-
forming the calculations before storing the data in the database will save us from
having to recalculate these values during the analysis phase, which can be an expen-
sive operation. Pulsar Functions provides the four different windowing configuration
parameters shown in table 12.1, which enables you to implement all four variations of
the windows discussed in this section when used in the proper combination.

Implementing either of these types of windowing functions in Pulsar Functions is
straightforward and only requires that you specify a java.util.Collection as the
input type. Therefore, if we wanted to run the Pulsar function shown in listing 12.2 to
perform the statistic calculation on a sliding window of data, then all that we would
have to do is submit it using the command shown in the following listing, and the Pul-
sar Functions framework would handle the rest for us.

$ bin/pulsar-admin functions create \
    --jar edge-analytics-functions-1.0.0.nar \
    --classname com.manning.pulsar.iiot.analytics.TimeSeriesSummaryFunction \
    --windowLengthDurationMS==20000 \         B
    --slidingIntervalDurationMs=20000.        c

B Defines an eviction policy of 20 seconds

c Defines a trigger policy of 20 seconds

This makes it easy to utilize either of these windowing techniques without having to
write the significant amount of boilerplate code necessary to perform the collection
and retention of the individual events. Instead, it allows you to write clean code that
focuses solely on the business logic you are trying to implement.

Table 12.1 Configuring windowing for Pulsar functions

Time-based tumbling window --windowLengthDurationMS==xxx

Length-based tumbling window --windowLengthCount==xxx

Time-based sliding window --windowLengthDurationMS==xxx
--slidingIntervalDurationMs=xxx

Length-based sliding window --windowLengthCount==xxx
--slidingIntervalCount=xxx

Listing 12.3 Performing the statistical calculation on a sliding window of data
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12.4.3 Approximation

When analyzing streaming data, there are certain types of queries that cannot be
computed on the edge because they require huge amounts of both computing
resources and time to generate exact results. Examples include count distinct,
quantiles, most-frequent items, joins, matrix computations, and graph analysis.
Therefore, these types of calculations are typically not performed on these streaming
datasets at all. However, if an approximate answer will suffice, there is a specialized
category of streaming algorithms for providing approximate values, estimates, and data
samples for statistical analysis when the event stream is either too large to store in
memory or the data is moving too fast to process. 

 These streaming algorithms utilize small data structures, known as sketches, which
are usually only a few kilobytes in size, to store the information. Sketch-based algo-
rithms perform one-touch processing, meaning they only need to read each element in
the stream once. Both these properties make these algorithms ideal candidates for
deployment on edge devices. There are four families of sketching algorithms, each
focused on solving a different type of problem: 

 Cardinality sketches—Provides approximate counts for each distinct value in the
stream, such as the number of page views across a number of different web
pages in a given timeframe.

 Frequent item sketches—Provides a list of the most frequently seen values in the
stream, such as the top 10 web pages viewed in a given timeframe.

 Sampling sketches—Uses reservoir sampling to provide a uniform random sam-
ple of data from the stream that can be used for analysis.

 Quantile sketches—Provides a frequency histogram that contains information
about the distribution of the data stream values that can be used for anomaly
detection.

There is an open source library called Apache DataSketches that contains implemen-
tations of these algorithms in Java, which makes them easy to use inside a Pulsar func-
tion, such as the one shown in listing 12.4, which uses the quantile sketch to detect
anomalies in the sensor data.

QUANTILES

The word quantile is derived from the word quantity and simply refers to equal-sized
groupings of something—typically a probability distribution or a series of observed
values. You are already familiar with some of the more common quantiles that are
referred to by their more common names, such as halves, thirds, quarters, etc. In sta-
tistics and probability, quantiles are more formally defined as cut points that divide a
probability distribution into continuous, adjacent intervals with an equal number of
elements.



327Univariate analysis

 For example, in figure 12.11 there are three
values—Q1, Q2, and Q3—which splits the
dataset into equally weighted sections. The
areas under the graph between each of these
points are the quantiles, in this case thirds,
which contain an equal number of data points.

 For our use case, we will be processing an
endless stream of metric data values and using
them to dynamically construct a quantile. This
allows us to make our decisions based solely on
the actual observed values when determining
whether or not a value is anomalous by com-
paring it to previous values of the same metric.
When a new metric reading comes into our
Pulsar function, we will first add it to the quan-
tile to update the distribution model, and then we will calculate the rank of the metric
reading. The rank is best described as the proportion of values in the distribution that
the given value is greater than or equal to. For instance, if a metric reading is higher
than 79% of the previously observed values, then its rank would be 79. Ranking a
value helps us determine whether a given metric reading is commonplace or not, and
we have decided to use a configurable value to define the threshold that we consider
anomalous.

import org.apache.datasketches.quantiles.DoublesSketch;
import org.apache.datasketches.quantiles.
[CA]UpdateDoublesSketch;                                  B
. . .
public class AnomalyDetector implements Function<Double, Void> {

    private UpdateDoublesSketch sketch;
    private double alertThreshold;
    private boolean initalized = false;

    @Override
    public Void process(Double input, Context ctx) throws Exception {
      if (!initalized) {
        init(ctx);
      }
      sketch.update(input);                               c

      if (sketch.getRank(input) >= alertThreshold) {      d
        react();                                          e
      }
      return null;
    }

Listing 12.4 A Pulsar function for anomaly detection

Q1 Q2 Q3

Figure 12.11 A dataset that is divided 
into three equal-sized sections known as 
quantiles. Values less than or equal to Q1 
are considered part of the first quantile; 
values between Q1 and Q2 are part of the 
second quantile; and those greater than or 
equal to Q3 are part of the third quantile.
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    protected void init(Context ctx) {
      sketch = DoublesSketch.builder().build();
      alertThreshold = (double) ctx.getUserConfigValue ("threshold");
      initalized = true;
    }

    protected void react() {
      // Implementation specific                          f
    }
}

B This function relies on the DataSketches library to perform the statistical calculations.

c Add the metric reading to the sketch.

d Get the metric reading’s rank value, and compare that to the alert threshold.

e If the metric is above the configured threshold, then react.

f This will vary based on the LwM2M protocol being used by the actuator.

The logic for the function is fairly straightforward. First, we update the quantile sketch
by adding the data element to it. Then, we request the relative rank of the value in the
overall distribution. Next, we determine whether the value is an outlier or not by
comparing the metric reading’s rank to the preconfigured alert threshold. If an outlier
is detected, then we use an LwM2M client to send a message to an actuator in the
perception and reaction layer to perform some sort of preventative action, such as
turning off a machine or opening a pressure valve. The logic of the react function shown
in listing 12.4 will vary based on the LwM2M protocol being used and the command(s)
we need to send in response to the event. 

12.5 Multivariate analysis
Thus far we have implemented various analytical techniques on data from a single
sensor. While this univariate analysis does enable us to perform anomaly detection
and trend analysis on a single sensor, much more interesting analysis can be per-
formed once we have combined the data from multiple sensors, as was shown previ-
ously shown in figure 12.7. In this section, I will provide an outline of the steps
required to combine data collected from different IoT gateways, analyze it, and
respond to these new insights.

12.5.1 Creating a bidirectional messaging mesh

Creating a messaging framework that can be used to transmit messages up from the
IoT gateways to the edge servers involves an initial configuration phase to add all of
the Pulsar clusters to the same Pulsar instance. As you may recall from chapter 2, a
Pulsar instance can contain multiple Pulsar clusters. Being part of the same Pulsar
instance is also a prerequisite for enabling geo-replication of data between Pulsar clus-
ters, which, as you saw in figure 12.8, is the preferred mechanism for forwarding the
calculated statistical sensor data from the IoT gateways to the edge server.

 The first phase of this configuration is adding each of the individual IoT gateway-
based Pulsar clusters to the same Pulsar instance as the Pulsar cluster running on the
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edge server. This can be easily achieved using the pulsar-admin command line inter-
face or REST API, as shown in the following listing, which shows the command used to
add a single IoT gateway cluster to the Pulsar instance.

$ pulsar-admin clusters create iot-gateway-1 \     B
    --broker-url http://<IoT-Gateway-IP>:6650 \    c
    --url http://<IoT-Gateway-IP>:8080             d

$ pulsar-admin clusters list                       e

B Each name has to be unique.

c URL address of the TCP broker on the gateway

d Service URL for the gateway

e Confirm that the cluster was added to the list.

This command has to be run just once for every IoT gateway-based Pulsar cluster in
your IIoT environment. Once a cluster has been added to the Pulsar instance, it is
able to have messages delivered to it asynchronously via Pulsar’s geo-replication mech-
anism rather than having to write additional code to perform the data replication. 

 The next step in establishing geo-replication between the IoT gateways and the
edge servers is to define a tenant that can be used for bidirectional communication.
This can be easily achieved using the pulsar-admin command line interface or REST
API, as shown in the following listing, which shows the command to create a new Pul-
sar tenant that can be accessed by all of the IoT gateway clusters as well as the Pulsar
cluster running on the edge servers.

