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Joreword

Apache Pulsar in Action is the missing guide that will walk you through your journey
with Apache Pulsar. It is a book that I'd recommend to anyone, from developers start-
ing to explore pub-sub messaging, to someone with messaging experience, up to
experienced Pulsar power users.

The Apache Pulsar project was started at Yahoo! around 2012 with the mission of
experimenting with a new architecture that would be able to solve the operational
challenges of existing messaging platforms. This was also a time when some significant
shifts in the world of data infrastructure were starting to become more visible. Appli-
cation developers started to look more and more at scalable and reliable messaging as
the core component for building the next generation of products. At the same time,
companies started to see large-scale real-time streaming data analytics as an essential
component and business advantage.

Pulsar was designed from the ground up with the objective of bridging these two
worlds, pub-sub messaging and streaming analytics, that are too often isolated in dif-
ferent silos. We worked toward creating an infrastructure that would represent a next
generation of real-time data platforms, where one single system would be able to sup-
port all the use cases throughout the entire life cycle of data events.

Over time, that vision has expanded further, as can be clearly seen from the wide
range of components described in this book. The project has added support for light-
weight processing with Pulsar Functions, the Pulsar IO connectors framework, support
for data schema, and many other features. What has not changed is the ultimate goal
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of creating the most scalable, flexible, and reliable platform for real-time data, and
allowing any user to process the data stored in Pulsar in the most convenient form.

I have known and worked with this book’s author, David Kjerrumgaard, for several
years. Throughout this time, I've seen his passion for working with the Pulsar commu-
nity. He is always able to help users make sense of technical issues, as well as to show
them how Pulsar fits into the bigger picture of solving their data problem.

I particularly appreciate how Pulsar in Action is able to seamlessly mix the theory
and abstract concepts with the clarity of practical step-by-step examples, and how
these examples are rooted in common use cases and messaging design patterns that
will surely resonate with many readers. There is truly something for everyone, and
everyone will be able to get acquainted with all the aspects and the possibilities that
Pulsar offers.

—MATTEO MERLI
CTO AT STREAMNATIVE
Co-CREATOR AND PMC CHAIR OF APACHE PULSAR



preface

Back in 2012, the Yahoo! team was looking for a global, geo-replicated platform that
could stream all of Yahoo!’s messaging data between various apps such as Yahoo Mail
and Yahoo Finance. At the time, there were generally two types of systems to handle
in-motion data: message queues that handled mission-critical business events in real-
time, and streaming systems that handled scalable data pipelines at scale. But there
wasn’t a platform that provided both capabilities that Yahoo required.

After vetting the messaging and streaming landscape, it became clear that existing
technologies were not able to serve their needs, so the team at Yahoo! started working
on building a unified messaging and streaming platform for in-motion data named
Pulsar. After 4 years of operation across 10 datacenters processing billions of messages
per day, Yahoo! decided to open source its messaging platform under the Apache
license in 2016.

I first encountered Pulsar in the fall of 2017. T was leading the professional services
team at Hortonworks focused on the streaming data platform known as Hortonworks
Data Flow (HDF) that comprised Apache NiFi, Kafka, and Storm. It was my job to
oversee the deployment of these technologies into a customer’s infrastructure and
help them get started developing streaming applications.

The greatest challenge we faced when working with Kafka was helping our custom-
ers administer it properly, and specifically determining the proper number of parti-
tions for a given topic to achieve a proper balance of speed and efficiency while
allowing for future data growth. Those of you that are familiar with Kafka are painfully
aware of the fact that this seemingly simple decision has a profound impact on the

XV



xvi

PREFACE

scalability of your topics, and the process of changing this value (even from 3 to 4)
necessitates a rebalancing process that is slow and results in the rebalancing topic
being unavailable for reading or writing during the entire process.

This rebalancing requirement was universally disliked by all the customers who
were using HDF, and rightfully so, because they saw it as a clear impediment to their
ability to scale the Kafka cluster as their data volumes grew. They knew from experi-
ence just how difficult it was to scale their messaging platform up and down. Even
worse was the fact that we could not simply “drop in” a few more nodes to add com-
puting capacity to our customer’s existing cluster without also reconfiguring the top-
ics to use them by assigning more partitions to the existing topics to have the data
redistributed onto the recently added nodes. This inability to horizontally scale out
their streaming capacity without manual (or heavily scripted) intervention was in
direct conflict with most of our customers’ desires to move their messaging platforms
to the cloud and capitalize on the elastic computing capability the cloud provides.

That is when I discovered the Apache Pulsar platform and found its claim to be
“cloud-native” especially appealing because it addressed both scalability pain points.
While HDF had allowed my customers to get started quickly, they found it difficult to
manage and not architected to run in the cloud. I realized that Apache Pulsar was a
much better solution than what we were currently offering to our customers and tried
to convince our product team to consider replacing Kafka with Pulsar in our HDF
product. I even went so far as to write connectors that allowed it to work with the
Apache NiFi component of our stack to facilitate that adoption, but to no avail.

When I was approached by the original developers of Apache Pulsar in January of
2018 and offered the opportunity to join a small start-up called Streamlio, I immedi-
ately jumped at the chance to work with them. Pulsar was a young project back then,
having just been placed into the Apache incubation program, and we spent the next
15 months working to get our fledgling “podling” through the incubation process and
promoted to top-level project status.

This was during the height of the streaming data hype, and Kafka was the domi-
nant player in the space, so naturally everyone considered the terms interchangeable.
The consensus was that Kafka was the only data-streaming platform available. I knew
better from my prior experiences and took it upon myself to relentlessly evangelize
what I knew to be a technologically superior solution—a lonely voice shouting in the
proverbial wilderness.

By the spring of 2019, the Apache Pulsar community had experienced tremendous
growth in terms of contributors and users, but there was a profound lack of reliable
documentation on the technology. So, when the prospect of writing Apache Pulsar in
Action was first proposed to me, I immediately seized upon it as an opportunity to
address the glaring need within the Pulsar community. While I was never able to con-
vince my colleagues to join me in this endeavor, they were an invaluable source of
guidance and information throughout the process and have used this book as a means
of transferring some of their knowledge to you.
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This book is targeted to individuals who are brand new to Pulsar, and is a combina-
tion of the information I gathered while working directly with the project founders
when they were actively developing Pulsar, along with experience gained from work-
ing directly with organizations that have adopted Apache Pulsar in production.

Itis intended to provide guidance over the stumbling blocks and pitfalls that others
have encountered during their journeys with Pulsar. Above all, this book will give you
the confidence to develop stream processing applications and microservices employ-
ing Pulsar using the Java programming language. Even though I have chosen to use
Java for most of the code samples throughout the book due to my familiarity with the
language, I have also created a similar set of code using Python and have uploaded it to
my GitHub account for those of you who prefer coding in that language.
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about this book

Apache Pulsar in Action was written as an introduction to the stream processing world
and to help you become familiar with the terminology, semantics, and considerations
one must take when adopting the stream processing paradigm while coming from a
batch-processing background. It starts with a historical review of the evolution of mes-
saging systems over the past 40 years and shows how Pulsar sits at the top of this evolu-
tionary cycle.

After a brief introduction to common messaging terminology and a discussion of
the two most common message consumption patterns, it covers the architecture of
Pulsar from a physical perspective focusing on its cloud-native design, as well as from
its logical structuring of data and its support for multi-tenancy.

The remainder of the book is focused on how you can use Pulsar’s built-in computing
platform known as Pulsar Function to develop applications using a simple API. This is
demonstrated by implementing an order-processing use case: a fictional food delivery
microservices application based solely on Pulsar Functions, complete with a delivery
time estimation machine learning model deployment.

Who should read this book

Apache Pulsar in Actionis primarily intended for Java developers who have an interest in
working with streaming data, or microservice developers who are looking for an alter-
native message-based framework that can be used for event sourcing. DevOps teams
who are looking to deploy and operate Pulsar within their organizations will find this
book useful as well. One of the primary criticisms of Apache Pulsar is an overall lack of
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documentation and blog posts available online, and although I fully expect that to
change in the near future, I hope that this book will help fill that gap in the interim
and will benefit anyone wanting to learn more about stream processing in general and
Apache Pulsar in particular.

How this book is organized: A roadmap

This book consists of 12 chapters that are spread across three different parts. Part 1
starts with a basic introduction to Apache Pulsar and where it fits in the 40-year evolu-
tion of messaging systems by comparing it to and contrasting it with the various mes-
saging platforms that have come before it:

Chapter 1 provides a historical perspective on messaging systems and where
Apache Pulsar fits into the 40-year evolution of messaging technology. It also
previews some of Pulsar’s architectural advantages over other systems and why
you should consider using it as your single messaging platform of choice.
Chapter 2 covers the details of Pulsar’s multi-tiered architecture, which allows
you to dynamically scale up the storage or serving layers independently. It also
describes some of the common message consumption patterns, how they are
different from one another, and how Pulsar supports them all.

Chapter 3 demonstrates how to interact with Apache Pulsar from both the com-
mand line as well as by using its programming API. After completing this chap-
ter, you should be comfortable running a local instance of Apache Pulsar and
interacting with it.

Part 2 covers some of the more basic usage and features of Pulsar, including how to
perform basic messaging and how to secure your Pulsar cluster, along with more
advanced features such as the schema registry. It also introduces the Pulsar Functions
framework, including how to build, deploy, and test functions:

Chapter 4 introduces Pulsar’s stream native computing framework called Pulsar
Functions, provides some background on its design and configuration, and
show you how to develop, test, and deploy functions.

Chapter 5 introduces Pulsar’s connector framework that is designed to move
between Apache Pulsar and external storage systems, such as relational data-
bases, key-value stores, and blob storage such as S3. It teaches you how to
develop a connector in a step-by-step fashion.

Chapter 6 provides step-by-step details on how to secure your Pulsar cluster to
ensure that your data is secured while it is in transit and while it is at rest.
Chapter 7 covers Pulsar’s built-in schema registry, why it is necessary, and how it
can help simplify microservice development. We also cover the schema evolu-
tion process and how to update the schemas used inside your Pulsar Functions.

Part 3 focuses on the use of Pulsar Functions to implement microservices and demon-
strates how to implement various common microservice design patterns within Pulsar
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Functions. This section focuses on the development of a food delivery application to
make the examples more realistic and addresses more-complex use cases including
resiliency, data access, and how to use Pulsar Functions to deploy machine learning
models that can run against real-time data:

Chapter 8 demonstrates how to implement common messaging routing pat-
terns such as message splitting, content-based routing, and filtering. It also
shows how to implement various message transformation patterns such as value
extraction and message translation.

Chapter 9 stresses the importance of having resiliency built into your microser-
vices and demonstrates how to implement this inside your Java-based Pulsar
Functions with the help of the resiliency4j library. It covers various events that
can occur in an event-based program and the different patterns you can use to
insulate your services from these failure scenarios to maximize your application
uptime.

Chapter 10 focuses on how you can access data from a variety of external sys-
tems from inside your Pulsar functions. It demonstrates various ways of acquir-
ing information within your microservices and considerations you should take
into account in terms of latency.

Chapter 11 walks you through the process of deploying different machine
learning model types inside of a Pulsar function using various ML frameworks.
It also covers the very important topic of how to feed the necessary information
into the model to get an accurate prediction

Chapter 12 covers the use of Pulsar Functions within an edge computing envi-
ronment to perform real-time analytics on IoT data. It starts with a detailed
description of what an edge computing environment looks like and describes
the various layers of the architecture before showing how to leverage Pulsar
Functions to process the information on the edge and only forward summaries
rather than the entire dataset.

Finally, two appendices demonstrate more advanced operational scenarios including
deployment within a Kubernetes environment and geo-replication:

Appendix A walks you through the steps necessary to deploy Pulsar into a
Kubernetes environment using the Helm charts that are provided as part of the
open source project. It also covers how to modify these charts to suit your envi-
ronment.

Appendix B describes Pulsar’s built-in geo-replication mechanism and some of
the common replication patterns that are used in production today. It then
walks you through the process of implementing one of these geo-replication
patterns in Pulsar.
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About the code

This book contains many examples of source code both in numbered listings and in
line with normal text. In both cases, source code is formatted in a fixed-width font
like this to separate it from ordinary text. Sometimes code is also in bold to high-
light code that has changed from previous steps in the chapter, such as when a new
feature adds to an existing line of code.

In many cases, the original source code has been reformatted; we’ve added line
breaks and reworked indentation to accommodate the available page space in the
book. In rare cases, even this was not enough, and listings include line-continuation
markers (= ). Additionally, comments in the source code have often been removed
from the listings when the code is described in the text. Code annotations accompany
many of the listings, highlighting important concepts.

This book is first and foremost a programming book designed to be used as a
hands-on guide for learning how to develop microservices using Pulsar Functions.
Therefore, I have provided multiple source code repositories that I often refer to
throughout the course of the book. I encourage you to download the code from the
publisher’s website at https://www.manning.com/books/apache-pulsar-in-action, or
from my personal GitHub account:

This GitHub repository contains the code examples for chapters 3 through 6 as
well as chapter 8: https://github.com/david-streamlio/pulsar-in-action

The code for the food delivery microservices application can be found in the
following GitHub repository: https://github.com/david-streamlio/GottaEat
The code for the IoT Analytics application discussed in Chapter 12 can be
found here: https://github.com/david-streamlio/Pulsar-Edge-Analytics

For those of you looking for Python-based examples, you can find them in the fol-
lowing repository: https://github.com/david-streamlio/pulsar-in-action-python

Other online resources
Need additional help?

The Apache Pulsar project website, https://pulsar.apache.org, is a good source
of information about the configuration settings of various components of the
Apache Pulsar software, as well as various cookbooks on how to implement spe-
cific features of the software, and it will have the most current information.
The Apache Pulsar Slack channel, apache-pulsar.slack.com, is an active forum
where members of the Apache Pulsar community from around the world meet
to exchange advice, share best practices, and provide troubleshooting advice to
people who are experiencing problems with Pulsar. It is a great place to go for
advice if you get stuck.

In my current capacity as a Developer Advocate, I will continue to develop addi-
tional educational content including blog posts and code examples that will be
made readily available online at my company’s website, streamnative.io.
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liveBook discussion forum

Purchase of Apache Pulsar in Action includes free access to a private web forum run by
Manning Publications where you can make comments about the book, ask technical
questions, and receive help from the author and from other users. To access the forum,
go to https://livebook.manning.com/#!/book/apache-pulsar-in-action/discussion. You
can also learn more about Manning’s forums and the rules of conduct at https://
livebook.manning.com/#!/discussion.

Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of
the author, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest you try asking the author some challenging questions lest his interest stray! The
forum and the archives of previous discussions will be accessible from the publisher’s
website as long as the book is in print.
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about the cover illustration

The figure on the cover of Apache Pulsar in Action is captioned “Cosaque,” or a Cossack
man. The illustration is taken from a collection of dress costumes from various coun-
tries by Jacques Grasset de Saint-Sauveur (1757-1810), titled Costumes civils actuels de
tous les peuples connus, published in France in 1788. Each illustration is finely drawn
and colored by hand. The rich variety of Grasset de Saint-Sauveur’s collection reminds
us vividly of how culturally apart the world’s towns and regions were just 200 years ago.
Isolated from each other, people spoke different dialects and languages. In the streets
or in the countryside, it was easy to identify where they lived and what their trade or
station in life was just by their dress.

The way we dress has changed since then and the diversity by region, so rich at the
time, has faded away. It is now hard to tell apart the inhabitants of different conti-
nents, let alone different towns, regions, or countries. Perhaps we have traded cultural
diversity for a more varied personal life—certainly for a more varied and fast-paced
technological life.

At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
Grasset de Saint-Sauveur’s pictures.



Part 1

Getting started
with Apache Pulsar

Enterprise messaging systems (EMS) are designed to promote loosely cou-
pled architectures that allow geographically distributed systems to communicate
with one another by exchanging messages via a simple API that supports two basic
operations: publish a message and subscribe to a topic (read messages). Over the
course of their 40+ year history, enterprise messaging systems have given rise to
several important distributed software architectural styles, including

Remote-procedure-call (RPC) programming, using technologies such as
COBRA and Amazon Web Services, which enables programs developed in
different languages to directly interact with one another.
Messaging-oriented middleware (MOM) programming for enterprise
application integration, as exemplified by Apache Camel, which allows
different systems to exchange information using a common message for-
mat using XML or a similar self-describing format.
Service-oriented-architecture  (SOA), which promotes a modular
programming-by-contract style that allowed applications to be composed
of services that were combined in a specific way to perform the necessary
business logic.

Event-driven-architecture (EDA), which promotes the production and
detection of and reaction to individual changes in state, referred to as events,
and writing code that detects and reacts to these individual events. This style
was adopted in part to address the need to process continuous streams of
internet-scale data, such as server logs and digital events like clickstreams.
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The EMS plays a key role in each of these architectural styles, as it serves as the under-
lying technology that allows these distributed components to communicate with one
another by storing the intermediate messages and distributing to all the intended con-
sumers in a timely manner. The key differentiator between communication via an
EMS and some other network-only-based communication mechanisms is that an EMS
is designed to guarantee message delivery. If an event is published to an EMS, it will be
stored and forwarded to all the intended recipients, as opposed to a HTTP-based
inter-microservices call that can be lost in the event of a network failure.

These retained messages on an EMS have also proven to be valuable sources of
information for organizations, which they can analyze to extract more business value.
Consider the treasure trove of information on customer behavior that a company’s
click stream provides them. Processing these types of data sources is referred to as
stream processing because you are literally processing an unbounded stream of data.
This is why there is great interest in processing these streams with analytical tools,
such as Apache Flink or Spark.

The first part of this book provides an evolutionary overview of the EMS with a focus
on the core capabilities that were added at each evolutionary step. Having this back-
ground will help you better understand how various messaging systems compare with
one another by knowing each generation’s strengths and weaknesses and the capabili-
ties the next generation added along the way. At the end, I hope you understand why
Apache Pulsar is an evolutionary step forward in the EMS lineage and worthy of your
consideration as a critical piece of your company’s infrastructure.

Chapter 1 provides a basic introduction to Apache Pulsar and where it fits in the
40-year evolution of messaging systems by comparing it to and contrasting it with the
various messaging platforms that have come before it. Next, chapter 2 dives into the
details of Pulsar’s physical architecture and how its multitiered architecture allows its
storage and computing layers to scale independently of one another. It also describes
some of the common message consumption patterns, how they are different from one
another, and how Pulsar supports them all. Finally, chapter 3 demonstrates how to
interact with Apache Pulsar from both the command line as well as by using its pro-
gramming API. After completing this chapter, you should be comfortable running a
local instance of Apache Pulsar and interacting with it.



Introduction
to Apache Pulsar

This chapter covers

The evolution of the enterprise messaging system

A comparison of Apache Pulsar to existing
enterprise messaging systems

How Pulsar’s segment-centric storage differs from
the partition-centric storage model used in
Apache Kafka

Real-world use cases where Pulsar is used for

stream processing, and why you should consider
using Apache Pulsar

Developed by Yahoo! in 2013, Pulsar was first open sourced in 2016, and only 15
months after joining the Apache Software Foundation’s incubation program, it
graduated to top-level project status. Apache Pulsar was designed from the ground
up to address the gaps in current open source messaging systems, such as multi-
tenancy, geo-replication, and strong durability guarantees.
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The Apache Pulsar site describes it as a distributed pub—sub messaging system that
provides very low publish and end-to-end latency, guaranteed message delivery, zero
data loss, and a serverless, lightweight computing framework for stream data process-
ing. Apache Pulsar provides three key capabilities for processing large data sets:

Real-time messaging—Enables geographically distributed applications and sys-
tems to communicate with one another in an asynchronous manner by
exchanging messages. Pulsar’s goal is to provide this capability to the broadest
audience of clients via support for multiple programming languages and binary
messaging protocols.

Real-time compute—Provides the ability to perform user-defined computations
on these messages inside of Pulsar itself and without the need for an external
computational system to perform basic transformational operations, such as
data enrichment, filtering, and aggregations.

Scalable storage—Pulsar’s independent storage layer and support for tiered stor-
age enable the retention of your message data for as long as you need. There is
no physical limitation on the amount of data that can be retained and accessed
by Pulsar.

Enterprise messaging systems

Messaging is a broad term that is used to describe the routing of data between produc-
ers and consumers. Consequently, there are several different technologies and proto-
cols that have evolved over the years that provide this capability. Most people are
familiar with messaging systems such as email, text messaging, and instant messaging
applications, including WhatsApp and Facebook Messenger. Messaging systems within
this category are designed to transmit text data and images over the internet between
two or more parties. More-advanced instant messaging systems support Voice over IP
(VoIP) and video chat capabilities as well. All of these systems were designed to sup-
port person-to-person communication over ad hoc channels.

Another category of messaging system that people are already familiar with is video
on demand streaming services, such as Netflix or Hulu, that stream video content to
multiple subscribers simultaneously. These video streaming services are examples of
one-way broadcast (one message to many consumers) transmissions of data to con-
sumers that subscribe to an existing channel in order to receive the content. While
these types of applications might be what comes to mind when using the terms messag-
ing systems or streaming, for the purposes of this book, we will be focusing on enterprise
messaging systems.

An enterprise messaging system (EMS) is the software that provides the implementation
of various messaging protocols, such as data distribution service (DDS), advanced mes-
sage queuing protocol (AMQP), Microsoft message queuing (MSMQ), and others.
These protocols support the sending and receiving of messages between distributed sys-
tems and applications in an asynchronous fashion. However, asynchronous communi-
cation wasn’t always an option, particularly during the earliest days of distributed
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computing when both client/server and remote procedure call (RPC) architectures
were the dominant approach. Prime examples of RPC were the simple object access
protocol (SOAP) and representational state transfer (REST) based web services that
interacted with one another through fixed endpoints. Within both of these styles, when
a process wanted to interact with a remote service, it needed to first determine the ser-
vice’s remote location via a discovery service and then invoke the desired method
remotely, using the proper parameters and types, as shown in figure 1.1.

Application A Service B

method A { m method B(int x, float y, String z) {
int result = ServiceB.methodB(x,y,z); Q_\_/) return value;
)

Network

Figure 1.1 Within an RPC architecture, an application invokes a procedure on a service that is running on a
different host and must wait for that procedure call to return before it can continue processing.

The calling application would then have to wait for the called procedure to return
before it could continue processing. The synchronous nature of these architectures
made applications based upon them inherently slow. In addition, there was the possi-
bility that the remote service was unavailable for a period of time, which would
require the application developer to use defensive programming techniques to iden-
tify this condition and react accordingly.

Unlike the point-to-point communication channels used in RPC programming,
where you had to wait for the procedure calls to provide a response, an EMS allows
remote applications and services to communicate with one another via an intermedi-
ate service rather than directly with one another. Rather than having to establish a
direct network communication channel between the calling/receiving applications
over which the parameters are exchanged, an EMS can be used to retain these param-
eters in message form, and they are guaranteed to be delivered to the intended recip-
ient for processing. This allows the caller to send its request asynchronously and await
a response from the service they were trying to invoke. It also allows the service to
communicate its response back in an asynchronous manner as well by publishing its
result to the EMS for eventual delivery to the original caller. This decoupling
promotes asynchronous application development by providing a standardized,
reliable intra-component communication channel that serves as a persistent buffer
for handling data, even when some of the components are offline, as you can see in
figure 1.2.

An EMS promotes loosely coupled architectures by allowing independently devel-
oped software components that are distributed across different systems to communi-
cate with one another via structured messages. These message schemas are usually
defined in language-neutral formats, such as XML, J[SON, or Avro IDL, which allows
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EMS

Application A

}

method A {
ems.send ("serviceB-in",
new message (x,y,z));

msg = ems.receive("serviceB-out");
int result = msg.getValue();

Service B

method B() {
msg = ems.recevie("serviceB-in");

ems.publish ("serviceB-out", value);

}

Results

Figure 1.2 An EMS allows distributed applications and services to exchange information in an asynchronous
fashion.
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the components to be developed in any programming language that supports those
formats.

Key capabilities

Now that we have introduced the concept of enterprise message systems and provided
some context for the types of problems they have been used to solve, let’s further
refine the definition of what an EMS is, based upon the capabilities it provides.

ASYNCHRONOUS COMMUNICATION

Messaging systems allow services and applications to communicate with one another in
anon-blocking manner, meaning that the message sender and receiver are notrequired
to interact with the messaging system (or one another) at the same time. A messaging
system will retain the messages until all of the intended recipients consume it.

MESSAGE RETENTION

Unlike network-based messaging in which the messages only exist on the network,
such as RPC, messages published to a messaging system are retained on disk until they
are delivered. Undelivered messages can be held for hours, days, or even weeks, and
most messaging systems allow you to specify the retention policy.

ACKNOWLEDGMENT

Messaging systems are required to retain messages until all of the intended recipients
receive it; therefore, a mechanism by which the message consumers can acknowledge
the successful delivery and processing of the message is required. This allows the mes-
saging system to purge all successfully delivered messages and to retry message deliv-
ery to those consumers who have not yet received it.

MESSAGE CONSUMPTION
Obviously, a messaging system isn’t particularly useful if it doesn’t provide a mecha-
nism by which the intended recipients can consume messages. First and foremost, an
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EMS must guarantee that all the messages it receives get delivered. Oftentimes, a mes-
sage might be intended for multiple consumers, and the EMS must maintain the
information along with which messages have been delivered and to whom.

Message consumption patterns

With an EMS, you have the option of publishing messages to either a topic or a queue,
and there are fundamental differences between the two. A topic supports multiple
concurrent consumers of the same message. Any message published to a topic is auto-
matically broadcast to all of the consumers who have subscribed to the topic. Any num-
ber of consumers can subscribe to a topic in order to receive the information being
sent—like any number of users can subscribe to Netflix and receive their streaming
content.

Publish-subscribe messaging

In publish and subscribe messaging, producers publish messages to named channels,
known as fopics. Consumers can then subscribe to those topics to receive the incoming
messages. A publish—subscribe (pub-sub) message channel receives incoming mes-
sages from multiple producers and stores them in the exact order that they arrive.
However, it differs from message queuing on the consumption side because it sup-
ports multiple consumers receiving each message in a topic via a subscription mecha-
nism, as shown below in figure 1.3.

m Subscription 1

m Subscription 2 Figure 1.3 With pub-sub message
consumption, each message is delivered
to each and every subscription that has
been established on the topic. In this

. case, message M, was delivered to
m Subscription N subscriptions through N inclusive.

0

Topic

Publish—subscribe messaging systems are ideally suited for use cases that require mul-
tiple consumers to receive each message or those in which the order in which the mes-
sages are received and processed is crucial for maintaining a correct system state.
Consider the case of a stock price service that can be used by a large number of sys-
tems. Not only is it important that these services receive all the messages, but it is also
equally important that the price changes arrive in the correct order.

Message queuing

Queues, on the other hand, provide first in, first out (FIFO) message delivery seman-
tics to one or more competing consumers, as shown in figure 1.4. With queues, the
messages are delivered in the order they are received, and only one message con-
sumer receives and processes an individual message, rather than all of them. These
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are perfect for queuing up messages that represent events that trigger some work to
be performed, such as orders into a fulfillment center for dispatch. In this scenario,
you want each order processed just once.

Message queues can easily support higher rates of consumption by scaling up the
number of consumers in the event of a high number of backlogged messages. To
ensure that a message is processed exactly once, each message must be removed from
the queue after it has been successfully processed and acknowledged by the consumer.
Due to its exactly-once processing guarantees, message queuing is ideal for work
queue use cases.

w Consumer 1
Consumer 2

ey

Queue

Figure 1.4 With queue-based message
consumption, each message is delivered to
exactly one consumer. In this case, message

M, was consumed by consumer 1, M, b
Consumer N 0 y » Wi DY
consumer 2, etc.

In the event of consumer failures (meaning no acknowledgment is received within a
specified timeframe), the message will be resent to another consumer. In such a sce-
nario, the message will most likely be processed out of order. Therefore, message
queues are well suited for use cases where it is critical that each message is processed
exactly once, but the order in which the messages are processed is not important.

The evolution of messaging systems

Now that we have clearly defined what constitutes an EMS along with the core capabil-
ities it provides, I would like to provide a brief historical review of messaging systems
and how they have evolved over the years. Messaging systems have been around for
decades and have been effectively used within many organizations, so Apache Pulsar
isn’t some brand-new technology that emerged on the scene but rather another step
in the evolution of the messaging system. By providing some historical context, my
hope is that you will be able to understand how Pulsar compares to existing messaging
systems.

Generic messaging systems

Before I jump into specific messaging systems, I wanted to present a simplified repre-
sentation of a messaging system in order to highlight the underlying components that
all messaging systems have. Identifying these core features will provide a basis for com-
parison between messaging systems over time.
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As you can see in figure 1.5, every messaging sys-

. : SR Producer Consumer
tem consists of two primary layers, each with its own ’ ‘ ’

specific responsibilities that we will explore next.
We will examine the evolution of messaging systems

across each of these layers in order to properly cate-

gorize and compare different messaging systems,
including Apache Pulsar. [ Serving layer }

SERVING LAYER l T

The serving layer is a conceptual layer within an [ Storage layer }
EMS that interacts directly with the message pro-
ducers and consumers. Its primary purpose is to

. . Figure 1.5 Every messaging
accept incoming messages and route them to one system can be separated into two

or more destinations. Therefore, it communicates  distinct architectural layers.

via one or more of the supported messaging proto-

cols, such as DDS, AMQP, or MSMQ). Consequently, this layer is heavily dependent on
network bandwidth for communication and CPU for message protocol translation.

STORAGE LAYER

The storage layer is the conceptual layer within an EMS that is responsible for the
persistence and retrieval of the messages. It interacts directly with the serving layer to
provide the requested messages and is responsible for retaining the proper order of
the messages. Consequently, this layer is heavily dependent on the disk for message
storage.

Message-oriented middleware

The first category of messaging systems is often referred to as message-oriented mid-
dleware (MOM), which was designed to provide inter-process communication and
application integration between distributed systems running on different networks
and operating systems. One of the most prominent MOM implementations was IBM
WebSphere MQ), which debuted in 1993.

The earliest implementations were designed to be deployed on a single machine
that was often located deep within the company’s datacenter. Not only was this a single
point of failure, it also meant that the scalability of the system was limited to the physi-
cal hardware capacity of the host machine because this single server was responsible
for handling all client requests and storing all messages, as shown in figure 1.6. The
number of concurrent producers and consumers these single-server MOM systems
could serve was limited by the bandwidth of the network card, and the storage capac-
ity was limited by the physical disk on the machine.
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= &

[IVI] Figure 1.6 Message-oriented middleware was

NSO designed to be hosted on a single server and
n therefore hosted all of the message topics and
MOM server All topics handled requests from all clients.

To be fair, these limitations were not limited to just IBM, but are rather a limitation of
all messaging systems that were designed to be hosted on a single machine, including
RabbitMQ and RocketM(Q), among many others. In fact, this limitation wasn’t limited
to just messaging systems of this era, but rather was pervasive across all types of enter-
prise software that were designed to run on one physical host.

CLUSTERING

Eventually these scalability issues were addressed though the addition of clustering
capabilities to these single-server MOM systems. This allowed multiple single-service
instances to share the processing of the messages and provide some load balancing, as
shown in figure 1.7. Even though the MOM was clustered, in reality it just meant that
each single-service instance was responsible for serving and storing messages for a sub-
set of all the topics. A similar approach, called sharding, was taken by relational data-
bases during this period to address this scalability issue.

+ ] Load balancer

|

i

- — O O —
Server-0 Server-1 Server-N
Topics A-F Topics G-J Topics W-Z

Figure 1.7 Clustering allowed the load to be spread across multiple servers instead of just
one. Each server in the cluster was responsible for handling only a portion of the topics.
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In the event of topic “hot-spots,” the unlucky server assigned that particular topic
could still become a bottleneck or potentially run out of storage capacity as well. In
the event that any one of these servers in the cluster were to fail, it would take all of
the topics it was serving down with it. While this did minimize the impact of the failure
on the cluster as a whole (i.e., it continued to run) it was a single point of failure for
the particular topics/queues it was serving.