$ pulsar-admin tenants create iiot-analytics-tenant \
    --allowed-clusters  iot-gateway-1, iot-gateway-2, …  \   B
    --admin-roles analytics-role                             c

B Provide a complete list of all the IoT gateway clusters you created.

c Specifies the admin role for this namespace

The last step of the configuration process is the creation of a namespace that can be
used specifically for the geo-replication of the data between the IoT Gateways and the
edge servers. This can be easily achieved using the pulsar-admin command line inter-
face or REST API, as shown in listing 12.7, which shows the command to create a new
Pulsar namespace that can be accessed by all of the IoT gateway clusters as well as the
Pulsar cluster running on the edge servers. Please note that this replicated namespace
has to be within the tenant we created previously. (See appendix B for details on con-
figuring geo-replication between Pulsar clusters.)

 
 

Listing 12.5 Adding an IoT gateway cluster to the Pulsar instance

Listing 12.6 Creating a geo-replicated tenant
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$ pulsar-admin namespaces create \
  iiot-analytics-tenant/analytics-namespace \
  --clusters iot-gateway-1, iot-gateway-2, …     B

B Provide a complete list of all the IoT Gateway clusters you created.

Once you create a geo-replicated namespace, any topics that producers or consumers
create within that namespace are automatically replicated across all of the clusters.
Therefore, any messages published to topics within the geo-replicated namespace on
the IoT gateways will automatically be sent asynchronously to the edge server. Unfor-
tunately, this would also result in the message being replicated to all of the other IoT
gateways within the IIoT infrastructure, which is not what we want at all. Not only
would this inter-gateway replication waste precious network bandwidth, but it would
also waste disk space on the gateways themselves, as they would have to store the mes-
sages they receive. Since these messages will never be consumed on the other gate-
ways, storing them just wastes disk space.

 Therefore, we need to enable selective replication to ensure that the outbound
messages that are only intended to be consumed by the edge server are only replicated
to the edge server and not across all of the IoT gateways. This can be accomplished by
writing a simple Pulsar function that consumes from a local, non-geo-replicated topic
on the gateway and publishes it to a geo-replicated topic but restricts the replication to
only the edge servers, as shown on the left side of figure 12.12.

 As you can see in listing 12.8, the Pulsar function used to forward these messages
would use the existing producer Java API to restrict the replication of the messages to
only the edge cluster, resulting in the message flow shown on the right side of figure
12.12, where the message first goes to a local topic before getting forwarded to a geo-
replicated topic, but only to the edge server rather than all of the clusters. 

public class GeoReplicationFilterFunction implements Function<byte[],Void> {

  private boolean initialized = false;
  private List<String> restrictReplicationTo;

  private Producer<byte[]> producer; 
  private PulsarClient client;
  private String serviceUrl;
  private String topicName;

  @Override
  public Void process(byte[] input, Context ctx) throws Exception {
    if (!initialized) {
      init(ctx);
    }
    getProducer().newMessage()
          .value(input)                                                     B

Listing 12.7 Creating a geo-replicated namespace

Listing 12.8 Geo-replication message filter function
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          .replicationClusters(restrictReplicationTo)                       c
          .send();

    return null;
  }

  private void init(Context ctx) {
    serviceUrl = "pulsar://localhost:6650";                                 d
    topicName = ctx.getUserConfigValue("replicated-topic").get().toString();e
    restrictReplicationTo = Arrays.asList(
       ctx.getUserConfigValue("edge").get().toString());                    f
    initalized = true;
  }

Anomaly
detection

Sensor A

Geo-replicated
topic IoT gateways

Pulsar-based
edge server

Anomaly
detection

Sensor B

Geo-replicated
topic

Pulsar-based IoT gateway

Non-replicated
topic

Non-replicated
topic

Non-replicated
topic

Geo-replication
filter

Pulsar-based IoT gateway

Figure 12.12 Without the use of a geo-replication filter, the data for sensor A is automatically 
replicated to all of the IoT gateway clusters in addition to the edge server, whereas data for sensor 
B is only replicated to the Pulsar cluster running on the edge servers.
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  private Producer<byte[]> getProducer() throws PulsarClientException {
    if (producer == null) {
        producer = getClient().newProducer()
                .topic(topicName)
                .create();
    }
    return producer;
  }

  private PulsarClient getClient() throws PulsarClientException {
    if (client == null) {
      client = PulsarClient.builder().serviceUrl(serviceUrl).build();
    }
    return client;
  }
}

B Create a new message using the input bytes.

c Restrict the clusters that the message will be replicated to.

d We are publishing to a local geo-replicated topic.

e The destination topic should be in the replicated namespace.

f This should be the name of the Pulsar cluster running on the edge servers.

The Pulsar function is writing to a geo-replicated topic on the local machine to allow
the Pulsar geo-replication mechanism to handle the forwarding of the message rather
than sending it directly to the edge server to avoid the synchronous call over the net-
work for each message. Now that we have covered the up direction of the messaging
mesh, let’s focus on the down direction of the bidirectional mesh, which is focused on
delivering the insights discovered on the edge servers through the analysis of data from
multiple sensors back down to the Pulsar functions running on the IoT gateways. In
reality, this process is fairly straightforward because all that is required is for the edge
servers to publish to a geo-replicated topic and have the interested parties subscribe to
the topic to have the messages delivered. Even though the topics are geo-replicated,
the messages will not be sent to the IoT gateways unless there is an active consumer of
the topic on the gateway node.

12.5.2 Multivariate dataset construction

Consider the scenario in which you have multiple temperature sensors measuring the
ambient temperature across your entire data center. Rather than comparing the cur-
rent reading of a given individual sensor to its previous readings, you want to see how
it compares to the previous readings of all of the other temperature sensors deployed
across your data center. Obviously, this would provide a much more meaningful com-
parison, particularly in the case where the sensor readings gradually drifted higher or
lower rather than suddenly, such as if one of your pieces of equipment was gradually
overheating, and the temperature readings slowly rose from a safe range to a more
dangerous level. In such a scenario, there might not be any single reading that is sig-
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nificantly large enough to be considered an anomaly, but compared to other similar
sensors, all of the readings would be considered high.

 To perform a comparison across a much broader set of data would require the
combination of data from potentially hundreds of different sensors. Therefore, we
must first gather all of the data into a single location to calculate the statistics for the
sensor group as a whole rather than individually. Fortunately, the data sketches used
inside the AnomalyDetector function can be merged together rather easily to provide
these types of statistics. A data sketch generated from a series of readings from a single
sensor can be used to determine the ranking of any given sensor reading relative to all
of the readings recorded in the sketch thus far. But if you combine 100 sketches, then
you can use the resulting sketch to determine the ranking of any given sensor reading
relative to all the readings across 100 sensors. This is a much more meaningful value
and would solve the issue we are trying to address because we are comparing each sen-
sor reading to all others across the entire factory. 

 To achieve this, we must first modify the existing AnomalyDetector function, as
shown in the following listing, to periodically send a copy of its sketch to the edge serv-
ers so it can be merged with the sketches from all the other BiDirectionalAnomaly-
Detector function instances running on different IoT gateways. 

public class BiDirectionalAnomalyDetector 

➥ implements Function<Double, Void> {

  private boolean initialized = false;
  private long publishInterval;                                           B
  private String reportingTopic;                                          c
  private String alertThresholdTopic;                                     d
  private double alertThreshold;                                          e
  private String remotePulsarUrl;                                         f

  private PulsarClient client;
  private Producer<byte[]> producer;                                      g
  private Consumer<Double> consumer;                                      h
  private ExecutorService service = Executors.newFixedThreadPool(1);      i
  private ScheduledExecutorService executor =
    Executors.newScheduledThreadPool(1);                                  j
  private UpdateDoublesSketch sketch;

  @Override
  public Void process(Double input, Context ctx) throws Exception {
    if (!initialized) {
      init(ctx);
      launchReportingThread();                                            1)
      launchFeedbackConsumer();                                           1!
    }

     synchronized(sketch) {                                               1@
      getSketch().update(input);

Listing 12.9 Update AnomalyDetection function
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      if (getSketch().getRank(input) >= alertThreshold) {
         react();  
       }
     }
    return null;
  }

  private void launchReportingThread() {
    Runnable task = () -> {
      synchronized(sketch) {                                              1#
        try {
          if (getSketch() != null) {
            

getProducer().newMessage().value(getSketch().toByteArray()).send();
            sketch.reset();                                               1$
          }
        } catch(final PulsarClientException ex) { /* Handle */}
       }
    };
    executor.scheduleAtFixedRate(task, 
      publishInterval, publishInterval, TimeUnit.MINUTES);                1%
  }
    
  private void launchFeedbackConsumer() {
     Runnable task = () -> {
       Message<Double> msg;
       try {
        while ((msg = getConsumer().receive()) != null) {                 1^
         alertThreshold = msg.getValue();                                 1&
         getConsumer().acknowledge(msg);
        }
       } catch (PulsarClientException ex) {*/ Handle */ }
     };
     service.execute(task);                                               1*
  }
    
  private UpdateDoublesSketch getSketch() {
    if (sketch == null) {
      sketch = DoublesSketch.builder().build();
     }
     return sketch;
  }
        
  private Producer<byte[]> getProducer() throws PulsarClientException {
     if (producer == null) {
       producer = getEdgePulsarClient().newProducer(Schema.BYTES)
         .topic(reportingTopic).create();
     }
     return producer;
  }
        
  private Consumer<Double> getConsumer() throws PulsarClientException {
    if (consumer == null) {
      consumer = getEdgePulsarClient().newConsumer(Schema.DOUBLE)
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        .topic(alertThresholdTopic).subscribe();
    }
    return consumer;
  }
        
  private void react() {
    // Implementation specific
  }
    
  private PulsarClient getEdgePulsarClient() throws PulsarClientException {
     ...
  }
    
  protected void init(Context ctx) {
     ...
  }
}

B Property that defines how often the local data sketch gets published (in minutes)

c Property that defines the topic name used to send the local data sketch to the edge server

d Property that defines the topic name used to receive the updated alert threshold from the edge 
server

e Calculated alert threshold provided by the edge server

f The URL for the Pulsar broker running on the edge server

g Producer for sending the data sketched to the edge server

h Consumer for receiving updated alert threshold values from the edge server

i Local thread pool where the consumer thread can run in the background

j Local thread pool that invokes the publishing thread at a fixed interval (e.g., every five minutes)

1) Start the data sketch publishing thread just once.