This limitation required organizations to meticulously monitor their message dis-
tribution in order to align their topic distribution to match their underlying physical
hardware and ensure that the load was evenly distributed across the cluster. Even
then, there was still the possibility that a single topic could be problematic. Consider
the scenario where you work for a major financial institution, and you want a single
topic to store all the trade information for a particular stock and provide this informa-
tion to all the trade desk applications within your organization. The sheer number of
consumers and volume of data for this one topic could easily overwhelm a single
server that was dedicated to serving just that topic. What was needed in such a sce-
nario was the ability to distribute the load of a single topic across multiple machines,
which, as we shall see, is exactly what distributed messaging systems do.

Enterprise service bus

Enterprise service buses (ESB) emerged during the early part of this century when
XML was the preferred message format used for implementing service-oriented
architecture (SOA) applications using SOAP-based web services. The core concept of
ESBs was the message bus, as shown in figure 1.8, which served as a communication
channel between all applications and services. This centralized architecture is in direct
contrast to the point-to-point integration previously used by other message-oriented

middleware.

Application B

Message bus

Application C

Figure 1.8 The core concept of ESBs is the use of a message bus in order to eliminate
the need for point-to-point communication. Service A merely publishes its message to the
bus, and it is automatically routed to applications B and C.
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With an ESB, each application or service would send and receive all its messages over
a single communication channel, rather than having to specify the specific topic
names they wanted to publish and consume from. Each application would register
itself with the ESB and specify a set of rules used to identify which messages it was
interested in, and the ESB would handle all of the logic necessary to dynamically
route messages from the bus that matched those rules. Similarly, each service was no
longer required to know the intended target(s) of its messages beforehand and could
simply publish its messages to the bus and allow it to route the messages.

Consider the scenario where you have a large XML document that contains hun-
dreds of individual line items within a single customer order, and you want to route
only a subset of those items to a service based upon some criteria within the message
itself (e.g., by product category or department). An ESB provided the capability to
extract those individual messages (based on the results of an XQuery) and route them
to different consumers based on the content of the message itself.

In addition to these dynamic routing capabilities, ESBs also took the first evolu-
tionary step down the road of stream processing by emphasizing the capabilities to pro-
cess the messages inside the messaging system itself, rather than having the
consuming applications perform this task. Most ESBs provided message transforma-
tion services, often via XSL'T or XQuery, which handled the translation of message for-
mats between the sending and receiving services. They also provided message
enrichment and processing capabilities into the message system itself, which up until
that point had been performed by the applications receiving the messages. This was a
fundamentally new way of thinking about messaging systems that had previously been
used almost exclusively as a transportation mechanism.

One could argue that the ESB was the first category of EMS to introduce a third
layer to the basic architecture of messaging systems, as shown in figure 1.9. In fact,
today most modern ESBs support more advanced computing capabilities, including
process choreography for managing business process flows, complex event processing
for event correlation and pattern matching, and out-of-the-box implementations of
several enterprise integration patterns.

Producer Consumer
* Dynamic routing
* Transformation (often via XSLT or XQuery)
* Message enrichment from other sources
—i i_ ¢ Message processing
Serving layer
Compute layer < Figure 1.9 The ESB’s emphasis on dynamic routing and
* * message processing represented the first time stream
processing capabilities were added to a messaging
Storage layer system. This introduced a whole new architectural layer
to the base messaging system architecture.
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The ESB’s other significant contribution to the evolution of the messaging system was
its focus on integration with external systems, which forced messaging systems to sup-
port a wide variety of non-messaging protocols for the first time. While ESBs still fully
support AMQP and other pub—sub messaging protocols, a key differentiator of ESB
was its ability to move data onto and off of the bus from non-message-oriented sys-
tems, such as email, databases, and other third-party systems. In order to do this, ESBs
provided software development Kkits (SDKs) that allowed developers to implement
their own adapters to integrate with their system of choice.

-
Analytics
service

Database

Message bus

= P

Custom Third-party
application system

Figure 1.10 ESBs supported the integration of non-message-based systems into the
message bus, thereby expanding the messaging capabilities beyond applications and
into third-party applications, such as databases.

As you can see in figure 1.10, this allowed data to be more readily exchanged between
systems, which simplified the integration of a variety of systems. In this role, the ESB
served as both the message-passing infrastructure as well as the mediator between the
systems that provided the protocol transformation.

While ESBs undoubtedly pushed the EMS forward with these innovations and fea-
tures and are still very popular today, they are centralized systems that are designed to
be deployed on a single host. Consequently, they suffer from the same scalability
issues as their MOM predecessors.

Distributed messaging systems

A distributed system can be described as a collection of computers working together to
provide a service or feature, such as a filesystem, key-value store, or database, that acts
as though they are running on a single computer to the end user. Thatis to say, the end
user isn’t aware of the fact that the service is being provided by a collection of machines
working together. Distributed systems have a shared state, operate concurrently, and
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are able to tolerate hardware failures without affecting the availability of the system
as a whole.

When the distributed computing paradigm started becoming widely adopted, as
popularized by the Hadoop computing framework, the single-machine constraint was
lifted. This ushered in an era where new systems were developed that distributed the
processing and storage across multiple machines. One of the biggest benefits of dis-
tributed computing is the ability to scale the system horizontally, simply by adding new
machines to the system. Unlike their non-distributed predecessors that were con-
strained to the physical hardware capacity of a single machine, these newly developed
systems could now leverage the resources from hundreds of machines easily and cost
effectively.

As you can see in figure 1.11, messaging systems, just like databases and computa-
tion frameworks, have also made the transition to the distributed computing para-
digm as well. Newer messaging systems, with Apache Kafka being the first and, more
recently, Apache Pulsar, have adopted the distributed computing model in order to
provide the scalability and performance required by modern enterprises.

Producer Consumer

[ Serving layer } [ Serving layer } Serving layer

[ Storage layer ] [ Storage layer } Storage layer

Node-0 Node-1 Node-N

Figure 1.11 Within a distributed messaging system, several nodes act together to behave
as a single logic system from the perspective of the end user. Internally, the data storage and
message processing are distributed across all the nodes.

Within a distributed messaging system, the contents of a single topic are distributed
across multiple machines in order to provide horizontally scalable storage at the mes-
sage layer, which is something that was not possible with previous messaging systems.
Distributing the data across several nodes in the cluster also provides several advan-
tages, including redundancy and high availability of the data, increased storage capac-
ity for messages, increased message throughput due to the increased number of
message brokers, and the elimination of a single point of failure within the system.
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The key architectural difference between a distributed messaging system and a
clustered single-node system is the way in which the storage layer is designed. In the
previous single-node systems, the message data for any given topic was all stored
together on the same machine, which allowed the data to be served quickly from a
local disk. However, as we mentioned earlier, this limited the size of the topic to the
capacity of the local disk on that machine. Within a distributed messaging system, the
data is distributed across several machines within the cluster. This distribution of data
across multiple machines allowed us to retain messages within an individual topic that
exceeded the storage capacity of an individual machine. The key architectural abstrac-
tion that makes this distribution of data possible is the write-ahead log, which treats the
contents of a message queue as a single append-only data structure that messages can
be stored in.

As you can see in figure 1.12, from a logical perspective, when a new message is
published to the topic, it is appended to the end of the log. However, from a physical
perspective, the message can be written to any server within the cluster.

New

messages
Messages

L e O

Append-only log

Logical view

777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777 Physicalview
Bl servero Bl server-1 BN severn
o

pRER |BRER =

The messages are distributed
across multiple servers in the
clusters and stored on local disk.

Figure 1.12 The key architectural concept underlying distributed messaging systems is the append-only
log (aka the write-ahead log). From a logical perspective, the messages within a topic are all stored
sequentially, but are stored in a distributed fashion across multiple servers.
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This provides distributed messaging systems with a far more scalable storage capacity
layer than the previous generations of messaging systems. Another benefit of the dis-
tributed messaging architecture is the ability of more than one broker to serve the
messages for any given topic, which increases the message production and consump-
tion throughput by spreading the load across multiple machines. For example, mes-
sages published to the topic shown in figure 1.12 would be handled by three separate
servers, each with its own write path to disk. This would result in a higher write rate,
since the load is spread across multiple disks rather than just a single disk, as it was in
the previous generation of messaging systems. There are two distinct approaches
taken when it comes to how the data is distributed across the nodes in the cluster:
partition-based and segment-based.

PARTITION-CENTRIC STORAGE IN KAFKA

When using the partition-based strategy within a messaging system, the topic is divided
into a fixed number of groupings known as partitions. Data thatis published to the topic
is distributed across the partitions, as shown in figure 1.13, with each partition receiving
a portion of the messages published to the topic. The total storage capacity of the topic
is now equal to the number of partitions in the topic times the size of each partition.
Once this limitis reached, no more data can be added to the topic. Simply adding more
brokers to the cluster will not alleviate this issue because you will also need to increase
the number of partitions in the topic, which must be performed manually. Furthermore,
increasing the number of partitions also requires a rebalance to be performed, which,
as I will discuss, is an expensive and time-consuming process.

Within a partition-centric storage-based system, the number of partitions is speci-
fied when the topic is created, as this allows the system to determine which nodes will
be responsible for storing which partition, etc. However, predetermining the number
of partitions has a few unintended side effects, including the following:

A single partition can only be stored on a single node within the cluster, so the
size of the partition is limited to the amount of free disk space on that node.
Since the data is evenly distributed across all partitions, each partition is limited
to the size of the smallest partition in the topic. For instance, if a topic is distrib-
uted across three nodes with 4 TB, 2 TB, and 1 TB of free disk, respectively,
then the partition on the third node can only grow to 1 TB in size, which in
turn means all partitions in the topic can only grow to 1 TB as well.

Although it isn’t strictly required, each partition is usually replicated multiple
times to different nodes to ensure data redundancy. Therefore, the maximum
partition size is further restricted to the size of the smallest replica.

In the event that you run into one of these capacity limitations, your only remedy is to
increase the number of partitions in the topic. However, this capacity expansion pro-
cess requires rebalancing the entire topic, as shown in figure 1.14. During this rebal-
ancing process, the existing topic data is redistributed across all of the topic partitions
in order to free up disk space on the existing nodes. Therefore, when you add a
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Figure 1.13 Message storage in a partition-based messaging system

fourth partition to an existing topic, each partition should have approximately 25% of
the total messages once the rebalancing process has completed.

This recopying of data is expensive and error prone, as it consumes network band-
width and disk I/O directly proportional to the size of the topic (e.g., rebalancing a
10 TB topic would result in 10 TB of data being read from disk, transmitted over the
network, and written to disk on the target brokers). Only after the rebalancing pro-
cess has completed can the previously existing data be deleted and the topic resume
serving clients. Therefore, it is advisable to choose your partition sizing wisely, as the
cost to rebalance cannot be easily dismissed.

In order to provide redundancy and failover for the data, you can configure the
partitions to be replicated across multiple nodes. This ensures that there is more than
one copy of the data available on disk even in the event of a node failure. The default
replica setting is three, which means that the system will retain three copies of each
message. While this is a good trade-off in terms of space for redundancy, you need to
account for this additional storage requirement when you size your Kafka cluster.
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which a portion of the data from the existing partitions is copied over to the newly added partition(s) in
order to free up disk space on the existing nodes.

SEGMENT-CENTRIC STORAGE IN PULSAR
Pulsar relies upon the Apache BookKeeper projects to provide the persistent storage of
its messages. BookKeeper’s logical storage model is based on the concept of boundless
stream entries stored as a sequential log. As you can see in figure 1.15, within Book-
Keeper each log is broken down into smaller chunks of data, known as segments, which
in turn are comprised of multiple log entries. These segments are then written across
a number of nodes, known as bookies, in the storage layer for redundancy and scale.
As you can see from figure 1.15, the segments can be placed anywhere on the stor-
age layer that has sufficient disk capacity. When there isn’t sufficient storage capacity
in the storage layer for new segments, new nodes can be easily added and used imme-
diately for storing data. One of the key benefits of segment-centric storage architec-
ture is true horizontal scalability as segments can be created indefinitely and stored
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anywhere, unlike partition-centric storage which imposes artificial limitations to both
vertical and horizontal scaling based on the number of partitions.

Comparison to Apache Kafka

Apache Kafka and Apache Pulsar are both distributed messaging systems that have
similar messaging concepts. Clients interact with both systems via topics that are logi-
cally treated as unbounded, append-only streams of data. However, there are some
fundamental differences between Apache Pulsar and Apache Kafka when it comes to
scalability, message consumption, data durability, and message retention.

Multilayered architecture

Apache Pulsar’s multilayered architecture completely decouples the message-serving
layer from the message-storage layer, allowing each to scale independently. Traditional
distributed messaging technologies, such as Kafka, have taken the approach of
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co-locating data processing and data storage on the same cluster nodes or instances.
That design choice offers a simpler infrastructure and some performance benefits
due to reducing the transfer of data over the network, but at the cost of a lot of
tradeoffs that impact scalability, resiliency, and operations.

Monolithic architecture Multi-layer architecture
Lo | [ () Gom) - [oom)
Storage Storage Fiorrrre | [

Storage Storage Storage

Cloud Cloud
storage storage

Figure 1.16 Monolithic distributed architectures co-locate the serving and storage layers, while Pulsar uses
a multilayer architecture that decouples the storage and serving layers from one another, which allows them
to scale independently.

Pulsar’s architecture takes a very different approach—one that’s starting to gain trac-
tion in a number of cloud-native solutions and that is made possible in part by the sig-
nificant improvements in network bandwidth that are commonplace today: namely the
separation of compute and storage. Pulsar’s architecture decouples data serving and
data storage into separate layers: data serving is handled by stateless broker nodes, while
data storage is handled by bookie nodes, as shown in figure 1.16. This decoupling has sev-
eral benefits, including dynamic scalability, zero downtime upgrades, and infinite stor-
age capacity upgrades, just to name a few. Further, this design is container-friendly,
making Pulsar the ideal technology for hosting a cloud-native streaming system.

DYNAMIC SCALING

Consider the case where we have a service that is CPU-intensive and whose perfor-
mance starts to degrade when the requests exceed a certain threshold. In such a sce-
nario, we need to horizontally scale the infrastructure to provide new machines and
instances of the application to distribute the load when the CPU usage goes above
90% on the current machine. Rather than relying on a monitoring tool to alert your
DevOps team to this condition and having them perform this process manually, it
would be preferable to have the entire process automated.

Autoscaling is a common feature of all public cloud providers, such as AWS, Micro-
soft Azure, Google Cloud, and Kubernetes. It allows autoscaling of the infrastructure
horizontally based on resource utilization metrics, such as CPU/memory, without any
human interaction. While it is true that this capability is not exclusive to Pulsar and
can be leveraged by any other messaging platforms to scale up during high traffic con-
ditions, it is much more useful in a multitiered architecture such as Pulsar’s for two
reasons we will discuss.
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Pulsar’s stateless brokers in the serving layer also enable the ability to scale the infra-
structure down once the spike has passed, which translates directly into cost savings in
a public cloud environment. Other messaging systems that use a monolithic architec-
ture cannot scale down the nodes due to the fact that the nodes contain data on their
attached hard drives. Removal of the excess nodes can only be done once that data has
been completely processed or has been moved to another node that will remain in the
cluster. Neither of these can be performed in an automated fashion easily.

Secondly, in a monolithic architecture, such as Apache Kafka, the broker can only
serve requests for data that is stored on an attached disk. This limits the usefulness of
autoscaling the cluster in response to traffic spikes, because the newly added nodes to
the Kafka cluster will not have any data to serve and, therefore, will not be able to han-
dle any incoming requests to read existing data from the topics. The newly added
nodes will only be able to handle write requests.

Lastly, in a monolithic architecture such as Apache Kafka, horizontal scaling is
achieved by adding new nodes that have both storage and serving capacity, regardless
of which metric you are tracking and responding to. Therefore, when you scale up
your serving capacity in response to high CPU usage, you are also scaling up your stor-
age capacity whether you actually need additional storage or not and vice-versa

AUTO-RECOVERY

Before you move your messaging platform into production, you will need to under-
stand how to recover from various failure scenarios, starting with a single node failure.
In a multitiered architecture such as Pulsar, the process is very straightforward. Since
the broker nodes are stateless, they can be replaced by spinning up a new instance of
the service to replace the one that failed without a disruption of service or any other
data replacement considerations. At the storage layer, multiple replicas of the data are
distributed across multiple nodes, which can be easily replaced with new nodes in the
event of a failure. In either scenario, Pulsar can rely on cloud-provider mechanisms,
such as autoscaling groups, to ensure that a minimum number of nodes are always
running. Monolithic architectures, such as Kafka, will suffer again from the fact that
newly added nodes to the Kafka cluster will not have any data to serve and, therefore,
will only be able to handle incoming write requests.

Message consumption

Reading messages from a distributed messaging system is a bit different from reading
them from a legacy messaging system, as distributed messaging systems were designed
to support a large number of concurrent consumers. The way in which the data is con-
sumed is driven in large part by the way it is stored inside the system itself, with both
partition-centric and segment-centric systems having their own unique way of support-
ing pub-sub semantics for consumers.

MESSAGE CONSUMPTION IN KAFKA

Within Kafka, all consumers belong to what is referred to as a consumer group, which
forms a single logical subscriber for a topic. Each group is composed of many consumer
instances for scalability and fault tolerance, so if one instance fails, the remaining
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consumers will take over. By default, a new consumer group is created whenever an
application subscribes to a Kafka topic. An application can leverage an existing con-
sumer group by providing the group.id as well.

According to the Kafka documentation, “The way consumption is implemented in
Kafka is by dividing up the partitions in the log over the consumer instances so that
each instance is the exclusive consumer of a ‘fair share’ of partitions at any point in
time” (https://docs.confluent.io/5.5.5/katka/introduction.html). In layman’s terms,
this means that each partition within a topic can only have one consumer at a time,
and the partitions are distributed evenly across the consumers within the group. As
shown in figure 1.17, if a consumer group has less members than partitions, then
some consumers will be assigned to multiple partitions, but if you have more consum-
ers than partitions, the excess consumers will remain idle and only take over in the
event of a consumer failure.

One important side effect of creating exclusive consumers is that within a con-
sumer group, the number of active consumers can never exceed the number of parti-
tions in the topic. This limitation can be problematic, as the only way of scaling data
consumption from a Kafka topic is by adding more consumers to a consumer group.
This effectively limits the amount of parallelism to the number of partitions, which in
turn limits the ability to scale up data consumption in the event that your consumers
cannot keep up the topic producers. Unfortunately, the only remedy to this is to
increase the number of topic partitions, which as we discussed earlier, is not a simple,
fast, or cheap operation.

Messages from all of the

Consumer Consumer consumers in the group are

- Topic group-N

(1)

C1 Partition-0

combined and delivered to
the consuming applications
in a non-deterministic order.

Kafka
consumer
application

c2 Partition-1

SO0

C3 Partition-2

©O6)

C4 Partition-3

Q If a consumer group has less

members than there are partitions,
some consumers will be assigned
multiple partitions.

If a consumer group has more
members than there are
partitions, some consumers will
not be assigned partitions at all.

Figure 1.17 Kafka’s consumer groups are closely tied to the partition concept. This limits the number of
concurrent topic consumers to the number of topic partitions.
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You can also see in figure 1.17 that all of the individual consumers’ messages are com-
bined and sent back to the Kafka client. Therefore, message ordering is not main-
tained by the consumer group. Kafka only provides a total order over records within a
partition, not between different partitions in a topic.

As I mentioned earlier, consumer groups act as a cluster to provide scalability and
fault tolerance. This means they dynamically adapt to the addition or loss of consum-
ers within the group. When a new consumer is added to the group, it starts consuming
messages from partitions previously consumed by another consumer. The same thing
happens when a consumer shuts down or crashes; it leaves the group, and the parti-
tions it used to consume will be consumed by one of the remaining consumers. This
shuffling of partition ownership with a consumer group is referred to as rebalancing,
and can have some undesirable consequences, including the potential for data loss if
consumer offsets aren’t saved before the rebalancing occurs.

It is very common to have multiple applications that need to read data from the
same topic. In fact, this is one of the primary features of a messaging system. Conse-
quently, topics are shared resources among multiple consuming applications that may
have very different consumption needs. Consider a financial services company that
streams in real time stock market quote information into a topic named “stock
quotes” and wants to share that information across the entire enterprise. Some of
their business-critical applications, such as their internal trading platforms, algorith-
mic trading systems, and customer-facing websites, will all need to process that topic
data as quickly as it arrives. This would require a high number of partitions in order to
provide the necessary throughput to meet these tight SLAs.

On the other hand, the data science team may want to feed the stock topic data
through some of their machine learning models in order to train or validate their
models using real stock pricing data. This would require processing the records in
exactly the order they were received, which requires a single partition topic to ensure
global message ordering.

The business analytics team will develop reports using KSQL that join the stock
topic data with other topic(s) based on a particular key, such as the stock ticker, which
would benefit from having the topic partitioned by the ticker symbol.

Efficiently providing the stock topic data for these applications with such vastly dif-
ferent consumption patterns would be difficult, if not impossible, given how to depen-
dent the consumer groups are tied to the partition number, which is a fixed decision
that cannot be easily changed. Typically, in such a scenario, your only realistic option
is to maintain multiple copies of the data in different topics, each configured with the
correct number of partitions for the application.

Data durability

Within the context of messaging systems, the term data durability refers to the guaran-
tees that messages that have been acknowledged by the system will survive even in the
event of a system failure. In a distributed system with many nodes, such as Pulsar or
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Kafka, failures can occur at many levels; therefore, it is important to understand how
the data is stored and what durability guarantees the system provides.

When a producer publishes a message, an acknowledgment is returned from the
messaging system to indicate that the message on the topic was received. This
acknowledgment signals to the producer that the message is safe, and that the pro-
ducer can discard it without worrying about it getting lost. As we shall see, the strength
of these guarantees is much greater in Pulsar than Kafka.

DATA DURABILITY IN KAFKA

As we discussed earlier, Apache Kafka takes a partition-centric storage approach to
message storage. In order to ensure data durability, multiple replicas of each partition
are maintained within a cluster to provide a configurable level of data redundancy.

Messages
Each incoming message
is assigned to a partition D
within the topic. .
[ Partition-0 ] { Partition-1 } [ Partition-2 } Logical view
Pull replication
The message is persisted to = rt': vo - -
the partition leader node. Each [ feador J [P;ﬁg'og;o}
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data from the leader and stores Partition-1 Partition-1 Partition-1 Physical
a copy of the message. follower leader follower distribution
Partition-2 Partition-2 Partition-2
follower leader follower
Node-1 Node-2 Node-3 Node-4

Kafka broker nodes

Figure 1.18 Kafka’s partition replication mechanism

When Kafka receives an incoming message, a hashing function is applied to the
message to determine which of the topic’s partitions the message should be written to.
Once that has been determined, the message contents are written to the page cache
(not the disk) of the partition leader replica. Once the message has been acknowledged
by the leader, each of the follower replicas are responsible for retrieving the message
contents from the partition leader in a pull manner (i.e., they act as consumers and
read the messages from the leader), as shown in figure 1.18. This overall approach is
what is referred to as an eventually consistent strategy in which there is one node in a
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distributed system that has the most recent view of the data, which is eventually
communicated to other nodes until they all achieve a consistent view of the data. While
this approach has the advantage of decreasing the amount of time required to store an
incoming message, it also introduces two opportunities for data loss; first, in the event
of a power outage or other process termination event on the leader node, any data that
was written to the page cache that had not been persisted to local disk will be lost. The
second opportunity for data loss is when the current leader process fails and another
one of the remaining followers is selected as the new leader. In the leader failover
scenario, any messages that were acknowledged by the previous leader but not yet
replicated to the newly elected leader replica will be lost as well.

By default, messages are acknowledged once the leader has written it to memory.
However, this behavior can be overridden to withhold the acknowledgment until all of
the replicas have received a copy of the message. This does not impact the underlying
replication mechanism in which the followers must pull the information across the net-
work and send a response back to the leader. Obviously, this behavior will incur a per-
formance penalty, which is often hidden in most published Kafka performance
benchmarks, so you are advised to do your own performance testing with this configu-
ration in order to get a better understanding of what the expected performance will be.

The other side effect of this replication strategy is that only the leader replica can
serve both producers and consumers, as it is the only one guaranteed to have the most
recent and correct copy of the data. All of the follower replicas are passive nodes that
cannot alleviate any of the load from the leader during traffic spikes.

DATA DURABILITY IN PULSAR

When Pulsar receives an incoming message, it saves a copy in memory and also writes
the data to a write-ahead log (WAL), which is forced onto disk before an acknowledg-
ment is sent back to the message publisher, as shown in figure 1.19. This approach is
modelled after traditional database atomicity, consistency, isolation, and durability
(ACID) transaction semantics, which ensures that the data is not lost even if the
machine fails and comes back online in the future.

The number of replicas required for a topic can be configured in Pulsar based on
your data replication needs, and Pulsar guarantees that the data that has been
received and acknowledged by a quorum of servers before an acknowledgment is sent
to the producer. This design ensures that data can only be lost in the highly unlikely
event of simultaneous fatal errors occurring on all bookie nodes to which the data was
written. This is why is it recommended to distribute the bookie nodes across multiple
regions and use rack-aware placement policies to ensure a copy of the data is stored in
more than one region or data center.

More importantly, this design eliminates the need for a secondary replication pro-
cess that is responsible for ensuring that the data is kept in sync between replicas and
eliminates any data inconsistency issues due to any lag in the replication process.
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Message acknowledgment

Within a distributed messaging system, failures are to be expected. In a distributed
message system such as Pulsar, both the consumers consuming the messages and the
message brokers serving the messages can fail. When such a failure occurs, it is imper-
ative to resume consumption from exactly the point where the consumers left off
once everything recovers to ensure that messages aren’t skipped or reprocessed. This
point from which the consumer should resume consumption is often called the topic
offset. Kafka and Pulsar take different approaches with respect to maintaining these
offsets, which have a direct impact on data durability.

MESSAGE ACKNOWLEDGMENT IN KAFKA

The resume point is referred to as the consumer offset in Apache Kafka, which is con-
trolled entirely by the consumer. Typically, a consumer increments its offset in a sequen-
tial manner as it reads records from the topic to indicate message acknowledgment.
However, keeping this offset solely in the consumer’s memory is dangerous. Therefore,
these offsets are also stored as messages in a separate topic named __consumer_offsets.
Each consumer commits a message containing its current position into that topic at peri-
odic intervals, which is every five seconds if you use Kafka’s auto-commit capability. While
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this strategy is better than keeping the offsets solely in memory, there are consequences
to this periodic update approach.

Consider a single-consumer scenario where automatic commits occur every five
seconds and a consumer dies exactly three seconds after the most recent commit to
the offset topic. In this case, the offset read from the topic will be three seconds old, so
all the events that arrived in that three-second window will be processed twice. While it
is possible to configure the commit interval to a smaller value and reduce the window
in which records will be duplicated, it is impossible to completely eliminate them.

The Kafka consumer API provides a method that enables committing the current
offset at a point that makes sense to the application developer rather than based on a
timer. Therefore, if you really wanted to eliminate duplicate messaging processing,
you could use this API to commit the offset after every successfully consumed mes-
sage. However, this pushes the burden of ensuring accurate recovery offsets onto the
application developer and introduces additional latency to the message consumers
who now have to commit each offset to a Kafka topic and await an acknowledgment.

MESSAGE ACKNOWLEDGMENT IN PULSAR

Apache Pulsar maintains a ledger inside of Apache BookKeeper for each subscriber
that is referred to as the cursor ledger for tracking message acknowledgments. When
a consumer has read and processed a message, it sends an acknowledgment to the
Pulsar broker. Upon receipt of this acknowledgment, the broker immediately updates
the cursor ledger for that consumer’s subscription. Since this information is stored on
a ledger in BookKeeper, we know that it has been fsynced to disk and multiple copies
exist across multiple bookie nodes. Keeping this information on disk ensures that the
consumers will not receive the message again even if they crash and restart at a later
point in time.

In Apache Pulsar, there are two ways that messages can be acknowledged: selec-
tively or cumulatively. With cumulative acknowledgment, the consumer only needs to
acknowledge the last message it receives. All the messages in the topic partition up to
and including the given message ID will be marked as acknowledged and will not be
redelivered to the consumer again. Cumulative acknowledgment is effectively the
same as offset update in Apache Kafka.

The differentiating feature of Apache Pulsar over Kafka is the ability of consumers
to acknowledge messages individually (i.e., selective acknowledgment). This capability
is critical in supporting multiple consumers per topic because it allows for message
redelivery in the event of a single consumer failure.

Let’s consider the single-consumer failure scenario again where the consumer
individually acknowledges messages after it has successfully processed them. During
the time leading up to the failure, the consumer was struggling to process some of the
messages while successfully processing others. Figure 1.20 shows an example where
only two of the messages (4 and 7) were successfully processed and acknowledged.
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Given the fact that Kafka’s offset concept treats consumer groups’ offsets as a high-
water mark that marks the point up to which all messages are considered acknowl-
edged, in this scenario the offset would have been updated to seven, since that is the
highest number message ID that was acknowledged. When the Kafka consumer is
restarted on that topic it would start at message 8 and continue onward, skipping mes-
sages 1-3, 5, and 6, making them effectively lost because they are never processed.

Under the same scenario with Pulsar’s selective acks, all of the unacknowledged
messages would be redelivered, including messages 1-3, 5, and 6, when the consumer
is restarted, thereby avoiding message loss due to consumer offset limitations.

Message retention

In contrast to legacy messaging systems, such as ActiveMQ), messages are not immedi-
ately removed from distributed messaging systems after they have been acknowledged
by all consumers. These legacy systems took such an approach as a way to immediately
reclaim as much of the local disk capacity as possible, since it was a constrained
resource. While distributed messaging systems such as Kafka and Pulsar have allevi-
ated this constraint to some degree by horizontally scalable message storage, both of
these systems still provide a mechanism for reclaiming disk space. It is important to
understand exactly how automated message deletion is handled by both systems, as it
can lead to accidental data loss if not properly configured.

MESSAGE RETENTION IN KAFKA

Kafka retains all messages published to a topic for a configurable retention period.
For instance, if the retention policy is set to seven days, then for the seven days imme-
diately after a message has been published to the topic, it is available for consumption.
Once the retention period has elapsed, the message will be discarded to free up space.
This deletion occurs regardless of whether or not the message has been consumed
and acknowledged. Obviously, this presents the opportunity for data loss in the event
that the retention period is less than the time it takes for all consumers to consume
the message, such as a long-term outage of the consuming system. The other draw-
back to this time-based approach is that there is a high probability that you will be
retaining messages much longer than necessary (i.e., after they have been consumed
by all relevant consumers), which is an inefficient use of your storage capacity.

MESSAGE RETENTION IN PULSAR
In Pulsar, when a consumer has successfully processed a message, it needs to send an
acknowledgment to the broker so that the broker can discard the message. By default,
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Pulsar immediately deletes all messages that have been acknowledged by all the
topic’s consumers and retains all unacknowledged messages in a message backlog. In
Pulsar, messages can only be deleted after all the subscriptions have already consumed
it. Pulsar also allows you to keep messages for a longer time even after all subscriptions
have already consumed them by configuring a message retention period, which I will
discuss in more depth in chapter 2.

Why do I need Pulsar?

If you are just getting started with messaging or streaming data applications, you
should definitely consider Apache Pulsar as a core component of your messaging
infrastructure. However, it is worth noting that there are several technology options
that you can choose from, many of which have become entrenched in the software
community. In this section, I will attempt to bring to light some of the scenarios in
which Apache Pulsar shines above the rest, as well as clear up some common miscon-
ceptions about existing systems and point out some of the challenges users of these
systems face.

Within adoption cycles there are often several misconceptions about the
entrenched technology that are perpetuated throughout the user community for a
multitude of reasons. Itis often an uphill battle to convince yourself and others that you
need to replace a technology that sits at the very core of your architecture. It was not
until we had the benefit of hindsight that we saw that our traditional database systems
were fundamentally incapable of scaling to meet the demands imposed by our ever-
increasing data and that we needed to rethink the way we stored and processed data
with a framework such as Hadoop. Only after we had transitioned our business analytics
platforms from traditional data warehouses to Hadoop-based SQL engines, such as
Hive, Tez, and Impala, did we realize that those tools had inadequate response times for
the end users who were used to subsecond response times. This gave rise to the rapid
adoption of Apache Spark as the technology of choice for big data processing.