1! Start the alert threshold consuming thread just once.

1@ Create an exclusive lock on the data sketch when writing the data.

1# Create an exclusive lock on the data sketch when publishing the data.

1$ Clear all of the data from the sketch.

1% Schedule the publishing task to run at the fixed interval specified by the configuration properties.

1^ Wait for incoming alert threshold messages.

1& Update the alert threshold with the provided value.

1* Launch the alert threshold consuming thread in the background.

The BiDirectionalAnomalyDetector function still listens for incoming sensor read-
ings and adds them to a local data sketch object before comparing the sensor reading
to the anomaly threshold to determine whether immediate action must be taken.
However, it also creates two additional background threads to communicate with the
SketchConsolidator function running on the edge server. This function relies on the
Java ScheduledThreadExecutor to ensure that the local data sketches are published at
a periodic interval (e.g., every five minutes), while the other thread is used to continu-
ously monitor the feedback topic for any updates to the alert threshold value. Next,
we must create a new Pulsar function, like the one shown in listing 12.10, that will run
on the edge servers and will receive these inbound sketches and merge them together
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to produce a larger, more accurate sketch that encompasses data from all of the sen-
sors within a given sensor family. 

import org.apache.datasketches.memory.Memory;
import org.apache.datasketches.quantiles.DoublesSketch;
import org.apache.datasketches.quantiles.DoublesUnion;
import org.apache.pulsar.functions.api.Context;
import org.apache.pulsar.functions.api.Function;

public class SketchConsolidator implements Function<byte[], Double> {

  private DoublesSketch consolidated;                         B

  @Override
  public Double process(byte[] bytes, Context ctx) throws Exception {
    DoublesSketch iotGatewaySketch = 
      DoublesSketch.wrap(Memory.wrap(bytes));                 c

    DoublesUnion union = DoublesUnion.builder().build();      d
    union.update(iotGatewaySketch);                           e
    union.update(consolidated);                               f
    consolidated = union.getResult();                         g
    return consolidated.getQuantile(0.99);                    h
  }
}

B Data sketch that contains data from all of the sensors

c Convert the incoming bytes to a data sketch.

d Build a new object used to merge multiple data sketches.

e Add the incoming data sketch to the union object.

f Add the existing consolidated data sketch to the union object.

g Update the consolidated data sketch to be equal to the result of the merge.

h Publish the newly calculated threshold value for the 99th percentile.

The interaction between these two Pulsar functions is depicted in figure 12.13, which
shows both of the communication channels used to send data up from the
BiDirectionalAnomalyDetector functions running on all of the IoT gateways to the
SketchConsolidator function running on the edge servers, and the channel used to
send the newly calculated threshold from the SketchConsolidator function back
down to the BiDirectionalAnomalyDetector function instances running on the IoT
gateways.

 The SketchConsolidator function should be configured to listen to the geo-
replicated topic where all of the BiDirectionalAnomalyDetector functions will be
publishing their respective sketches. As you can see from the code in listing 12.10, once
the data sketches have been merged, we use the newly created object to determine the
exact value that represents the threshold of the 99th percentile of all sensor readings.
We then send this value back to the BiDirectionalAnomalyDetector functions rather

Listing 12.10 Data sketch merging function



337Beyond the book

than the entire sketch (to save space and bandwidth) so they can use this newly
calculated value as their alert threshold instead of the locally calculated threshold. 

12.6 Beyond the book
As I wrap up this final chapter of the book, I hope you have enjoyed reading it and
have found it to be informative, enlightening, and thought-provoking. It has been a
pleasure to interact with many of you throughout the MEAP process via the online dis-
cussion forum, and I’ve appreciated all of the feedback you have provided. It’s great
to know not only that so many of you have found the book to be of use, but more
importantly, how you intend to use Apache Pulsar to harness the power of streaming
data within your organizations.

 As with all technologies, Apache Pulsar will continue to evolve rapidly thanks to
its growing and vibrant developer and user communities. In fact, several new fea-
tures have been added since I started writing this book, such as support for transac-
tions. It is a testament to Pulsar’s technological strength that it is so widely adopted
across a diverse set of companies and industries. However, this evolution will inevita-
bly make the content of the book become increasingly dated over time, so you
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Figure 12.13 A copy of the BiDirectionalAnomalyDetector function will run on each 
IoT gateway and publish its locally calculated data sketches to the same geo-replicated topic. 
The SketchConsolidator function will consume these sketches and merge them together 
before publishing the cutoff value for the 99th percentile value to a different geo-replicated 
topic. The BiDirectionalAnomalyDetector functions will consume messages from this 
topic and use the published value as the new anomaly threshold for the sensor reading.
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should refer to the following resources for the most up-to-date information and new
features:

 The Apache Pulsar project page (https://pulsar.apache.org/) and documenta-
tion (https://pulsar.apache.org/docs/en/standalone/). 

 The Apache Pulsar slack channel, apache-pulsar.slack.com, which I and several
of the project committers monitor on a daily basis. The heavily used channel
contains a wealth of information for beginners and a concentrated community
of developers who are actively using Apache Pulsar on a daily basis. 

 Several blog posts, including those on the StreamNative web site (https://
streamnative.io/en/blog/), that are written by many of the committers to the
Apache Pulsar project.

For those of you who are looking to introduce stream computing into your organization
or considering using a message-based microservices architecture for future applications
to take advantage of the emerging cloud computing paradigm, let me offer the
following advice on how to go about convincing your company to consider adopting
Apache Pulsar: focus on the benefits of using Pulsar, such as the fact that it is a cloud-
native technology designed to scale the computing and storage layers independently,
which leads to more efficient use of expensive cloud resources. Another advantage is the
fact that it can serve as both a queue-based messaging system, like RabbitMQ, and a
streaming messaging platform, like Kafka, in a single system. 

 Another approach is to bring Apache Pulsar in as an underlying technology for a
brand-new initiative within your organization, such as microservices. You can begin
your organization’s foray into microservices application development using Apache
Pulsar Functions as the underlying technology. Your development team will benefit
from the simplicity of the programming model Pulsar Functions provides without hav-
ing to use a proprietary API. If your company is using one of the cloud vendor server-
less computing technologies, such as AWS Lambda, you can stress the fact that Pulsar
Functions provides the same functionality at a fraction of the cost and without vendor
lock in. Furthermore, all application development and testing can be done locally for
free rather than on costly AWS computing resources.

 If your organization has an incumbent technology already in place, such as Apache
Kafka, then you would be wise to heed the advice of Mark Twain when he said, “It’s
easier to fool people than to convince them that they have been fooled.” This senti-
ment succinctly captures people’s reluctance to accept the fact that may have made a
bad choice. So rather than framing the conversation as a competition between the
incumbent technology and Pulsar, in which you must convince your organization that
they made a bad decision, you should instead focus on the positives that Pulsar brings
to your organization that the other technology cannot. In this way, Pulsar can be seen
as a supporting technology that can co-exist within the organization, rather than a
replacement technology that would require a significant amount of change across the
entire organization. Such a wholesale replacement strategy will be met with a large

https://pulsar.apache.org/
https://pulsar.apache.org/docs/en/standalone/
http://apache-pulsar.slack.com
https://streamnative.io/en/blog%20/
https://streamnative.io/en/blog%20/
https://streamnative.io/en/blog%20/


339Summary

amount of resistance by those who decided upon the incumbent technology and
those who invested a lot of time and effort in developing solutions based on it. You will
have a greater chance of success by focusing on Pulsar’s strengths (which were cov-
ered in chapter 1) than the incumbent technology’s weaknesses. 

 Thank you again for your interest in Apache Pulsar. I hope this book has inspired
you to start using Apache Pulsar in some of your projects, and I look forward to inter-
acting with you in one of the many forums within the Pulsar open source community!

Summary
 The amount of time between when an event occurs and when you respond to it

is known as the time value of data. This time value decreases rapidly over time,
so being able to respond quickly is important.

 Pulsar Functions can be used to provide near real-time analytics on IoT data
within an edge computing environment that consists primarily of resource-
constrained devices, such as IoT gateways.

 Running Pulsar Functions on these IoT gateways maximizes the time value of
the data.

 Pulsar’s geo-replication mechanism can be used to create a bidirectional com-
munication network between Pulsar clusters running on the IoT Gateways and
Pulsar clusters running on the Edge Servers.
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appendix A
Running

 Pulsar on Kubernetes

Kubernetes is a popular open source platform for deploying and running contain-
erized applications at scale. It originated inside Google as a solution for managing
their extensive infrastructure by automating many of the manual processes
involved in deploying, managing, and scaling their applications across multiple
hosts. For more information on Kubernetes, I highly recommend Kubernetes in
Action by Marko Lukša (Manning, 2017).