I'wanted to highlight these two recent technologies to remind us that we cannot let
our affinity for the status quo blind us to issues lurking within our core architectural
systems and put forth the notion that we need to rethink our approach to messaging
systems, as the incumbent technologies in this space, such as RabbitMQ and Kafka,
suffer from key architectural flaws. The team that developed Apache Pulsar at Yahoo!
could have easily chosen to adopt one of the existing solutions, but after careful con-
sideration they decided not to do so because they needed a messaging platform that
provided capabilities that weren’t available in the existing monolithic technologies
that we will discuss in the following sections.

Guaranteed message delivery

Because of the data durability mechanism within the platform that we have already
covered, Pulsar provides guaranteed message delivery for applications. If a message
successfully reaches a Pulsar broker, it will be delivered to all of the topic consumers.
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To provide such a guarantee requires that non-acknowledged messages are stored in a
durable manner until they can be delivered to and acknowledged by consumers. This
mode of messaging is commonly called persistent messaging. In Pulsar, a configurable
number of copies of all messages is stored and synced on disk.

By default, Pulsar message brokers ensure that incoming messages are persisted to
disk on the storage layer before acknowledging receipt of the message. These mes-
sages are kept in Pulsar’s infinitely scalable storage layer until they are acknowledged,
thereby ensuring message delivery.

Infinite scalability

In order to better understand the scalability of Pulsar, let’s look at a typical Pulsar
installation. As you can see from figure 1.21, a Pulsar cluster is composed of two layers:
a stateless serving layer, which is made up of a set of brokers for handling client
requests, and a stateful persistence layer, which is made up of a set of bookies for per-
sisting the messages.

This architectural pattern, which separates the storage of the messages from the
layer that serves the messages, differs significantly from traditional messaging systems
which have historically chosen to co-locate these two services. This decoupled
approached has several advantages when it comes to scalability. For starters, making
the brokers stateless allows you to dynamically increase or decrease the number of
brokers to meet the demands of the client applications.

SEAMLESS CLUSTER EXPANSION

Any bookies that are added to the storage layer are automatically discovered by the
brokers, which will then immediately begin to utilize them for message storage. This is
unlike Kafka, which requires repartitioning the topics to distribute the incoming mes-
sages to the newly added brokers.

Producer Consumer

Pulsar brokers

[Broker—1 ] { Broker-2 ] 3

[ Bookie-1 ] Bookie-2

N S Figure 1.21 A typical Pulsar cluster

UNBOUNDED TOPIC PARTITION STORAGE
Unlike Kafka, the capacity of a topic partition is not limited by the capacity of any
smallest node. Instead, topic partitions can scale up to the total capacity of the storage
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layer, which itself can be scaled up by simply adding additional bookies. As we dis-
cussed earlier, partitions within Kafka have several limitations on their size, whereas
no such restrictions apply to Pulsar.

INSTANT SCALING WITHOUT DATA REBALANCING

Because message serving and storage are separated into two layers, moving a topic
partition from one broker to another can happen almost instantly and without any
data rebalancing (recopying the data from one node to the other). This characteristic
is crucial to many things, such as cluster expansion and fast failure reaction to broker
and bookie failures.

Resilient to failure

Pulsar’s decoupled architecture also provided enhance resiliency by ensuring that
there is no single point of failure within the system. By isolating the serving and stor-
age layers, Pulsar is able to limit the impact of a failure within the system while making
the recovery process seamless.

SEAMLESS BROKER FAILURE RECOVERY

Brokers form the stateless serving layer in Apache Pulsar. The serving layer is stateless
because brokers don’t actually store any message data locally. This makes Pulsar resil-
ient to broker failures. When Pulsar detects that a broker is down, it can immediately
transfer the incoming producers and consumers to a different broker. Since the data
is kept in a separate layer, there is no need to recopy data as you would in Kafka.
Because Pulsar doesn’t have to recopy the data, the recovery happens instantly with-
out sacrificing the availability of any of the data on the topic.

Kafka, in contrast, directs all client requests to the leader replica, so it will always
have the latest data. The leader is also responsible for propagating the incoming data
to the other followers in the replica set, so the data will eventually be available on
those nodes in the event of a failure. However, due to the inherent lag between the
leader and the replica, data can be lost before it is copied over.

SEAMLESS BOOKIE FAILURE RECOVERY

The stateful persistence layer utilized by Pulsar consists of Apache BookKeeper book-
ies to provide segment-centric storage, as we mentioned previously. When a message is
published to Pulsar, the data is persisted to disk on all N replicas before it is acknowl-
edged. This design ensures that the data will be available on multiple nodes and, thus,
will survive N-1 node failures before the data is lost.

Pulsar’s storage layer is also self-healing, and if there is a node or disk failure that
causes a particular segment to be under-replicated, Apache BookKeeper will automat-
ically detect this and schedule a replica repair to run in the background. The replica
repair in Apache BookKeeper is a many-to-many fast repair at the segment level,
which is a much finer granularity than recopying the whole topic partition, which is
required in Kafka.
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Support for millions of topics

Consider a scenario in which you want to model your application around some entity,
such as a customer, and for each one of these you want to have a different topic. Dif-
ferent events would be published for that entity; the customer is created, places an
order, makes a payment, returns some items, changes their address, etc.

By placing these events in a single topic, you are guaranteed to process them in the
correct chronological order and can quickly scan the topic to determine the correct
state of the customer’s account, etc. However, as your business grows you will need
support for millions of topics, and traditional messaging systems cannot support this
requirement. There is a high cost associated with having many topics, including
increased end-to-end latency, file descriptors, memory overhead, and recovery time
after a failure.

In Kafka, as a rule of thumb you should keep your total number of topic partitions
in the hundreds if you care about latency performance. There are several guides for
how to restructure your Kafka-based applications in order to avoid hitting this limita-
tion. If you don’t want a platform limitation affecting your application design with
respect to how you structure your topics, then you should consider Pulsar.

Pulsar has the ability to support up to 2.8 million topics while continuing to pro-
vide consistent performance. The key to scaling the number of topics lies in how the
underlying data is organized in the storage layer. If the topic data is stored in dedi-
cated files or directories, as it is in traditional messaging systems such as Kafka, then
the ability to scale will be limited because the 1/O will be scattered across the disk as
the number of topics increases, which leads to disk thrashing and results in very low
throughput. In order to prevent this behavior, messages from different topics are
aggregated, sorted, and stored in large files and then indexed in Apache Pulsar. This
approach limits the proliferation of small files that leads to performance problems as
the number of topics increases.

Geo-replication and active failover

Apache Pulsar is a messaging system that supports both synchronous geo-replication
within a single Pulsar cluster and asynchronous geo-replication across multiple clus-
ters. It has been deployed globally in more than 10 data centers at Yahoo! since 2015
with full 10 x 10 mesh replication for mission critical services, such as Yahoo! Mail and
Finance.

Geo-replication is a common practice used to provide disaster recovery capabilities
for enterprise systems by distributing a copy of the data to different geographical loca-
tions. This ensures that your data, and the systems that rely upon it, will be able to
withstand any unforeseen disasters, such as natural disasters. The geo-replication
mechanisms used in different data systems can be classified as either synchronous or
asynchronous. Apache Pulsar allows you to easily enable asynchronous geo-replication
using just a few configuration settings.
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Figure 1.22 When using asynchronous geo-replication in Apache Pulsar, the message is stored locally within
the BookKeeper cluster running in the same region that receives the message. The message is asynchronously
forwarded in the background to the Pulsar cluster in the other region.

With asynchronous geo-replication, the producer doesn’t wait for an acknowledgment
from the other data centers that they have received the message. Instead, the produc-
ing client receives an acknowledgment immediately after the message has been suc-
cessfully persisted within the local BookKeeper cluster. The data is then replicated
from the source cluster to the other data centers in an asynchronous fashion, as
shown in figure 1.22.

Asynchronous geo-replication provides lower latency because the client doesn’t
have to wait for responses from the other data centers. However, it also results in
weaker consistency guarantees due to asynchronous replication. Since there is always
areplication lag in asynchronous replication, there is always some amount of data that
hasn’t been replicated from source to destination.

Synchronous geo-replication is a bit more complicated to achieve with Apache Pul-
sar than asynchronous, as it requires some manual configuration to properly ensure
that a message will only be acknowledged when a majority of the data centers have
issued a confirmation that the message data has been persisted to disk. While I will
save the details of exactly how synchronous geo-replication can be achieved with
Apache Pulsar for appendix B, I can tell you that it is made possible due to Pulsar’s
two-tiered architecture design and the ability for an Apache BookKeeper cluster to be
composed of both local and remote nodes, particularly ones in different geographical
regions, as shown in figure 1.23.
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Figure 1.23 You can exploit BookKeeper’s ability to use remote nodes in order to achieve synchronous geo-
replication to ensure that a copy of the message is stored in the remote region.

1.6

Synchronous geo-replication provides the highest availability, where all of your physi-
cally available data centers form a global logical instance for your data system. Your
applications can run everywhere at any data center and still be able to access the data.
It also guarantees stronger data consistency between different data centers, which
your applications can easily rely on without any manual operations involved when data
center failures occur.

Unlike other messaging systems that rely on external services, Pulsar offers geo-
replication as a builtin feature. Users can easily enable replication of message data
between Pulsar clusters in different geographical regions. Once replication is config-
ured, data is continuously replicated to the remote clusters without any interaction on
the part of the producers or consumers. I cover to how configure geo-replication in
greater detail in appendix B.

Real-world use cases

If you are a product manager whose product includes a requirement for operating on
massive amounts of data to deliver a meaningful new experience or dataset to your
users in real time, then Apache Pulsar is the key to unlocking the real-time potential
of your data. The beauty of Pulsar is that there are several specific scenarios in which it
can excel. Before we dive further into the technical details, it might be informative to
discuss at a high level some of the use cases in which Pulsar has already been proven.
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Unified messaging systems

You are probably familiar with the mnemonic “keep it simple, stupid,” which is often
used to remind architects that there is great value in simple designs and solutions. A
system that comprises fewer technologies is easier to deploy, maintain, and monitor.
As mentioned earlier, there are two common messaging patterns, and until now, if you
wanted to support both messaging styles within your infrastructure, you were required
to deploy and maintain two completely different systems.

As a bilingual job board, Zhaopin.com has one of the largest selections of job
vacancies in China, including both prominent local and foreign companies. The com-
pany has over 2.2 million clients and average daily page views of over 68 million. As
the company grew, the challenges of maintaining two separate messaging systems,
RabbitMQ for queuing and Apache Kafka for pub—sub, became increasingly difficult.
By replacing them both with a single unified messaging platform based on Apache
Pulsar, they were able to reduce their operational overhead, infrastructure footprint,
and ongoing support costs by half, while meeting their requirements of high durabil-
ity, high throughput, and low latency.

Microservices platforms

Narvar provides a supply chain management and customer care platform for
e-commerce customers around the world, including order tracking and notifications
and seamless returns and customer care. Narvar’s platform helps retailers and brands
by processing data and events to ensure timely and accurate communication with
their customers to 400 million consumers worldwide.

Prior to Apache Pulsar, Narvar’s platform had been built using a variety of messag-
ing and processing technologies over time—from Kafka to Amazon SQS, Kinesis
Streams to Kinesis Firehose, and RabbitMQ to AWS Lambda. As its traffic grew, it
became apparent that the growing amount of DevOps and developer support
required to maintain and scale these systems was unsustainable. Many of them were
not containerized, making infrastructure configuration and management burden-
some and requiring frequent manual intervention.

Systems like Kafka—while reliable, popular, and open source—had significant
maintenance overhead as they scaled. Increasing throughput required increasing par-
titions, tuning consumers, and a large amount of manual intervention by developers
and DevOps. Similarly, cloud-native solutions like Kinesis Streams and Kinesis Fire-
hose were not cloud-agnostic, making it hard to decouple the choice of cloud solu-
tions from functionality and making it difficult to leverage technologies in other
clouds and to support customers who needed to run on other public clouds.

Narvar decided to transition its microservice-based platform over to Apache Pulsar
because like Kafka, Pulsar was reliable, cloud-agnostic and open source. Unlike Kafka,
Pulsar entailed very little maintenance overhead and scaled with minimal manual
intervention. Pulsar was containerized and built on Kubernetes from the outset,
making it much more scalable and maintainable. Most importantly for Narvar was
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Pulsar Functions, which allowed Narvar to develop microservices that consumed and
processed the incoming events directly on the messaging system itself, eliminating the
need for expensive Lambda functions or standing up additional services.

In a microservices architecture, each microservice is designed as an atomic and
selfsufficient piece of software. These independent software components run as
multiple processes distributed across multiple servers. A microservices-based
application requires the interaction of multiple services via some sort of inter-process
communication. The two most commonly used communication protocols are HTTP
request/response and lightweight messaging. Pulsar was a perfect candidate for
providing the lightweight messaging system that supports asynchronous messaging
required by Narvar.

Connected cars

A major North American auto manufacturer has built a connected car service based
on Apache Pulsar that collect data from computing devices within its 12 million
connected vehicles. Billions of pieces of data are collected daily and used to provide
real-time visibility and remote diagnostics across the world. This data is then used to
provide better insights into how vehicles are performing and to identify potential
problems before they occur, so the manufacturer can provide customers with proac-
tive alerts.

Fraud detection

As China’s largest mobile payment platform, Orange Financial must analyze 50 mil-
lion transactions per day for financial fraud on behalf of it 500 million registered
users. Orange Financial faces threats from financial fraud every day, including identity
theft, money laundering, affiliate fraud, and merchant fraud. The company runs
thousands of fraud detection models against each transaction to combat these threats
in its risk management system.

The company was seeking a solution that would unify the data store, computing
engine, and programing language for decision development in its risk control system.
From an end-user perspective, the fraud detection scanning could not impact the
latency of the applications; therefore, they needed a platform that allowed them to
process the data as quickly as possible. Apache Pulsar allowed the transactional data to
be accessed directly in the messaging layer and processed in parallel using Pulsar
Functions, thereby reducing the processing latency introduced from having to move
the data to a secondary system for processing.

While some of the fraud detection processing has been offloaded to the Pulsar
functions framework, Orange Financial was still able to leverage its more complex
fraud detection algorithms that were developed in Spark, using Pulsar’s built-in con-
nector for the Spark computing engine. This allows the company to choose the best
processing framework for its models on a case-by-case basis.
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Additional resources

Pulsar has a vibrant and growing community and graduated from the Apache Incuba-
tor in August of 2018. Current documentation for the project can be found on the
official project website at http://pulsar.apache.org.

Other resources for information on Apache Pulsar include blogs (such as http://
mng.bz/PXE9 and https://streamnative.io/ blog) and tutorials (such as http://mng
.bz/J600). Lastly, I would be remiss if I didn’t mention the Apache Pulsar slack channel,
apache-pulsar.slack.com, which I and several of the project committers monitor on a
daily basis. The heavily used channel contains a wealth of information for beginners and
a concentrated community of developers who are actively using Apache Pulsar on a daily
basis.

Summary

Apache Pulsar is a modern messaging system that provides both high-performance
streaming and traditional queuing messaging.

Apache Pulsar provides a lightweight computing engine, Pulsar Functions,
which allows developers to implement simple processing logic that is executed
against each message and published to a given topic.

The benefits of Pulsar’s decoupled storage and serving layers include infinite
scalability and zero data loss.

Specific use cases where Pulsar has been used in production include IoT analyt-
ics, inter-microservice communication, and unified messaging.
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Pulsar concepis
and architeciure

This chapter covers

= Pulsar’s physical architecture

= Pulsar’s logical architecture

= Message consumption and the subscription types
provided by Pulsar

= Pulsar’'s message retention, expiration, and
backlog policies

Now that you have been introduced to the Pulsar messaging platform and how it
compares to other messaging systems, we will drill down into the low-level architec-
tural details and cover some of the unique terminology used by the platform. If you
are unfamiliar with messaging systems and distributed systems, then it might be dif-
ficult to wrap your head around some of Pulsar’s concepts and terminology. I will
start with an overview of Pulsar’s physical architecture before diving into how Pul-
sar logically structures messages.

38
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Pulsar’s physical architecture

Other messaging systems consider the cluster the highest level from an administrative
and deployment perspective, which necessitates managing and configuring each clus-
ter as an independent system. Fortunately, Pulsar provides an even higher level of
abstraction known as a Pulsar instance, which is comprised of one or more Pulsar clus-
ters that act together as a single unit and can be administered from a single location,
as shown in figure 2.1.

One of the biggest reasons for using a Pulsar instance is to enable geo-replication.
In fact, only clusters within the same instance can be configured to replicate data
amongst themselves.

/ Pulsar instance

Pulsar
cluster

~

Pulsar
cluster

Pulsar
cluster

| Local ZK clusters; stores
v~ ledger metadata

Configuration
store
0T

Figure 2.1 A Pulsar instance can consist of multiple geographically dispersed clusters.

Global ZK cluster; stores
— administrative metadata,
such as data security and
replication policies

\_

A Pulsar instance employs an instance-wide ZooKeeper cluster called the configuration
store to retain information that pertains to multiple clusters, such as geo-replication
and tenant-level security policies. This allows you to define and manage these policies
in a single location. In order to provide resiliency to the configuration store, each of
the nodes within the Pulsar instance’s ZooKeeper ensemble should be deployed
across multiple regions to ensure its availability in the event of a region failure.

It is important to note that the availability of the ZooKeeper ensemble used by the
Pulsar instance for the configuration store is required by the individual Pulsar clusters
to operate even when geo-replication is enabled. When geo-replication is enabled, if
the configuration store is down, messages published to the respective clusters will be
buffered locally and forwarded to the other regions when the ensemble becomes
operational again.

Pulsar’s layered architecture

As you can see in figure 2.2, each Pulsar cluster is made up of a stateless serving layer
of multiple Pulsar message broker instances, a stateful storage layer of multiple Book-
Keeper bookie instances, and an optional routing layer of multiple Pulsar proxies. When
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hosted inside a Kubernetes environment, this decoupled architecture enables your
DevOps team to dynamically scale the number of brokers, bookies, and proxies to
meet peak demand and to scale down to save cost during slower periods. Message traf-
fic is spread across all the available brokers as evenly as possible to provide maximum
throughput.

Pulsar
clients

Load balancer

Metadata

storage |

__ Intelligent
routing layer

] \__ Stateless
””””””””””””””””””””””””” serving layer

Bookie ‘ ‘ Bookie ‘ Bookie

‘ : ‘\¥ Stateful

N T L storage layer
Pulsar cluster /

Figure 2.2 A Pulsar cluster consists of multiple layers: an optional proxy layer that routes incoming
client requests to the appropriate message broker, a stateless serving layer consisting of multiple
brokers that serve client requests, and a stateful storage layer consisting of multiple bookies that
retains multiple copies of the messages.

-

When a client accesses a topic that has not yet been used, a process is triggered to
select the broker best suited to acquire ownership of the topic. Once a broker assumes
ownership of a topic, it is responsible for handling all requests for that topic, and any
clients wishing to publish to or consume data from the topic need to interact with the
corresponding broker that owns it. Therefore, if you want to publish data to a particu-
lar topic, you will need to know which broker owns that topic and connect to it. How-
ever, the broker assignment information is only available in the ZooKeeper metadata
and is subject to change based on load rebalancing, broker crashes, etc. Consequently,
you cannot connect directly to the brokers themselves and hope that you are commu-
nicating with the one you want. This is exactly why the Pulsar proxy was created—to
act as an intermediary for all the brokers in the cluster.



212

Pulsar’s physical architecture 41

THE PULSAR PROXY

If you are hosting your Pulsar cluster inside of a private and/or virtual network envi-
ronment, such as Kubernetes, and you want to provide inbound connections to your
Pulsar brokers, then you will need to translate their private IP addresses to public IP
addresses. While this can be accomplished using traditional load balancing technolo-
gies and techniques such as physical load balancers, virtual IP addresses, or DNS-
based load balancing that distributes client requests across a group of brokers, it is not
the best approach for providing redundancy and failover capabilities for your clients.

The traditional load-balancer approach is not efficient, as the load-balancer will
not know which broker is assigned to a given topic and instead will direct the request
to a random broker in the cluster. If a broker receives a request for a topic it isn’t serv-
ing, it will automatically reroute the request over to the appropriate broker for pro-
cessing, but this incurs a nontrivial penalty in terms of time. This is why it is
recommended to use the Pulsar proxy instead, which acts as an intelligent load bal-
ancer for Pulsar brokers.

When using the Pulsar proxy, all client connections will first travel through the
proxy, rather than directly to the brokers themselves. The proxy will then use Pulsar’s
built-in service discovery mechanism to determine which broker is hosting the topic
you are trying to reach and automatically route the client request to it. Furthermore,
it will cache this information in memory for future requests to streamline the lookup
process even more. For performance and failover purposes, it is recommended to run
more than one Pulsar proxy behind a traditional load balancer. Unlike the brokers,
Pulsar Proxies can handle any request, so they can be load balanced without any issue.

Stateless serving layer

Pulsar’s multi-layered design ensures that message data is stored separately from the
brokers, which guarantees that any broker can serve data from any topic at any time.
This also allows the cluster to assign ownership of a topic to any broker in the cluster
at any time, unlike other messaging systems that co-locate the broker and the topic
data they are serving. Hence, we use the term “stateless” to describe the serving layer,
since there is no information stored on the brokers themselves that is necessary to
handle client requests.

The stateless nature of the brokers not only allows us to dynamically scale them up
and down based on demand, but also makes them cluster-resilient to multiple broker
failures. Lastly, Pulsar has an internal load-shedding mechanism that rebalances the
load amongst all the active brokers based on the ever-changing message traffic.

BUNDLES

The assignment of a topic to a particular broker is done at what is referred to as the
bundle level. All the topics in a Pulsar cluster are assigned to a specific bundle with
each bundle assigned to a different broker, as shown in figure 2.3. This helps ensure
that all topics in a namespace are evenly distributed across all the brokers.
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Figure 2.3 From a serving perspective, each broker is assigned a set of bundles that contain
multiple topics. Bundle assignment is determined by hashing the topic name, which allows us to
determine which bundle it belongs to without having to keep that information in ZooKeeper.

The number of bundles created is controlled by the defaultNumberOfNamespace-
Bundles property inside the broker configuration file, which has a default value of 4.
You can override this setting on a per-namespace level when you create the name-
space by providing a different value when you create the namespace using the Pulsar
admin API. In general, you want the number of bundles to be a multiple of the num-
ber of brokers to ensure that they are evenly distributed. For instance, if you have
three brokers and four bundles, then one of the brokers will be assigned two of the
bundles, while the others only get one each.

LOAD BALANCING

While the message traffic might initially be spread as evenly as possible across the
active brokers, several factors can change over time, resulting in the load becoming
unbalanced. Changes in the message traffic patterns might result in a broker serving
several topics with heavy traffic, while others aren’t being utilized at all. When an exist-
ing bundle exceeds some preconfigured thresholds defined by the following proper-
ties in the broker configuration file, the bundle will be split into two new bundles with
one of them being offloaded to a new broker:

loadBalancerNamespaceBundleMaxTopics
loadBalancerNamespaceBundleMaxSessions
loadBalancerNamespaceBundleMaxMsgRate
loadBalancerNamespaceBundleMaxBandwidthMbytes

This mechanism identifies and corrects scenarios when some bundles are experienc-

ing a heavier load than others by splitting these overloaded bundles in two. Then one
of these bundles can be offloaded to a different broker in the cluster.
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LOAD SHEDDING

The Pulsar brokers have another mechanism to detect when a particular broker is
overloaded, and automatically have it shed or offload some of its bundles to other bro-
kers in the cluster. When a broker’s resource utilization exceeds the preconfigured
threshold defined by the loadBalancerBrokerOverloadedThresholdPercentage
property in the broker configuration file, the broker will offload one or more bundles
to a new broker. This property defines the maximum percentage of the total available
CPU, network capacity, or memory that the broker can consume. If any of these
resources cross this threshold, then the offload is triggered.

The bundle selected is left intact and assigned to a different broker. This is because
the load shedding process solves a different problem than the load balancing process
does. With load balancing, we are correcting the distribution of the topics across the
bundles because one of them has much more traffic than the others, and we are
attempting to spread that load out across all the bundles.

Load shedding, on the other hand, corrects the distribution of the bundles across
the brokers based on the number of resources required to service them. Even though
each broker can be assigned the same number of bundles, the message traffic han-
dled by each broker could be dramatically different if the load is unbalanced across
the bundles.

To illustrate this point, consider the scenario where there are 3 brokers and a total
of 60 bundles with each broker serving 20 bundles each. Furthermore, 20 of the
bundles are currently handling 90% of the total message traffic. Now, if most of these
bundles happen to be assigned to the same broker, it could easily exhaust that broker’s
CPU, network, and memory resources. Therefore, offloading some of these bundles to
another broker will help alleviate the problem, whereas splitting the bundles
themselves would only shed approximately half of the message traffic, while leaving
45% of it still on the original broker.

DATA ACCESS PATTERNS

There are generally three I/O patterns in a streaming system: writes, where new data is
written to the system; tailing reads, where the consumer is reading the most recently
published messages immediately after they have been published; and catch-up reads,
where a consumer reads a large number of messages from the beginning of the topic
in order to catch up, such as when a new consumer wants to access data beginning at a
point much earlier than the latest message.

When a producer sends a message to Pulsar, it is immediately written to Book-
Keeper. Once BookKeeper acknowledges that the data was committed, the broker
stores a copy of the message in its local cache before it acknowledges the message pub-
lication to the producer. This allows the broker to serve tailing read consumers
directly from memory and avoid the latency associated with disk access.

It becomes more interesting when looking at catch-up reads, which access data from
the storage layer. When a client consumes a message from Pulsar, the message will go
through the steps shown in figure 2.4. The most common example of a catch-up read
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A consumer subscribes to the topic, and the
consumer is up to date and is thus performing tailing
reads. All new incoming messages are served directly
from the Pulsar broker cache.
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Figure 2.4 Message consumption steps in Pulsar
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is when a consumer goes offline for an extended period and then starts consuming
again, although any scenario in which a consumer is not directly served from the bro-
ker’s in-memory cache would be considered a catch-up read, such as topic reassign-
ment to a new broker.

Stream storage layer

Pulsar guarantees message delivery for all message consumers. If a message success-
fully reaches a Pulsar broker, you can rest assured it will be delivered to its intended
target. In order to provide this guarantee, all non-acknowledged messages must be
persisted until they can be delivered to and acknowledged by consumers. As I men-
tioned earlier, Pulsar uses a distributed write-ahead log (WAL) system called Apache
BookKeeper for persistent message storage. BookKeeper is a service that provides per-
sistent storage of streams of log entries in sequences called ledgers.

LOGICAL STORAGE ARCHITECTURE
Pulsar topics can be thought of as infinite streams of messages that are stored sequentially
in the order the messages are received. Incoming messages are appended to the end of
the stream, while consumers read messages further up the stream based on the data
access patterns that I discussed earlier. While this simplified view makes it easy for us to
reason about a consumer’s position within the topic, such an abstraction cannot exist in
reality due to the space limitations of storage devices. Eventually this abstract infinite
stream concept must be implemented on a physical system where such alimitation exists.
Apache Pulsar takes a dramatically different approach from traditional messages sys-
tems, such as Kafka, when it comes to implementing stream storage. Within Kafka, each
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stream is separated into multiple replicas that are each stored entirely on a broker’s
local disk. The great thing about this approach is that it is simple and fast because all
writes are sequential, which limits the amount of disk head movement required to
access the data. The downside to Kafka’s approach is that a single broker must have suf-
ficient storage capacity to hold the partition data, as I discussed in chapter 1.

So how is Apache Pulsar’s approach different? For starters, each topic is not mod-
eled as a collection of partitions, but rather as a series of segments. Each of these seg-
ments can contain a configurable number of messages, with the default being 50,000.
Once a segment is full, a new one is created to hold new messages. Therefore, a Pulsar
topic can be thought of as an unbounded list of segments with each containing a subset
of the messages, as shown in figure 2.5, which shows both the logical architecture of the
stream storage layer and how it maps to the underlying physical implementation.

m’ulsar \

M
m Logical construct that exists

in the Pulsar layer

persistent://tenant/ns/my-topic

GooKeeper \

;'Méﬁ; é od e’d’g;; ”””” N Metadata that exists in the
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Contains the actual data, along

Entries with some important metadata

Figure 2.5 The data for a Pulsar topic is stored as a sequence of ledgers inside the BookKeeper
layer. A list of these ledger IDs is stored inside a logical construct known as a managed ledger on
ZooKeeper. Each ledger holds 50,000 entries that store a copy of the message data. Note that
persistent://tenant/ns/my-topic will be discussed as a concept later in the book.

A Pulsar topic is nothing more than an addressable endpoint that is used to uniquely
identify a specific topic within Pulsar and is analogous to a URL in the sense that it is
merely used to uniquely identify the resource that the client is attempting to connect
to. The topic name must be decoded by the Pulsar broker to determine the storage
location of the data.
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Pulsar adds an additional layer of abstraction on top of BookKeeper’s ledgers,
known as managed ledgers, that retains the IDs of the ledgers that hold the data pub-
lished to the topic. As we can see in figure 2.5, when data was first published to topic A,
it was written to ledger-20. After 50,000 records had been published to the topic, the
ledger was closed and another one (ledger-245) was created to take its place. This pro-
cess is repeated every 50,000 records to store the incoming data, and the managed
ledger retains this unique sequence of ledger IDs inside of ZooKeeper.

Later, when a consumer attempts to read the data from topic A, the managed led-
ger is used to locate the data inside of BookKeeper and return it to the consumer. If
the consumer is performing a catch-up read starting at the oldest message, then it
would first get all the data from ledger-20, followed by ledger-245, and so on. The tra-
versal of these ledgers from oldest to youngest is transparent to the end user and cre-
ates the illusion of a single sequential stream of data. Managed ledgers allow this to
happen and retain the ordering of the BookKeeper ledgers to ensure the messages
are read in the same order they were published.

BOOKKEEPER PHYSICAL ARCHITECTURE

In BookKeeper, each unit of a ledger is referred to as an entry. These entries contain
the actual raw bytes from the incoming messages, along with some important meta-
data that is used to track and access the entries. The most critical piece of metadata is
the ID of the ledger to which it belongs, which is kept in the local ZooKeeper
instance, so the message can be retrieved quickly from BookKeeper when a consumer
attempts to read it in the future. Streams of log entries are stored in append-only data
structures, known as ledgers, as shown in figure 2.6.

Append Ledger
only - :
- OO0
En{rries
Ledger no: 123, Figure 2.6 In BookKeeper, incoming
Entry no: 22, entries get stored together as ledgers
Data: “Message” on servers known as bookies.

Ledgers have append-only semantics, meaning that entries are written to a ledger
sequentially and cannot be modified once they've been written to a ledger. From a
practical perspective, this means

A Pulsar broker first creates a ledger, then appends entries to the ledger, and
finally closes the ledger. There are no other interactions permitted.

After the ledger has been closed, either normally or because the process
crashed, it can then be opened only in read-only mode.

Finally, when entries in the ledger are no longer needed, the whole ledger can
be deleted from the system.



Pulsar’s physical architecture 47

The individual BookKeeper servers that are responsible for the storage of ledgers
(more specifically, fragments of ledgers) are known as bookies. Whenever entries are
written to a ledger, those entries are written across a subgroup of bookie nodes known
as an ensemble. The size of the ensemble is equal to the replication factor (R) you
specify for your Pulsar topic and ensures that you have exactly R copies of the entry
saved to disk to prevent data loss.

Bookies manage data in a log-structured way, which is implemented using three
types of files: journals, entry logs, and index files. The journal file retains all of the
BookKeeper transaction logs. Before any update to a ledger takes place, the bookie
ensures that a transaction describing the update is written to disk to prevent data loss.

Finally, an acknowledgment is sent to the

producer to confirm that the message was The producer sends the message to a Pulsar
successfully received, persisted, and broker, which in turn forwards the message to

cataloged for future reference. one of the bookie nodes that has identified itself
as active and available for message storage.

A response is sent back to the Pulsar
broker, which includes the ledger ID
that the message was written to.