 The primary purpose of Kubernetes is to schedule containers to run on a cluster
of physical or virtual machines based on the available computing resources and the
resource requirements of every container. A container is simply a ready-to-run soft-
ware package that contains everything needed to run an application. As we saw in
chapter 3, Docker is one of the most popular container technologies. So, naturally,
Kubernetes can be used to schedule and run Docker containers, including those
generated by the Apache Pulsar project. This allows you to run an entire Pulsar clus-
ter and all of its components, such as Zookeeper, BookKeeper, and the Pulsar Proxy,
entirely on a Kubernetes cluster. This appendix walks you through the process of
doing this.

A.1 Create a Kubernetes cluster
A cluster is the foundational base for running your containerized applications. In
Kubernetes, a cluster consists of at least one cluster master and multiple worker
machines, called nodes, as shown in figure A.1. The cluster master machine hosts the
Kubernetes control plane, which performs all the administrative functions for the
cluster, while the nodes are the machines that will host the containers themselves. 
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The computing resources from all of the nodes are registered with the cluster master
and form a resource pool from which all the containers draw. For instance, if your partic-
ular container is hosting a database application, and it requires 8 GB of RAM and four
CPU cores, the cluster master would have to find a node with sufficient resources
available to meet this request and run the container on it. These claimed resources
would then also be subtracted from the resource pool to indicate that they are already
committed to a container. Once the cluster resource pool is exhausted, no more con-
tainers can be hosted until more resources are available.

 With Kubernetes, resources can be easily added by adding more nodes to the cluster.
This effectively allows you to scale your cluster up based on your needs in a seamless
manner. This feature is so appealing that nearly all cloud vendors offer some sort of
Kubernetes option for hosting your applications. In addition, there is a large open
source implementation of Kubernetes, known as OpenShift, which allows you to host a
Kubernetes cluster on your own physical hardware. While both of these options are
good choices for production applications, they do impose a rather high barrier for local
development. Most people don’t want to pay the cost of hosting a large Kubernetes clus-
ter simply for development or testing purposes, which is why minikube is a popular
option for developers. Pulsar was designed specifically to run in a containerized envi-
ronment, such as Kubernetes, where you can easily increase or decrease the number of
Pulsar broker containers and/or BookKeeper bookies based on your demand.

A.1.1 Install prerequisites
As a prerequisite for working with Kubernetes, you will need to install the Kubernetes
command-line tool called kubectl, which allows you to run commands against Kuber-
netes clusters. You will need this tool to deploy applications, inspect and manage clus-
ter resources, and view logs. If you don’t already have kubectl installed, you should
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Kubernetes node 

Kubernetes pod

Containers
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Figure A.1 The Kubernetes master node is used to control all of the Kubernetes nodes in the node pool. 
Each Kubernetes node can host multiple pods, which in turn can host one or more application containers.
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download it (https://kubernetes.io/docs/tasks/tools/#before-you-begin) and follow
the instructions for your operating system. 

brew install kubectl                                       B
. . .
==> Downloading https://homebrew.bintray.com/bottles/
    ➥ kubernetes-cli-1.19.1.catalina.bottle.tar.gz        c
==> Pouring kubernetes-cli-1.19.1.catalina.bottle.tar.gz
==> Caveats
Bash completion has been installed to:
  /usr/local/etc/bash_completion.d

zsh completions have been installed to:
  /usr/local/share/zsh/site-functions
==> Summary
    /usr/local/Cellar/kubernetes-cli/1.19.1: 231 files, 49MB

B Using Homebrew to install kubectl

c Downloading and installing version 1.19.1

If you have a Mac, you can use the Homebrew package manager to install it using a
single line, as shown in listing A.1. If you are using a different operating system, please
consult the online documentation for installation instructions specific to your OS. You
must use a kubectl version that is within one minor version difference of your cluster.
Therefore, it is best to use the latest version of kubectl to avoid any compatibility
issues. 

A.1.2 Minikube
Once kubectl has been installed, the next step is to create a Kubernetes cluster to
host the Pulsar cluster. While all of the major cloud vendors provide Kubernetes envi-
ronments that are well-suited for production use, in this appendix I will use a more
cost-effective alternative known as minikube, which allows me to run a Kubernetes
cluster on my development machine.

 minikube is a tool that runs a single-node Kubernetes cluster on your personal
computer. It is well suited for day-to-day development tasks that require access to a
containerized application, such as Pulsar. It is a good choice if you want to develop
and test your application inside a Kubernetes environment to familiarize yourself with
the Kubernetes API.

brew install minikube                                                 B
. . .
==> Downloading https://homebrew.bintray.com/bottles/minikube-
    ➥ 1.13.0.catalina.bottle.tar.gz                                  c
Already downloaded: /Users/david/Library/Caches/Homebrew/downloads/

Listing A.1 Installing kubectl on a MacBook

Listing A.2 Installing minikube on a MacBook

https://kubernetes.io/docs/tasks/tools/#before-you-begin
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➥ b4e7b1579cd54deea3070d595b60b315ff7244ada9358412c87ecfd061819d9b--

➥ minikube-1.13.0.catalina.bottle.tar.gz
==> Pouring minikube-1.13.0.catalina.bottle.tar.gz
==> Caveats
Bash completion has been installed to:
  /usr/local/etc/bash_completion.d

zsh completions have been installed to:
  /usr/local/share/zsh/site-functions
==> Summary
  /usr/local/Cellar/minikube/1.13.0: 8 files, 62.2MB

B Using Homebrew to install minikube

c Downloading and installing version 1.13.0

If you don’t already have minikube installed, you should download it (https://minikube
.sigs.k8s.io/docs/start/) and follow the instructions for your operating system. If you
have a Mac, you can use the Homebrew package manager to install it using a single line,
as shown in listing A.2. If you are using a different operating system, please consult the
online documentation for installation instructions specific to your OS. After minikube
has been installed, the next step is to create a Kubernetes cluster using the commands
shown in the following listing. The first command creates the cluster itself and specifies
the resources it will claim from my laptop for its resource pool. 

    minikube start \
  --memory=8192 \                        B
  --cpus=4 \                             c
  --kubernetes-version=v1.19.0           d

kubectl config use-context minikube      e

B Reserve 8 GB of RAM for the cluster.

c Reserve four cores for the cluster.

d Specify the version of Kubernetes we will be using.

e Set kubectl to use minikube.

In order for the kubectl tool to find and access a Kubernetes cluster, it must first be
configured to point to the Kubernetes cluster you wish to interact with. This association
is controlled by a kubeconfig file, which is created automatically when you deploy a
minikube cluster and is located at ~/.kube/config. You can use the kubectl config
use-context <cluster-name> command, as shown in listing A.3, to configure the
kubectl tool to point to the newly created minikube cluster. You can confirm that the
kubectl is properly configured by running the kubectl cluster-info command,
which will return basic information about the Kubernetes cluster.

Listing A.3 Creating a Kubernetes cluster using minikube 
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A.2 The Pulsar Helm chart
Now that we have a Kubernetes cluster up and running, we can deploy containerized
applications on top of it. This can be accomplished with a deployment configuration
file that contains all the information needed to create all the containers required by
your application. These deployment configuration files are simple YAML files that
conform to a specific structure, as shown in the following listing, which shows the con-
figuration for a single Ngnix-based web server that listens on port 80 for incoming
requests.

apiVersion: apps/v1              B
kind: Deployment                 c
metadata:
  name: mysite                   d
  labels:
    name: mysite
spec:
  replicas: 1                    e
  template:
    metadata:
      labels:
        app: mysite
    spec:
      containers:                f
        - name: mysite
          image: ngnix           g
          resources:             h
            limits: 
              memory: “128Mi”
              cpu: “500m”
          ports:
            - containerPort: 80  i

B Specifies the API version of the configuration file

c Specifies the resource type defined in the configuration file

d The application name

e The number of pods to create

f Specifies all of the containers inside each pod

g The Docker image name to use

h The resources required for the nginx container

i The exposed port for the container

Once you have created this file, you can then use the kubectl apply -f filename
command to deploy it to your Kubernetes cluster. While this approach is relatively
straightforward, it is a bit tedious to have to create and edit all of these verbose files
manually. As you can see, the deployment file for a simple, single-container applica-
tion requires 22 lines of YAML. You can just image how big and complex the deploy-

Listing A.4 A Kubernetes deployment configuration file
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ment file is going to be for an application as complex as Pulsar, which requires
multiple instances of multiple containers (brokers, bookies, ZooKeeper, etc.).

 Kubernetes-orchestrated container applications can be complex to deploy. Devel-
opers can use incorrect inputs for configuration files or not have the expertise to roll
out these apps from YAML templates. Therefore, a deployment tool known as Helm
was created to simplify the deployment of containerized applications to Kubernetes.

A.2.1 What is Helm?
Helm is a package manager for Kubernetes that allows developers to easily package,
configure, and deploy applications and services onto Kubernetes clusters. It is analo-
gous to Linux package managers such as YUM or APT because they all allow you to
deploy a software package, along with all its dependencies, with a simple command.

 We will be using Helm to install our Pulsar cluster, so if you don’t already have Helm
installed, you should install it now. If you have a Mac, you can use the Homebrew pack-
age manager to install it using a single line, as shown in the following listing. If you are
using a different operating system, please consult the online documentation (https://
helm.sh/docs/intro/install/) for installation instructions specific to your OS. 

brew install helm                                        B
. . .
==> Downloading https://homebrew.bintray.com/bottles/
    ➥ helm-3.3.1.catalina.bottle.tar.gz                 c
Already downloaded: /Users/david/Library/Caches/Homebrew/downloads/

➥ 77e13146a8989356ceaba3a19f6ee6a342427d88975394c91a263ae1c35a3eb6--helm-

➥ 3.3.1.catalina.bottle.tar.gz
==> Pouring helm-3.3.1.catalina.bottle.tar.gz
==> Caveats
Bash completion has been installed to:
  /usr/local/etc/bash_completion.d

zsh completions have been installed to:
  /usr/local/share/zsh/site-functions
==> Summary
  /usr/local/Cellar/helm/3.3.1: 56 files, 40.3MB

B Using Homebrew to install Helm

c Downloading and installing version 3.3.1

Helm allows us to package Kubernetes applications into packages of preconfigured
Kubernetes resources, known as charts. Helm charts provide push button deployment
and deletion of apps, making development and deployment of Kubernetes applica-
tions easier for those with little or no container or microservices experience.

ANATOMY OF A HELM CHART

A Helm chart is basically a collection of files inside a directory. The directory name is
used as the name of the chart. Within this directory, the Helm chart directory contains a

Listing A.5 Installing Helm on a MacBook
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self-descriptor file named chart.yaml, a values.yaml file, and one or more manifest files
that are stored in the chart’s template folder, as shown in the following listing.

package-name/
   charts/
   templates/          B
   Chart.yaml          c
   values.yaml         d
   requirements.yaml   e

B Folder of manifest files

c The self-descriptor file

d Default values used in the templates

e Optional list of dependencies

The Helm chart uses the YAML templates for application configuration with a sepa-
rate value.yaml file to store all the values, which are injected into the template YAML
at the time of installation. Essentially, Helm charts can be thought of as Kubernetes
files that can be parameterized.

 When your chart is ready for deployment, you can use the helm package <chart-
name> command to create a tar-gzipped file containing all the files. Once all this is
packaged into a Helm chart, anyone can use it, using the helm install command
and providing custom values to the configurations via an external values file or as an
argument to the helm install command, and those values are used while creating
the Kubernetes application by running the helm install <chartname> command.

A.2.2 The Pulsar Helm chart
I have covered what Helm charts are and how they can be used to deploy an entire
application. You will be glad to know that there is a Helm chart for Apache Pulsar that
is included in the open source distribution, and you can easily access the chart by
cloning the repo, using git, as shown in the following listing.

git clone https://github.com/apache/pulsar-helm-chart    B

cd pulsar-helm-chart                                     c

B Clone the Helm chart repo.

c Change into the folder that the repo was cloned into.

Once you have cloned the repo, you can examine the contents of the Helm chart inside
the chart’s subfolder, as shown in the next listing. As expected, the directory structure
conforms to the Helm directory structure we saw earlier in listing A.6 with Chart.yaml
and values.yaml files at the base level along with a directory of template files.

Listing A.6 The Helm chart directory layout 

Listing A.7 Downloading the Pulsar Helm chart
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ls  ./charts/pulsar/                                    B
Chart.yaml    templates    values.yaml

ls ./charts/pulsar/templates/*.yaml                     c
./charts/pulsar/templates/autorecovery-configmap.yaml
./charts/pulsar/templates/autorecovery-service.yaml
./charts/pulsar/templates/autorecovery-statefulset.yaml
./charts/pulsar/templates/bookkeeper-cluster-initialize.yaml
./charts/pulsar/templates/bookkeeper-configmap.yaml
./charts/pulsar/templates/bookkeeper-pdb.yaml
./charts/pulsar/templates/bookkeeper-podmonitor.yaml
./charts/pulsar/templates/bookkeeper-service.yaml
./charts/pulsar/templates/bookkeeper-statefulset.yaml
./charts/pulsar/templates/bookkeeper-storageclass.yaml
./charts/pulsar/templates/broker-cluster-role-binding.yaml
./charts/pulsar/templates/broker-configmap.yaml
./charts/pulsar/templates/broker-pdb.yaml
./charts/pulsar/templates/broker-podmonitor.yaml
./charts/pulsar/templates/broker-rbac.yaml
./charts/pulsar/templates/broker-service-account.yaml
./charts/pulsar/templates/broker-service.yaml
./charts/pulsar/templates/broker-statefulset.yaml
./charts/pulsar/templates/dashboard-deployment.yaml
./charts/pulsar/templates/dashboard-ingress.yaml
./charts/pulsar/templates/dashboard-service.yaml
./charts/pulsar/templates/function-worker-configmap.yaml
./charts/pulsar/templates/grafana-admin-secret.yaml
./charts/pulsar/templates/grafana-configmap.yaml
./charts/pulsar/templates/grafana-deployment.yaml
./charts/pulsar/templates/grafana-ingress.yaml
./charts/pulsar/templates/grafana-service.yaml
./charts/pulsar/templates/keytool.yaml
./charts/pulsar/templates/namespace.yaml
./charts/pulsar/templates/prometheus-configmap.yaml
./charts/pulsar/templates/prometheus-deployment.yaml
./charts/pulsar/templates/prometheus-pvc.yaml
./charts/pulsar/templates/prometheus-rbac.yaml
./charts/pulsar/templates/prometheus-service.yaml
./charts/pulsar/templates/prometheus-storageclass.yaml
./charts/pulsar/templates/proxy-configmap.yaml
./charts/pulsar/templates/proxy-ingress.yaml
./charts/pulsar/templates/proxy-pdb.yaml
./charts/pulsar/templates/proxy-podmonitor.yaml
./charts/pulsar/templates/proxy-service.yaml
./charts/pulsar/templates/proxy-statefulset.yaml
./charts/pulsar/templates/pulsar-cluster-initialize.yaml
./charts/pulsar/templates/pulsar-manager-admin-secret.yaml
./charts/pulsar/templates/pulsar-manager-configmap.yaml
./charts/pulsar/templates/pulsar-manager-deployment.yaml
./charts/pulsar/templates/pulsar-manager-ingress.yaml
./charts/pulsar/templates/pulsar-manager-service.yaml
./charts/pulsar/templates/tls-cert-internal-issuer.yaml
./charts/pulsar/templates/tls-certs-internal.yaml

Listing A.8 The Pulsar Helm chart directory layout 
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./charts/pulsar/templates/toolset-configmap.yaml

./charts/pulsar/templates/toolset-service.yaml

./charts/pulsar/templates/toolset-statefulset.yaml

./charts/pulsar/templates/zookeeper-configmap.yaml

./charts/pulsar/templates/zookeeper-pdb.yaml

./charts/pulsar/templates/zookeeper-podmonitor.yaml

./charts/pulsar/templates/zookeeper-service.yaml

./charts/pulsar/templates/zookeeper-statefulset.yaml

./charts/pulsar/templates/zookeeper-storageclass.yaml

B Examine the structure of the generated Pulsar Helm chart directory.

c List all of the generated templates.

As we can see from listing A.8, there are quite a few templates that encapsulate the
bulk of the chart logic. Let’s examine the templates associated with the Pulsar brokers
to get a better understanding of the details these templates contain.

cat ./charts/pulsar/templates/broker-service.yaml                  B
...

{{- if .Values.components.broker }}
apiVersion: v1
kind: Service
metadata:
  name: "{{ template "pulsar.fullname" . }}-{{ .Values.broker.component }}"
  namespace: {{ .Values.namespace }}
  labels:
    {{- include "pulsar.standardLabels" . | nindent 4 }}
    component: {{ .Values.broker.component }}
  annotations:
{{ toYaml .Values.broker.service.annotations | indent 4 }}
spec:
  ports:
  # prometheus needs to access /metrics endpoint
  - name: http
    port: {{ .Values.broker.ports.http }}                          c
  {{- if or (not .Values.tls.enabled) (not .Values.tls.broker.enabled) }}
  - name: pulsar
    port: {{ .Values.broker.ports.pulsar }}                        d
  {{- end }}
  {{- if and .Values.tls.enabled .Values.tls.broker.enabled }}     e
  - name: https
    port: {{ .Values.broker.ports.https }}                         f
  - name: pulsarssl
    port: {{ .Values.broker.ports.pulsarssl }}                     g
  {{- end }}
  clusterIP: None
  selector:
    app: {{ template "pulsar.name" . }}
    release: {{ .Release.Name }}
    component: {{ .Values.broker.component }}
{{- end }}

Listing A.9 The Pulsar broker deployment configuration file
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B The file containing the Pulsar Broker service definition

c The HTTP port to use

d The data port to use

e Whether the Broker should use TLS or not

f The secured HTTPS port to use

g The secured data port to use

As you can see in listing A.9, the Pulsar broker definition file depends on parameterized
values for configuration. As you may suspect, these values are provided in the
values.yaml file that was generated for us when we ran the script to produce the Pulsar
Helm chart. The following listing shows the corresponding section of the values.yaml
file that contains the definitions for the Pulsar broker.