The broker stores the <Message
ID, Ledger ID> pair inside its
local ZooKeeper to keep track of
where the messages have been
stored.

Broker

When the message is committed, it

can be sent directly to all subscribers
attached to that topic and added to a
local cache inside the broker. O

ZooKeeper

Inside the bookie, the message is
appended to an entry log, and a
transaction corresponding to the
message is appended to the journal
as well.

The index of the message is updated in
the ledger cache within the bookie’s

allocated memory so that subsequent
read requests from consumers can be
served more efficiently.

o =)
Journals  Entry log Both of these operations fsync the
data to disk to ensure that the data

will not be lost.

Figure 2.7 Message persistence steps in Pulsar

The entry log file contains the actual data written to BookKeeper. Entries from differ-
ent ledgers are aggregated and written sequentially, while their offsets are kept as
pointers in a ledger cache for fast lookup. An index file is created for each ledger,
which contains several indexes that record the offsets of data stored in entry log files.
The index file is modelled after index files in traditional relational databases and
allows for quick lookups for ledger consumers. When a client publishes a message to
Pulsar the message will go through the steps shown in figure 2.7 to persist it to disk
within a BookKeeper ledger.

By distributing the entry data across multiple files on different disk devices, book-
ies are able to isolate the effects of read operations from the latency of ongoing write
operations, allowing them to handle thousands of concurrent reads and writes.
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Metadata storage

Lastly, each cluster also has its own local ZooKeeper ensemble that Pulsar uses to store
cluster-specific configuration information for tenants, namespaces, and topics, includ-
ing security and data retention policies. This is in addition to the managed ledger
information we discussed earlier.

Z0OKEEPER BASICS

According to the official Apache website, “ZooKeeper is a centralized service for main-
taining configuration information, naming, providing distributed synchronization,
and providing group services” (https://zookeeper.apache.org), which is an elaborate
way of saying it is a distributed data source. ZooKeeper provides a decentralized loca-
tion for storing information, which is crucial within distributed systems, such as Pulsar
or BookKeeper.

Apache ZooKeeper solves the fundamental problem of achieving consensus (i.e.,
agreement) that virtually every distributed system must solve. Processes in a distributed
system need to agree on several different pieces of information, such as the current
configuration values and the owner of a topic. This is a problem particularly for
distributed systems due the fact that there are multiple copies of the same component
running concurrently with no real way to coordinate information between them.
Traditional databases are not an option because they introduce a serialization point
within the framework where all the calling services would be blocked waiting for the
same lock on a table, which essentially eliminates all the benefits of distributed
computing.

Having access to a consensus implementation enables distributed systems to coor-
dinate processes in a more effective manner by providing a compare-and-swap (CAS)
operation to implement distributed locks. The CAS operation compares the value
retrieved from ZooKeeper with an expected value and, only if they are the same,
updates the value. This guarantees that the system is acting based on up-to-date infor-
mation. One such example would be checking that the state of a BookKeeper ledger
is open before writing any data to it. If some other process has closed the ledger, it
would be reflected in the ZooKeeper data, and the process would know not to pro-
ceed with the write operation. Conversely, if a process were to close a ledger, this infor-
mation would be sent to ZooKeeper so that it could be propagated to the other
services, so they would know it is closed before they attempted to write to it.

The ZooKeeper service itself exposes a file-system-like API so that clients can
manipulate simple data files (znodes) to store information. Each of these znodes
forms a hierarchical structure similar to a filesystem. In the following sections, I will
examine the metadata that is retained within ZooKeeper along with how it is used and
by whom so that you can see for yourself exactly why it is needed. The best way to do
this is by using the zookeeper-shell tool that is distributed along with Pulsar, as
shown in the following listing, to list all the znodes.


https://zookeeper.apache.org
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Listing 2.1 Using the ZooKeeper-shell tool to list the znodes

/pulsar/bin/pulsar zookeeper-shell o

1s / (2]
[admin, bookies, counters, ledgers, loadbalance,
=» managed-ledgers, namespace, pulsar, schemas, stream, zookeeper] o

@ Sstarts the ZooKeeper shell
® Lists the children znodes under the root level node
© The output of all the znodes used by Pulsar

As you can see in listing 2.1, there are a total of 11 different znodes created inside
ZooKeeper for Apache Pulsar and BookKeeper. These fall into one of four categories
based on what information they contain and how it is used.

CONFIGURATION DATA

The first category of information is configuration data for tenants, namespaces, sche-
mas, etc. All this information is slow-changing information that is only updated
through the Pulsar administration API when a user creates or updates a new cluster,
tenant, namespace, or schema and includes such things as security policies, message
retention policies, replication policies, and schemas. This information is stored in the
following znodes: /admin and /schemas.

METADATA STORAGE

The managed ledger information for all of the topics is stored in the /managed-ledgers
znode, while the /ledgers znode is used by BookKeeper to keep track of all the ledgers
currently stored across all the bookies within the cluster.

Listing 2.2 Inspecting the managed ledger

/pulsar/bin/pulsar-managed-ledger-admin print-managed-ledger -
“» managedLedgerPath /public/default/persistent/topicA
=» --zkServer localhost:2181

ledgerInfo { ledgerId: 20 entries: 50000 size: 3417764 timestamp: 1589590969679}
ledgerInfo { ledgerId: 245 timestamp: 0}

@ The managed ledger tool allows you to look up the ledgers by topic name.
@ This topic has two ledgers: one with 50K entries that is closed and another open one.

As you can see in listing 2.2, there is another tool called pulsar-managed-ledger-
admin that allows you to easily access the managed ledger information that is used by
Pulsar to read and write the data to and from BookKeeper. In this case, the topic data
is stored on two different ledgers: ledgerID-20, which is closed and contains 50,000
entries, and ledgerID-245, which is currently open and where the incoming data will
be published.

DYNAMIC COORDINATION BETWEEN SERVICES
The remaining znodes are all used for distributed coordination across the systems,
including /bookies, which maintains a list of the bookies registered with the Book-
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Keeper cluster, and /namespace, which is used by the proxy service to determine which
broker owns a given topic. As we can see in the following listing, the /namespace znode
hierarchy is used to store the bundle IDs for each namespace.

Listing 2.3 Metadata used to determine topic ownership

/pulsar/bin/pulsar zookeeper-shell

1ls /namespace

[customers, public, pulsar]

ls /namespace/customers

[orders]

ls /namespace/customers/orders

[Ox4000000070x80000000]

get /namespace/customers/orders/0x40000000 0x80000000

{"nativeUrl":"pulsar://localhost:6650",
"httpUrl":"http://localhost:8080", "disabled":false}

© 0000

© starts the ZooKeeper shell

@ There is one znode per tenant.

© There is one znode per namespace.
O There is one znode per bundle_id.

As you’ll recall from our earlier discussion, the topic name is hashed by the proxy to
determine the bundle name, which in this case is 0x40000000_0x80000000. The proxy
then queries the /namespace/{tenant}/{namespace}/{bundle-id} znode to retrieve
the URL for the broker that “owns” the topic.

Hopefully, this gives you some more insight into the role ZooKeeper plays inside a
Pulsar cluster and how it provides a service that can be easily accessed by nodes that
have been dynamically added to the cluster, so they can quickly determine the cluster
configuration and start handling client requests. One such example would be the abil-
ity of newly added brokers to start serving data from a topic by referencing the data in
the /managed-ledgers znode.

Pulsar’s logical architecture

Like other messaging systems, Pulsar uses the concept of topics to denote message
channels for transmitting data between producers and consumers. However, the way
in which these topics are named is different in Pulsar than in other messaging systems.
In the following sections, I will cover the underlying logical structure that Pulsar uses
for storing and managing topics.

Tenants, namespaces, and topics

In this section we will cover the logical constructs that describe how data is structured
and stored inside the cluster. Pulsar was designed to serve as a multi-tenant system,
allowing it to be shared across multiple departments within your organization by pro-
viding each its own secure and exclusive messaging environment. This design enables
a single Pulsar instance to effectively serve as the messaging platform-as-a-service
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across your entire enterprise. The logical architecture of Pulsar supports multitenancy
via a hierarchy of tenants, namespaces, and, finally, topics, as shown in figure 2.8.

Pulsar cluster

Tenant-3
(E-payments)

' '

Namespace-1 Namespace-2
(Fraud detection) (Payments)

Tenant-1 Tenant-2
(Some app) (Marketing)
Namespace-1 Namespace-1 Namespace-2
(Microservice) (Clickstream) (Campaigns)
Topic-1 Topic-1 Topic-1 Topic-1 Topic-1
(Customer) (Demographic) (Television) (Risk score) (Credit card)
) . Topic-2
Topic-2 Topic-2 . .
"\ (User clustering) (Online ads) )™~ (Gift card)

Figure 2.8 Pulsar’s logical architecture consists of tenants, namespaces, and topics.

TENANTS

At the top of the Pulsar hierarchy sit the tenants, which can represent a specific busi-
ness unit, a core feature, or a product line. Tenants can be spread across clusters and
can each have their own authentication and authorization scheme applied to them,
thereby controlling who has access to the data stored within. They are also the admin-
istrative unit at which storage quotas, message time to live, and isolation policies can
be managed.

NAMESPACES

Each tenant can have multiple namespaces, which are logical grouping mechanisms for
administering related topics via policies. At the namespace level, you can set access
permissions, fine-tune replication settings, manage geo-replication of message data
across clusters, and control message expiry for all the topics in the namespace.

Let’s consider how we would structure Pulsar’s namespace for an e-commerce
application. To provide isolation for the sensitive incoming payment data and limit
access to only members of the finance team, you may configure a separate tenant
named E-payments, as shown in figure 2.8, and apply an access policy that restricts full
access to only members of the finance group so they can perform audits and process
credit card transactions.
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Within the E-payments tenant you might create two namespaces: one named pay -
ments that will hold the incoming payments, including credit card payments and gift
card redemptions, and another named fraud detection, which will contain those
transactions that are flagged as suspicious for further processing. In such a deploy-
ment, you would limit the user-facing application to write-only access to the payments
namespace, while granting read-only access to the fraud detection application, so it
can evaluate them for potential fraud.

On the fraud detection namespace you would configure write access for the
fraud detection application, so it can place potentially fraudulent payments into the
“risk score” topic. You would also grant read-only access to the e-commerce applica-
tion to the same namespace, so it can be notified of any potential fraud and react
accordingly, such as by blocking the sale.

ToPics
Topics are the only communication channel type available in Pulsar. All messages are
written to and read from topics. Other messaging systems support more than one
communication channel type (e.g., topics and queues that are differentiated by the
type of message consumption they support). As I discussed in chapter 1, queues sup-
port first in, first out exclusive message consumption, while topics support pub—sub,
one-to-many message consumption. Pulsar makes no such distinction and, instead,
relies on various subscription types to control the message consumption pattern.

In Pulsar, non-partitioned topics are served by a single broker, which is responsible
for receiving and delivering all the messages for the topic. Therefore, the throughput
of a single topic is bound by the computing power of the broker serving it.

PARTITIONED TOPICS

Pulsar also supports the notion of partitioned topics that can be served by multiple
brokers, which allows for much higher throughput as the load is distributed across
multiple machines. Behind the scenes, a partitioned topic is implemented as N inter-
nal topics, where Nis the number of partitions. The distribution of partitions across
brokers is handled automatically by Pulsar, effectively making the process transparent
to the end user.

Implementing partitioned topics as a series of individual topics allows a user to
increase the number of partitions without having to rebalance the entire topic.
Instead, internal topics are created for the new partitions and will be able to receive
incoming messages immediately without impacting the other internal topics at all
(e.g., consumers will still be able to read/write messages to the existing partitions
without interruption).

From a consumer perspective, these is no difference between partitioned topics and
normal topics. All consumer subscriptions work exactly as they do on non-partitioned
topics. But there is a big difference in what happens when a message is published to a
partitioned topic. The message producer is responsible for determining which internal
topic the message is ultimately published to. If the message has a value in its key meta-
data field, then the producer will hash that value to determine which topic to publish
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to. This ensures that all messages with the same key get stored in the same topic and will
be in the order in which they were published.

When publishing a message without a key, the producer should be configured with
arouting mode that specifies how to route messages across the partitions in the topic.
The default routing mode is called RoundRobinPartition, which as the name implies,
publishes messages across all partitions in round-robin fashion. This approach evenly
distributes the messages across the partitions, which maximizes the publish through-
put. Alternatively, you could use the SinglePartition routing mode, which ran-
domly selects a single partition to publish all its messages into. This approach can be
used to group messages from a specific producer together to maintain message order-
ing when you don’t have a key value. You can also provide your own routing imple-
mentation as well if you need more control over message distribution across your
partitioned topic.

Let’s look at the message flow depicted in figure 2.9 in which the producer is con-
figured to use the RoundRobinPartition publish mode. In this scenario, the producer
connects to the Pulsar proxy and expects back the IP address of the broker assigned to
the topic it is writing to. The proxy, in turn refers to the local metastore for this infor-
mation and discovers that the topic is partitioned and needs to translate the specified
partition number into the name of the internal topic that is serving that partition.

In figure 2.9, the producer’s round-robin routing strategy determined that the
message should be published to partition number 3, which is implemented as internal
topic p3. The proxy can also determine that internal topic p3 is currently being served
by broker-0. Therefore, the message is routed to that broker and written to the p3

The producer is configured to use

a specific routing mode (e.g RoundRobin),
which is used to determine which partition
a given message is routed to.

The proxy refers to the local metastore to
determine which broker is serving the topic
and, based on the partition value provided
by the producer, determines the address of
the broker currently serving the given

The producer then publishes the message ol A
partition and returns it to the proxy.

like any other by providing the topic name
(e.g. publish [“partitioned-topic”’]).

\\*Q\Projucer

Pulsar cluster / Topic configuration {
Proxy [ZooKeepetJ Num partitions: 5
. Internal topics: [
Phys_lcal <partition-0, topic-0>
topics ﬂ <partition-1, topic-1>, ...
]
Broker 0 Broker- [Broker-Z} ’

The producer uses the provided
broker address to publish the
message contents.

Figure 2.9 Publishing to a partitioned topic
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topic. Since the routing mode is round robin, a subsequent call by the same producer
will result in the message being routed to the p4 internal topic on broker-1.

Addressing topics in Pulsar

The hierarchical structure of Pulsar’s logical layer is reflected in the naming conven-
tion of endpoints used to access topics within Pulsar. As you can see in figure 2.10,
each topic addressed within Pulsar contains both the tenant and namespace to which
it belongs. The address also contains a persistency prefix that indicates whether the
message contents are persisted to long-term storage or they are only retained in the
bookie’s memory space. If a topic name is created with a prefix of persistent://,
then all messages that have been received but not yet acknowledged will be stored on
multiple bookie nodes, and thus, can survive broker failures.

Pulsar also supports non-persistent topics, which retain all unacknowledged
messages in the broker memory. Non-persistent topic names begin with the non-
persistent:// prefix to indicate this behavior. When using non-persistent topics,
brokers immediately deliver messages to all
connected subscribers without persisting them. (non-)persistent:/ftenant/namespace/topic-name

When using non-persistent delivery, any Figure 2.10 Topic addressing scheme in
form of broker failure, or disconnecting a sub-  Pulsar
scriber from a topic, results in all in-transit mes-
sages being lost on the (non- persistent) topic. This means that the topic
subscribers will never be able to receive those messages even if they reconnect. While
non-persistent messaging is usually faster than persistent messaging because it avoids
the latency associated with persisting the data to disk, it is only advisable to use it if you
are certain that your use case can tolerate the loss of messages.

Producers, consumers, and subscriptions

Pulsar is built on the publish-subscribe (pub—sub) pattern. In this pattern, producers
publish messages to topics. Consumers can then subscribe to those topics, process
incoming messages, and send an acknowledgment when processing is complete.

A producer is any process that connects to a Pulsar broker, either directly or via the
Pulsar proxy, and publishes messages to a topic, while a consumer is any process that
connects to a Pulsar broker to receive messages from a topic. When a consumer has
successfully processed a message, it needs to send an acknowledgment to the broker
so the broker knows that it has been received and processed. If no such acknowledg-
ment is received within a preconfigured timeframe, the broker will redeliver it to con-
sumers on that subscription.