## Pulsar: Broker cluster
## templates/broker-statefulset.yaml
##
broker:
  # use a component name that matches your grafana configuration
  # so the metrics are correctly rendered in grafana dashboard
  component: broker
  replicaCount: 3                                                   B
  # If using Prometheus-Operator enable this PodMonitor to discover broker 

scrape targets
  # Prometheus-Operator does not add scrape targets based on k8s annotations
  podMonitor:
    enabled: false
    interval: 10s
    scrapeTimeout: 10s
  ports:                                                            c
    http: 8080
    https: 8443
    pulsar: 6650
    pulsarssl: 6651
  # nodeSelector:
    # cloud.google.com/gke-nodepool: default-pool
  ...
    resources:                                                      d
    requests:
      memory: 512Mi
      cpu: 0.2
  ## Broker configmap
  ## templates/broker-configmap.yaml                                e
  ##
  configData:
    PULSAR_MEM: >
      -Xms128m -Xmx256m -XX:MaxDirectMemorySize=256m                f
    PULSAR_GC: >
      -XX:+UseG1GC
      -XX:MaxGCPauseMillis=10
      -Dio.netty.leakDetectionLevel=disabled

Listing A.10 The Pulsar broker-related values in values.yaml
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      -Dio.netty.recycler.linkCapacity=1024
      -XX:+ParallelRefProcEnabled
      -XX:+UnlockExperimentalVMOptions
      -XX:+DoEscapeAnalysis
      -XX:ParallelGCThreads=4
      -XX:ConcGCThreads=4
      -XX:G1NewSizePercent=50
      -XX:+DisableExplicitGC
      -XX:-ResizePLAB
      -XX:+ExitOnOutOfMemoryError
      -XX:+PerfDisableSharedMem                                    g
    managedLedgerDefaultEnsembleSize: "2"                          h
    managedLedgerDefaultWriteQuorum: "2"                           i
    managedLedgerDefaultAckQuorum: "2"                             j

B Specifies a total of three broker instances

c Section that specifies the various port values

d Section that specifies the pod resources

e The associated broker configuration map

f The JVM memory settings for the broker pods

g The JVM garbage collection settings for the broker pods

h The ensemble size for the Pulsar ledger

i The write quorum size for the Pulsar ledger

j The ack quorum for the Pulsar ledger

As you can see from listing A.10, these settings are on the small side in terms of
resources. This is because the default Pulsar Helm chart is designed specifically for
minikube-based deployment. You can modify these values to suit your own needs.

A.3 Using the Pulsar Helm chart
Now that we have downloaded and examined the Pulsar Helm chart, the next step is to
use it to provide our Pulsar cluster. The first step in this process is to add the Pulsar Helm
chart to your local Helm repository and initialize it, as shown in the following listing.
This will allow your local Helm client to locate and download the Pulsar Helm chart.

helm repo add apache https://pulsar.apache.org/charts                   B

./scripts/pulsar/prepare_helm_release.sh \
 --create-namespace \                                                   c
 --namepsace pulsar \                                                   d
 --release pulsar-mini                                                  e

namespace/pulsar created
generate the token keys for the pulsar cluster                          f
The private key and public key are generated to /var/folders/zw/

➥ x39hv0dd7133w9v9cgnt1lvr0000gn/T/tmp.QT3EjywR and 

➥ /var/folders/zw/x39hv0dd7133w9v9cgnt1lvr0000gn/T/tmp.YkhhbAyG 

➥ successfully.

Listing A.11 Adding the Pulsar Helm chart to your Helm repository
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secret/pulsar-mini-token-asymmetric-key created
generate the tokens for the super-users: proxy-admin,broker-admin,admin
generate the token for proxy-admin
secret/pulsar-mini-token-proxy-admin created
generate the token for broker-admin
secret/pulsar-mini-token-broker-admin created
generate the token for admin
secret/pulsar-mini-token-admin created                                  g
-------------------------------------

The jwt token secret keys are generated under:                          h
    - 'pulsar-mini-token-asymmetric-key'

The jwt tokens for superusers are generated and stored as below:        i
    - 'proxy-admin':secret('pulsar-mini-token-proxy-admin')
    - 'broker-admin':secret('pulsar-mini-token-broker-admin')
    - 'admin':secret('pulsar-mini-token-admin')

B Add the Pulsar Helm repo to your local Helm repo.

c Instruct Helm to create the Kubernetes namespace.

d The name of the Kubernetes namespace to create

e The Pulsar release name

f Generating the public and private token files

g Generating the tokens for the various admin users

h Generating the JWT secret

i Generating the JWT access tokens

The final step in the process is to use Helm to install the Pulsar cluster, as shown in the
following listing. It is important to specify initialize=true when installing a Pulsar
release for the first time because it will ensure that the cluster metadata for both
BookKeeper and Pulsar is properly initialized.

helm install \
--set initialize=true \                     B
--values examples/values-minikube.yaml \    c
pulsar-mini \                               d
apache/pulsar                               e

kubectl get pods -n pulsar -o name          f
pod/pulsar-mini-bookie-0
pod/pulsar-mini-bookie-init-94r5z
pod/pulsar-mini-broker-0
pod/pulsar-mini-grafana-6746b4bf69-bjtff
pod/pulsar-mini-prometheus-5556dbb8b8-m8287
pod/pulsar-mini-proxy-0
pod/pulsar-mini-pulsar-init-dmztl
pod/pulsar-mini-pulsar-manager-6c6889dff-q9t5q
pod/pulsar-mini-toolset-0
pod/pulsar-mini-zookeeper-0

Listing A.12 Install Pulsar using the Helm chart
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B Request that the cluster metadata be initialized.

c The values file to use

d The unique name for this cluster

e The Helm chart to use

f List all the pods created for the Pulsar cluster.

After Helm has completed the installation process, you can use the kubectl tool to list
all of the pods created for the Pulsar cluster and validate that the necessary services
are up and running, get the IP addresses, etc. 

A.3.1 Administering Pulsar on Kubernetes
Once you have deployed a Pulsar cluster to a Kubernetes environment, one of your
first concerns will be deciding how to administer the pulsar cluster. Fortunately, the
Pulsar Helm chart creates a pod named pulsar-mini-toolset-0 that contains the
pulsar-admin CLI tool, which is already configured to interact with the deployed Pul-
sar cluster. Consequently, all that is required to administer the cluster is to use the
kubectl exec command to access the pod and execute the commands directly against
the cluster, as shown in the following listing. 

kubectl exec -it -n pulsar pulsar-mini-toolset-0 /bin/bash

bin/pulsar-admin tenants create manning  

bin/pulsar-admin tenants list   
 
"manning"
"public"
"pulsar"

Since the pulsar-admin CLI tool is the same for both the Kubernetes cluster and the
Docker standalone container, the docker exec and kubectl exec commands can be
used interchangeably throughout this book if you choose to follow the examples using
Kubernetes rather than Docker. For more details on the pulsar-admin CLI, please
refer to the documentation. 

A.3.2 Configuring clients
The main challenge with connecting to a Pulsar cluster inside a K8s environment is
finding the ports that the cluster is listening on. The default binary port, 6650 and
HTTP admin port, 8080 are not exposed outside of the K8s environment. Therefore,
you first need to determine where these node ports are mapped to.

 By default, the Pulsar Helm chart exposes the Pulsar cluster through a Kubernetes
load balancer. In minikube, you can use the command shown in listing A.14 to check
the proxy service. The output from this command will tell us which node ports the

Listing A.13 Administering Pulsar on Kubernetes
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Pulsar cluster’s binary port and HTTP port are mapped to. The port after 80: is the
HTTP port, while the port after 6650: is the binary port.

$kubectl get services -n pulsar | grep pulsar-mini-proxy                  B

pulsar-mini-proxy            LoadBalancer   10.110.67.72     <pending>     

➥ 80:30210/TCP,6650:32208/TCP   4h16m                                    c

$minikube service pulsar-mini-proxy -n pulsar –-url                       d
http://192.168.64.3:30210                                                 e
http://192.168.64.3:32208                                                 f

B Command to determine port mappings

c The output tells us port 80 is mapped to port 30210, and port 6650 is mapped to port 32208.

d Command to find the IP address of the exposed ports inside minikube

e The proxy’s HTTP URL

f The proxy’s binary URL

At this point, you have service URLs you need to connect your clients to the Pulsar
cluster running inside minikube, and you can use them, along with required security
tokens that we generated earlier when configuring your Pulsar clients to interact with
the cluster. 

Listing A.14 Determining the Pulsar Client ports
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appendix B
Geo-replication

Geo-replication is a common mechanism used to provide disaster recovery in multi-
datacenter deployments. Unlike other pub–sub messaging systems that require
additional processes to mirror messages between data centers, geo-replication is
automatically performed by Pulsar brokers and can be enabled, disabled, or
dynamically changed at runtime. Traditional geo-replication mechanisms typically
fall into one of two categories: synchronous or asynchronous. Apache Pulsar comes
with multi-datacenter replication as an integrated feature that supports both of
these geo-replication strategies. In the following examples, I will assume that we are
deploying our Pulsar instance across the three cloud provider regions: US-West,
US-Central, and US-East.

B.1 Synchronous geo-replication
A synchronous geo-replicated Pulsar installation consists of a cluster of bookies run-
ning across multiple regions, a cluster of brokers also distributed across all regions,
and a single global ZooKeeper installation to form a single global logical instance
across all available regions, as shown in figure B.1. The global “stretched” Zoo-
Keeper ensemble is critical to supporting this approach because it is used to store
the managed ledgers.

 In the synchronous geo-replication case, when the client issues a write request to
a Pulsar cluster in one geographical location, the data is written to multiple bookies
in different geographical locations within the same call. The write request is only
acknowledged to the client when the configured number of the data centers have
issued a confirmation that the data has been persisted. While this approach provides
the highest level of data guarantees, it also incurs the cost of the cross-datacenter
network latency for each message. 

 Synchronous geo-replication is actually achieved by Apache BookKeeper in the
storage layer for Pulsar and relies on a placement policy to distribute the data
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across multiple data centers and to guarantee availability constraints. You can enable
either the rack-aware or region-aware placement policy, depending on whether you
are running in a bare metal or cloud environment, respectively, by modifying the bro-
ker configuration file (broker.conf), as shown in the following listing.

# Set this to true if your cluster is spread across racks inside one
# datacenter or across multiple AZs inside one region 
bookkeeperClientRackawarePolicyEnabled=true

# Set this to true if your cluster is spread across multiple datacenters or
# cloud provider regions.
bookkeeperClientRegionawarePolicyEnabled=true

When you enable the region-aware placement policy, for example, BookKeeper will
choose bookies from different regions when forming a new bookie ensemble, which
ensures that the topic data will be distributed evenly across all of the available regions.
Note that only one of these settings will be honored at runtime with region awareness
taking precedence if both are set to true.

 The use of a single ZooKeeper cluster to implement synchronous geo-replication also
requires some additional configuration changes in order for the geographically dispersed

Listing B.1 Enabling the region-aware policy
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Figure B.1 Clients access a synchronously geo-replicated cluster via a single load balancer, 
which forwards the publish request to one of the Pulsar proxies. The Proxy routes the request 
to the broker that owns the topic, which then publishes the data across the regions based on 
the placement policy that is configured.
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broker and bookie components to work together as a single cluster. Configuring
ZooKeeper for such a scenario involves adding a server.N line to the conf/zookeeper.conf
file for each node in the ZooKeeper cluster, where n is the number of the ZooKeeper
nodes, as shown in the following listing, which uses one ZooKeeper node per region.

server.1=zk1.us-west.example.com:2888:3888
server.2=zk1.us-central.example.com:2888:3888
server.3=zk1.us-east.example.com:2888:3888

In addition to modifying the conf/zookeeper.conf file in the conf directory of each
Pulsar installation, you will also need to modify the zkServers property in the conf/
bookkeeper.conf file to list each of the ZooKeeper servers, as shown in the following
listing. 

zkServers= zk1.us-west.example.com:2181, zk1.us-central.example.com:2181,
zk1.us-east.example.com:2181

Similarly, you will need to update the zookeeperServers property in both the conf/
discovery.conf and conf/proxy.conf files to be a comma-separated list of the ZooKeeper
servers as well, since both the Pulsar proxy and service discovery mechanism depend on
ZooKeeper to provide them with up-to-date metadata about the Pulsar cluster.

 Synchronous geo-replication provides stronger data consistency guarantees than
asynchronous replication, since the data is always synchronized across the datacenters,
making it easier to run your applications independent of where the messages are pub-
lished. A synchronous geo-replicated Pulsar cluster can continue to function like nor-
mal even if an entire datacenter goes down, with the outage being entirely transparent
to the applications that are accessing the cluster via a load balancer. This makes syn-
chronous geo-replication good for mission-critical use cases that are able to tolerate a
slightly higher publish latency.

B.2 Asynchronous geo-replication
An asynchronous geo-replicated Pulsar installation consists of a two or more indepen-
dent Pulsar clusters running in different regions. Each Pulsar cluster contains its own
respective set of brokers, bookies, and ZooKeeper nodes that are completely isolated
from one another. In asynchronous geo-replication, when messages are produced on
a Pulsar topic, they are first persisted to the local cluster and are then replicated asyn-
chronously to the remote clusters. This replication process occurs via inter-broker
communication, as shown in figure B.2.

 With asynchronous geo-replication, the message producer doesn’t wait for a con-
firmation from multiple Pulsar clusters. Instead, the producer receives a response

Listing B.2 Single ZooKeeper configuration for synchronous geo-replication 

Listing B.3 BookKeeper configuration for synchronous geo-replication
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immediately after the nearest cluster successfully persists the data. The data is then
replicated to the other Pulsar clusters in an asynchronous fashion in the background.
Under normal conditions, messages are replicated at the same time that they are dis-
patched to local consumers. 

 While asynchronous geo-replication provides lower latency because the client
doesn’t have to wait for responses from the other data centers, it also provides weaker
consistency guarantees due to asynchronous replication. Given that there is always a
replication lag in asynchronous replication, there will always be some amount of data
that hasn’t been replicated from source to destination at any given point in time.
Therefore, if you choose to implement this pattern, your application must be able to
tolerate some data loss in exchange for lower publish latency. Typically, the end-to-end
replication latency is bounded by the network round-trip time (RTT) between the
remote regions.

 It is worth noting that asynchronous geo-replication is enabled on a per-tenant
basis in Pulsar rather than a cluster-wide basis, allowing you to configure replication
only for those topics for which it is needed. This allows each individual department or
group to maintain control over its data replication policies. Asynchronous geo-
replication is managed at the namespace level, which provides more granular control
over the datasets that get replicated. This is particularly useful for cases in which you
are not permitted to allow data to leave a particular region due to regulatory and/or
security reasons.
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Bookie

Bookie
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Proxy

Bookie
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Figure B.2 Clients access an asynchronously geo-replicated cluster via the closest proxy, and 
the proxy routes the request to the broker that owns the topic, which then publishes the data 
to the bookies in the same region. The broker then replicates the incoming data to the brokers 
in the other regions.
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B.2.1 Configuring asynchronous geo-replication
As you may recall from chapter 2, a Pulsar instance is comprised of one or more Pul-
sar clusters that act together as a single unit and can be administered from a single
location, as shown in figure B.3. In fact, one of the biggest reasons for using a Pulsar
instance is to enable geo-replication, and only clusters within the same instance can
be configured to replicate data amongst themselves. Therefore, enabling asynchro-
nous geo-replication requires us to first create a Pulsar instance.

A Pulsar instance employs an instance-wide ZooKeeper cluster called the configuration
store to retain information that pertains to multiple clusters, such as geo-replication
and tenant-level security policies. This allows you to define and manage these policies
in a single location. While the complete documentation is available online, I wanted
to highlight a few of these steps in the next section.

 It is worth noting that the instance-wide ZooKeeper instance should be deployed in
such a manner as to make it completely independent from the individual Pulsar clusters
so that, in the event of a failure on the part of the instance-wide ZooKeeper ensemble,
the individual clusters will be able to continue to function without interruption. 

DEPLOYING THE CONFIGURATION STORE

In addition to installing the individual clusters, creating a multi-cluster Pulsar instance
involves deploying a separate ZooKeeper quorum to use as the configuration store.
This configuration store should be implemented with its own dedicated ZooKeeper
quorum spread across at least three regions. Given the very low expected load on the
configuration store servers, you can share the same hosts used for the local Zoo-
Keeper quorum, but will have to do so as either separate ZooKeeper processes or K8s
pods, depending on your deployment environment. You will also have to use a differ-
ent TCP port to avoid port conflicts.

 
 
 

Pulsar instance

Configuration
store

Pulsar
cluster

Pulsar
cluster

Pulsar
cluster. . .

Global ZK cluster; stores
administrative metadata,
such as data security and
replication policies

Local ZK clusters; store
ledger metadata

Figure B.3 A Pulsar instance can consist of multiple, geographically dispersed clusters.
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tickTime=2000
dataDir=/var/lib/zookeeper                       B
clientPort=2185                                  c
initLimit=5
syncLimit=2
server.1=zk2.us-west.example.com:2185:2186       d
server.2=zk2.us-central.example.com:2185:2186
server.3=zk2.us-east.example.com:2185:2186

B Use a different location for storing the transaction log.

c Use a different port than the local ZK instance.

d The quorum consists of servers from across three regions listening on the same port.

Setting up a separate ZooKeeper quorum is fairly straightforward and well documented
on the Apache ZooKeeper documentation page. Each ZooKeeper server is contained
in a single JAR file, so installation consists of downloading the jar, unpacking it, and cre-
ating a configuration file. The default location for this configuration file is conf/zoo.cfg.
All of the servers in the new ZooKeeper quorum should have the exact same configu-
ration file, as shown in listing B.4.

INITIALIZING CLUSTER METADATA

Now that the secondary ZooKeeper quorum is up and running, the next step is to pop-
ulate the configuration store with information about all the clusters that will be included
in the Pulsar instance. This metadata can be initialized by using the initialize-
cluster-metadata command of the Pulsar CLI tool, as shown in the following listing.

$ /pulsar/bin/pulsar initialize-cluster-metadata \
  --cluster us-west \                                              B
  --zookeeper zk1.us-west.example.com:2181 \                       c
  --configuration-store zk1.us-west.example.com:2184 \             d
  --web-service-url http://pulsar.us-west.example.com:8080/ \    
  --web-service-url-tls https://pulsar.us-west.example.com:8443/ \    
  --broker-service-url pulsar://pulsar.us-west.example.com:6650/ \   
  --broker-service-url-tls pulsar+ssl://pulsar.us-west.example.com:6651/

B The name of the cluster that will be used when setting up replication

c The local ZK connection string

d The connection string for the configuration store

The command associates all the various connection URLs to a given cluster name and
stores that information inside the configuration store. This information is used when
replication is enabled to connect the brokers that need to exchange data between
them (e.g., replication data from US-West to US-East). You will need to run this com-
mand for every Pulsar cluster you are adding to the instance. 

Listing B.4 ZooKeeper configuration for the configuration store quorum

Listing B.5 Initializing the cluster metadata
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CONFIGURE THE SERVICES TO USE THE CONFIGURATION STORE

After you have populated the configuration store with all the metadata associated with
the Pulsar clusters in your instance, you will need to modify a couple of configuration
files on every cluster to enable geo-replication. Since geo-replication is accomplished
via broker-to-broker communication, the most important one is the conf/broker.conf
configuration file, as shown in the following listing.

# Local ZooKeeper servers
zookeeperServers=zk1.us-west.example.com:2181,zk2.us-

➥ west.example.com:2181,zk3.us-west.example.com:2181          B

# Configuration store quorum connection string.
configurationStoreServers=zk2.us-west.example.com:2185,zk2.us-

➥ central.example.com:2185,zk2.us-east.example.com:2185       c

clusterName=us-west                                            d

B Use the local ZK quorum as before.

c Use the second ZK quorum for the configuration store.

d Specify the name of the cluster that the broker belongs to.

Make sure that you set the zookeeperServers parameter to reflect the local quorum
and the configurationStoreServers parameter to reflect the configuration store
quorum. You also need to specify the name of the cluster to which the broker belongs
using the clusterName parameter, taking care to use the value you specified in the
initialize-cluster-metadata command. Finally, make sure that the broker and web
service ports match the values you provided in the initialize-cluster-metadata
command as well. Otherwise, the replication process will fail because the source bro-
ker will be attempting communication over the wrong port.

 If you are using the service discovery mechanism included with Pulsar, you need to
change a few parameters in the conf/discovery.conf configuration file. Specifically,
you must set the zookeeperServers parameter to the ZooKeeper quorum connection
string of the cluster and the configurationStoreServers setting to the configuration
store quorum connection string using the same values used in the broker configura-
tion file. Once you have finished updating all of the necessary configuration files, all
of these services will need to be restarted after these changes are made for the new
properties to take effect.

B.3 Asynchronous geo-replication patterns
With asynchronous replication, Pulsar provides tenants a great degree of flexibility for
customizing their replication strategy. That means that an application is able to set up
active–active and full-mesh replication, active-standby replication, and aggregation
replication across multiple data centers. Let’s take a quick look at how to implement
each of these patterns inside of Pulsar.

Listing B.6 Updated broker.conf for asynchronous geo-replication
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B.3.1 Multi-active geo-replication
Asynchronous geo-replication is controlled on a per-tenant basis in Pulsar. This means
geo-replication can only be enabled between clusters when a tenant has been created
that allows access to all of the clusters involved. To configure multi-active geo-replication,
you need to specify which clusters a tenant has access to via the pulsar-admin CLI, as
shown in the following listing, which displays the command to create a new tenant
and grant it permission to access the US-East and US-West clusters only.

$ /pulsar/bin/pulsar-admin tenants create customers \    B
  --allowed-clusters us-west,us-east \                   c
  --admin-roles test-admin-role

B Create a new tenant named customers.

c Grant the tenant permission to access these two clusters only.

Now that the tenant has been created, we need to configure the geo-replication at the
namespace level. Therefore, we will first need to create the namespace using the pulsar-
admin CLI tool and then assign the namespace to a cluster—or multiple clusters—using
the set-clusters command, as shown in the following listing.

$ /pulsar/bin/pulsar-admin namespaces create customers/orders

$ /pulsar/bin/pulsar-admin namespaces set-clusters customers/orders \
  --clusters us-west,us-east,us-central

By default, once replication is configured between two or more clusters, as shown in
listing B.8, all of the messages published to topics inside the namespace in one cluster
are asynchronously replicated to all the other clusters in the list. Therefore, the
default behavior is effectively full-mesh replication of all the topics in the namespace
with messages getting published in multiple directions, as shown in figure B.4. When
you only have two clusters, the default behavior can be thought of as an active–active
cluster configuration where the data is available on both clusters to serve clients, and
in the event of a single cluster failure, all of the clients can be redirected to the
remaining active cluster without interruption.
Besides full-mesh (active-active) geo-replication, there are a few other replication pat-
terns you can use. Another common one for disaster recovery is the active-standby repli-
cation pattern. 

B.3.2 Active-standby geo-replication
In this situation you are looking to keep an up-to-date copy of the cluster at a different
geographical location, so you can resume operations in the event of a failure with a
minimal amount of data loss or recovery time. Since Pulsar doesn’t provide a means

Listing B.7 Granting a tenant access to clusters

Listing B.8 Assigning a namespace to a cluster



360 APPENDIX B Geo-replication

for specifying one-way replication of namespaces, the only way to accomplish this con-
figuration is by restricting the clients to a single cluster, known as the active cluster,
and having them all failover to the standby cluster only in the event of a failure. Typi-
cally, this can be accomplished via a load balancer or other network-level mechanism
that makes the transition transparent to the clients, as shown in figure B.5. Pulsar cli-
ents publish messages to the active cluster, which are then replicated to the standby
cluster for backup.

As you may have noticed, the replication of the Pulsar data will still be done
bi-directionally, which means that the US-West cluster will attempt to send the data it
receives during the outage to the US-East cluster. This might be problematic if the fail-
ure is related to one or more components within the Pulsar cluster or the network for

US-East US-West

US-Central

Pulsar
clients

Pulsar
clients

Pulsar
clients

Bidirectional
replication

(Active) (Active)

(Active)

Bidirectional
replication
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Figure B.4 The default behavior is full-mesh geo-replication between all clusters. Messages 
published to a topic inside a replicated namespace in the US-East cluster will be forwarded 
to both the US-West and US-Central clusters.
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Figure B.5 You can use asynchronous geo-
replication to implement an active-standby 
scenario in which all of the data within a given 
namespace is forwarded to a cluster that will 
be used only in the event of a failure.
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the US-East cluster is unreachable. Therefore, you should consider adding selective
replication code inside your Pulsar producers to prevent the US-West cluster from
attempting to replicate messages to the US-East cluster, which is most likely dead.

 You can restrict replication selectively by directly specifying a replication list for a
message at the application level. The code in listing B.9 shows an example of produc-
ing a message that will only be replicated to the US-West cluster, which is the behavior
you want in this active-standby scenario. 

List<String> restrictDatacenters = Lists.newArrayList("us-west");

Message message = MessageBuilder.create()
    …
    .setReplicationClusters(restrictDatacenters)
    .build();

producer.send(message);

Sometimes you want to funnel messages from multiple clusters into a single location
for aggregation purposes. One such example would be gathering all the payment data
collected from across all the geographical regions for processing and collection. 

B.3.3 Aggregation geo-replication
Assume we have three clusters all actively serving the GottaEat customers in their
respective regions and a fourth Pulsar cluster named internal that is completely iso-
lated from the web and only accessible by internal employees, and that is used to
aggregate the data from all of the customer-serving Pulsar clusters, as shown in figure
B.6. To implement aggregation geo-replication across these four clusters, you will
need to use the commands shown in listing B.10, which first creates the E-payments
tenant and grants access to all the clusters.

 Next, you will need to create a namespace for each of the customer services clus-
ters (e.g., E-payments/us-east-payments). You cannot use one such as E-pay-

Listing B.9 Selective replication per message
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Figure B.6 An aggregation geo-
replication configuration to funnel 
messages from three customer-facing 
Pulsar clusters to an internal Pulsar 
cluster for aggregation and analysis
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ments/  payments because that would lead to full mesh replication if you attempted
to use it, since every cluster would have that namespace. Thus, a per-cluster name-
space is required for this to work.

/pulsar/bin/pulsar-admin tenants create E-payments \                     B
--allowed-clusters us-west,us-east,us-central,internal

/pulsar/bin/pulsar-admin namespaces create E-payments/us-east-payments   c
/pulsar/bin/pulsar-admin namespaces create E-payments/us-west-payments
/pulsar/bin/pulsar-admin namespaces create E-payments/us-central-payments

/pulsar/bin/pulsar-admin namespaces set-clusters \                       d
E-payments/us-east-payments --clusters us-east,internal

/pulsar/bin/pulsar-admin namespaces set-clusters \                       e
E-payments/us-west-payments --clusters us-west,internal

/pulsar/bin/pulsar-admin namespaces set-clusters \                       f
E-payments/us-central-payments --clusters us-central,internal

B Create the global tenant for Payments.

c Create the cluster-specific namespaces.

d Configure US-East to internal replication.

e Configure US-West to internal replication.

f Configure US-Central to internal replication.

If you decide to implement this pattern and you intend to run identical copies of an
application across all the customer-servicing cluster, be sure to make the topic name
configurable so the application running on US-East knows to publish messages to
topics inside the us-east-payments namespace. Otherwise, the replication will not
work.

Listing B.10 Aggregator geo-replication
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