When a consumer connects to a Pulsar topic, it establishes what is referred to as a
subscription, which specifies how messages will be delivered to a group of one or more
consumers. There are four available subscription modes in Pulsar: exclusive, failover,
key-shared, and shared. Regardless of the subscription type, messages are delivered in
the order they are received.
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Information about these subscriptions is retained in the local Pulsar ZooKeeper
metadata and includes the http addresses of all the consumers, among other things.
Each subscription also has a cursor associated with it that represents the position of
the last message which was consumed and acknowledged for the subscription. To pre-
vent message redelivery, these subscription cursors are retained on the bookies to
ensure they will survive any broker level failures.

Pulsar supports multiple subscriptions per topic, which allows multiple consumers
to read data from a topic. As you can see in figure 2.11, the topic has two different sub-
scriptions: Sub-A and Sub-B. Consumer-A connected to the topic first and is operating
in exclusive consumer mode, which means that all the messages in the topic will be
consumed by Consumer-A. Thus far, Consumer-A has only acknowledged the first four
messages, so its cursor position for the subscription, Sub-A is currently set to 5.

Name: Sub-A
Type: Exclusive

Created: 11:08:01

Topic
(o HEnEEOOEEHREH,  BEOE
Y
Name: Sub-B
Created: 11:09:37
same data. Consumer-A has consumed the first four messages on the exclusive subscription named Sub-A,
whereas messages 4 through 10 have been distributed across the two consumers on the shared subscription

L : —{oommea]
Type: Shared

Figure 2.11 Pulsar supports multiple subscriptions per topic, which allows multiple consumers to read the

named Sub-B.

The subscription named Sub-B was created after the first three messages were pro-
duced; therefore, none of those messages were delivered to the consumers for that
subscription. It is a common misconception that any subscriptions created on a topic
will start at the very first message for that topic, which is why I chose to illustrate that
point here and show that you will only receive messages that are published to the topic
after you subscribe to it.

We can also see that, since Sub-B is operating in shared mode, the messages have
been distributed across all the consumers in the group with each message only being
processed by a single consumer in the group. You can also see that Sub-B’s cursor is
farther ahead than Sub-A’s cursor, which is not uncommon when you distribute the
messages across multiple consumers.
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2.2.4 Subscription types

In Pulsar, all consumers use subscriptions to consume data from a topic. Subscriptions
are just configuration rules that define how messages are delivered to consumers of a
given topic. Pulsar subscriptions can be shared across multiple applications, and in
fact, most subscription types are designed specifically for that usage pattern. Pulsar
supports four different types of subscriptions: exclusive, failover, shared, and key-
shared, as shown in figure 2.12.

A Pulsar topic can support multiple subscriptions concurrently, allowing you to use
a single topic to serve applications with vastly different consumption patterns. Itis also
important to point out that different subscriptions on the same topic don’t have to be
of the same subscription type. This allows you to use a single topic to serve both queu-
ing and streaming use cases simultaneously.

Queuing Streaming
Messages are delivered to Messages are delivered to
the consuming applications the consuming applications
in a nondeterministic order. in a deterministic order.

Topic

/ﬁ (Subscription-A Pulsar

» Segment-99 |- LR consumer
— | application

Pulsar
consumer
application

Subscription-C
(Shared)

L (Exclusive)

» Segment-98
Pulsar
consumer

S t-97 - icati
Pulsar Subscription-D egmen Subscription-B / application
consumer (Key-shared) (Failover)
application > Segment-96 :X: Pulsar
Q consumer

Messages are delivered to
the consuming applications Stand-by
grouped by the topic key.

application

Figure 2.12 Pulsar’s subscription modes

Each of Pulsar’s subscription types serve a different type of use case, so it is important to
understand them in order to use them properly. Let’s revisit the scenario where a finan-
cial services company that streams stock market quote information in real time into a
topic named stock quotes wants to share that information across the entire enterprise
and see how each of these subscription modes would be used for the same use cases.

EXCLUSIVE

An exclusive subscription only permits a single consumer to the messages for that sub-
scription. If any other consumer attempts to subscribe to a topic using the same sub-
scription, an exception will be thrown, and it won’t be able to connect. This mode is
used when you want to ensure that each message is processed exactly once and by a
known consumer.
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Within our financial services organization, the data science team would use this
type of subscription to feed the stock topic data through their machine learning mod-
els to train or validate them. This would allow them to process the records in exactly
the order they were received to provide a stream of stock quotes in the proper time
sequence. Each model would require its own exclusive subscription, as shown in fig-
ure 2.13, to receive its own copy of the data.

Subscription-A
(Exclusive)

ML model-A

Figure 2.13 An exclusive subscription permits only a single consumer to consume the messages.

Subscription-B

(Exclusive) ML model-B

|

FAILOVER SUBSCRIPTIONS
Failover subscriptions allow multiple consumers to attach to the subscription, but only
one consumer is selected to receive the messages. This configuration allows you to pro-
vide a failover consumer to continue processing the messages in the topic in the event
of'a consumer failure. If the active consumer fails to process a message, Pulsar automat-
ically fails over to the next consumer in the list and continues delivering the messages.
This type of subscription is useful when you want single processing semantics with
high availability of the consumers. This is useful if you want your application to con-
tinue processing messages in the event of a system failure and another consumer to
take over if the first consumer were to fail for any reason. Typically, these consumers
are spread across different hosts and/or data centers to ensure that the application
can survive multiple outages. As you can see in figure 2.14, Consumer-A is the active
consumer, while Consumer-B is the standby consumer that would be the next in line
to receive messages if Consumer-A disconnected for any reason.

Messages are delivered to a
single consumer in the order
they are received by Pulsar.

Stock Subscription-A = Consumer-A
topic (Failover)
5
e Consumer-B
Takes over in case of

failure of Consumer-A

Figure 2.14 A failover subscription has only one active consumer at a time, but it permits multiple standby
consumers.
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One such example would be if the data science team from our financial services com-
pany had deployed one of their models using data from the stock quotes topic that
generates market volatility scores that are combined with scores from other models to
produce an overall recommendation for the trading team. It would be critical that
exactly one instance of this model remain up and always running to help the trading
team make informed trading decisions. Having multiple instances running and gener-
ating recommendations could skew the overall recommendation.

SHARED SUBSCRIPTIONS

Shared subscriptions also allow multiple consumers to attach to the subscription; each
of which can actively receive messages, unlike failover subscriptions that support only
one active consumer at a time. Messages are delivered in a round-robin fashion to all
the registered consumers, and any given message is delivered to only one consumer,
as shown in figure 2.15.

Trading desk
application

Subscription-A 5
L (Shared {3 commers
e
Consumer-C
(e ] )

topic
\
/

Figure 2.15 Messages are distributed across Customer web
all consumers of a shared subscription. application

Subscription-B
(Shared)

This subscription type is useful for implementing work queues, where message order-
ing isn’t important, as it allows you to scale up the number of consumers on the topic
quickly to process the incoming messages. There are no upper limits on the number
of consumers per shared subscription, which allows you to scale up consumption by
increasing the number of consumers beyond some artificial limit that is imposed by
the storage layer.

Within our fictitious financial services organization, the business-critical applica-
tions, such as our internal trading platforms, algorithmic trading systems, and customer
facing website would all benefit from such a subscription. Each of these applications
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would use their own shared subscription, as shown in figure 2.15, to ensure that they
each received all the messages published to the stock topic.

KEY-SHARED SUBSCRIPTIONS
The key-shared subscription also permitted multiple concurrent consumers, but
unlike the shared subscription which distributes the messages in a round-robin man-
ner amongst the consumers, it adds a secondary key index, which ensures that mes-
sages with the same key get delivered to the same consumer. This subscription acts as a
distributed GROUP BY in SQL., where data with similar keys is grouped together. This is
particularly useful in cases where you want to presort the data prior to consumption.
Consider the scenario of the business analytics team needing to perform some ana-
lytics on the data in the stock topic. By having using a key-shared subscription, they
are assured that all the data for a given ticker symbol will be processed by the same
consumer, as depicted in figure 2.16, making it easier for them to join this data with
other data streams.

Analytics

licati
D Key = ORCL D Key = MSFT Key = AMZN applcation

Stock Subscription-D M4 —M1 = Consumer-B
topic (Key-shared)
"
"
g

Figure 2.16 Messages are grouped together by the specified key in a shared-key subscription.

2.3

In summary, exclusive and failover subscriptions allow only one consumer per topic par-
tition per subscription, which ensures that messages are consumed in the order they are
received. They are best applied to streaming use cases where strict ordering is required.

Shared subscriptions, on the other hand, allow multiple consumers per topic parti-
tion. Each consumer within the subscription receives only a portion of the messages
published to a topic. Shared subscriptions are best for queuing use cases, where strict
message ordering is not required but high throughput is.

Message retention and expiration

As a messaging system, Pulsar’s primary function is to move data from point A to point
B. Once the data has been delivered to all the intended recipients, the presumption is
that there is no need to keep it. Consequently, the default message retention policy in
Pulsar does exactly that: when a message is published to a Pulsar topic, it will be stored
until it has been acknowledged by all the topic’s consumers, at which point it will be
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deleted. This behavior is controlled by the defaultRetentionTimeInMinutes and
defaultRetentionSizeInMB configuration properties in the broker configuration file,
which are both set to zero by default to indicate that no acknowledged messages
should be retained.

Data retention

However, Pulsar also supports namespace-level retention policies that allow you to
override this default behavior for situations where you want to retain the topic data for
a longer period, such as if you want to access the topic data at a later point in time via
the reader interface or SQL.

These retention policies dictate how long you retain messages in persistent storage
after they have been acknowledged as consumed by all the known consumers.
Acknowledged messages that are not covered by the retention policy will be deleted.
Retention policies are defined by a combination of size and time limits and are
applied on a per-topic basis to every topic in that namespace. For instance, if you spec-
ify a size limit of 100 GB, then up to 100 GB worth of data will be retained in each
topic within that namespace, and once this size limit is exceeded, messages will be
purged from the topic (from oldest to newest) until the total data volume is under the
specified limit again. Similarly, if you specify a time limit of 24 hours, then acknowl-
edged messages for all the topics in the namespace will be retained for a maximum of
24 hours based on the time they were received by the broker.

The retention policies require you to specify both a size and a time limit, which are
applied independently of one another. Thus, if a message violates either of these lim-
its, it will be removed from the topic, regardless of whether or not it complies with the
other policy.

If you specify a retention policy with time limit of 24 hours and a size limit of 10 GB
for the E-payments/refunds namespace, as shown in listing 2.4, then when either of
the specified policy limits are reached, the data is deleted. Therefore, it is possible for
messages that are less than 24 hours old to be deleted if the total volume exceeds 10 GB.

Listing 2.4 Setting various Pulsar retention policies

./bin/pulsar-admin namespaces set-retention E-payments/payments \

--time 24h \

--gize -1 ‘)

./bin/pulsar-admin namespaces set-retention E-payments/fraud-detection \
--time -1 \

~_size 20G (2]

./bin/pulsar-admin namespaces set-retention E-payments/refunds \

--time 24h \

~_size 10G (3]

./bin/pulsar-admin namespaces set-retention E-payments/gift-cards \
--time -1 \

--size -1 ¢)
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Retains all messages less than 24 hours old with no restriction on the size
Retains up to 20 GB of messages with no restriction on the time
Retains up to 10 GB of messages less than 24 hours old

Retains an infinite number of messages

It is also possible to set infinite size or time by specifying a value of -1 for either of
those settings when you create the retention policy and providing it for both settings,
effectively creating an infinite retention policy for the namespace. Therefore, be care-
ful when using that policy, as the data will never be removed from the storage layer; be
sure you have sufficient storage capacity and/or configure periodic offloading of the
data to tiered storage.

Backlog quotas

Backlog is the term used for all the unacknowledged messages in a topic that must be
stored on bookies until they are delivered to all the intended recipients. By default,
Pulsar retains all unacknowledged messages indefinitely. However, Pulsar supports
namespace-level backlog quota policies that allow you to override this behavior to
reduce the space consumed by these unacknowledged messages in situations where one
or more of the consumers goes offline for an extended period due to a system crash.

These backlog quotas are designed to solve a very specific situation in which the
topic producers have sent more messages than the consumer can possibly process
without falling even further behind. Under these circumstances, you would want to
prevent the consumer from getting so far behind that it will never catch up. When this
situation occurs, you need to consider the timeliness of the data that the consumer is
processing and ensure that the consumer abandons older, less-recent data in favor of
more recent messages that can still be processed within the agreed upon SLA. If the
data in your topic becomes “stale” by sitting there for an extended period, then imple-
menting a backlog quota will help you focus your processing efforts on only the more
recent data by limiting the size of the backlog.

Topic’s unacknowledged messages

L

J

>
Allowable backlog size

Figure 2.17 Pulsar’s backlog quota allows you to dictate what action the broker should take when the
volume of unacknowledged messages exceeds a certain size. This prevents the backlog from growing so
large that the consumer is processing data that is of little or no value.

Unlike the message retention policies I discussed in the previous section, which are
intended to extend the lifespan of acknowledged messages inside a Pulsar topic, these
backlog quota policies are designed to reduce the lifespan of unacknowledged messages.
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You can limit the allowable size of these message backlogs by configuring a backlog
policy that specifies the maximum allowable size of the topic backlog and the action
to take when this threshold is exceeded, as shown in figure 2.17. There are three dis-
tinct options for the backlog retention policy, which dictate the behavior the broker
should take to alleviate the condition:

The broker can reject inbound messages by sending an exception to the pro-
ducers to indicate that they should hold off sending new messages by specifying
the producer request_hold retention policy.

Rather than requesting that the producers hold off, the broker will forcibly
disconnect any existing producers when the producer_exception policyisspecified.
If you want the broker to discard existing, unacknowledged messages from the
topic, then you should specify the consumer_backlog_eviction policy.

Each of these provide you with three very different approaches to handling the situa-
tion shown in figure 2.17. The first one, producer request hold, would leave the
producer connected but throw an exception to slow it down. This policy would be
applicable in a scenario where you want the client application to catch the thrown
exception and resend the message at a later point. So, it would be best to use this pol-
icy when you don’t want to reject any messages sent from the consumer, and the cli-
ents will buffer the rejected messages for a period of time before resending them.

The second policy, producer_exception, would forcibly disconnect the producer
entirely, which would stop the messages from getting published and would require the
producer code to detect this condition and reconnect. With this policy there is the dis-
tinct possibility of losing messages sent from the client producers during the period
they are disconnected. This policy is best used when you know the producers aren’t
capable of buffering messages (e.g., they are running inside a resource-constrained
environment, such as an IoT device), and you don’t want Pulsar’s inability to receive
messages to cause the client application to crash.

The last policy, consumer_backlog_eviction, does not impact the functionality of
the producer whatsoever, and it will continue to produce messages at the current rate.
However, older messages that haven’t been consumed will be discarded, resulting in
message loss.

Message expiration

As we already discussed, Pulsar retains all unacknowledged messages indefinitely, and
one of the tools we must use to prevent these messages from backing up is backlog
quotas. However, one of the downsides of backlog quotas is that they only allow you to
make your decision on whether to keep a message based on the total space consumed
by the topic’s unacknowledged messages. As you’ll recall, one of the primary reasons
for backlog quotas was to ensure that the consumer was ignoring stale data in favor of
more recent data. Therefore, it would make more sense if there was a way to enforce
exactly that based on the age of messages themselves. This is where message expira-
tion policies come into play.
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Pulsar supports namespace-level time-to-live (T'TL) policies that allow you to have
messages automatically deleted if they remain unacknowledged after a certain period of
time. Message expiration is useful in situations where it is more important for the appli-
cation consuming the data to be working with more recent data, rather than a complete
history. One such example would be driver location data being displayed for users of a
ride-sharing application while their driver is en route. The customer is more interested
in the most recent location of the driver than they are in where the driver was five min-
utes ago. Therefore, driver location information that is older than five minutes would
no longer be relevant and should be purged to allow the consumers to process only the
more recent data, rather than trying to process messages that are no longer useful.

Listing 2.5 Setting backlog quota and message expiration policies

./bin/pulsar-admin namespaces set-backlog-quota E-payments/payments \
--limit 2G
--policy producer request-hold o

./bin/pulsar-admin namespaces set-message-ttl E-payments/payments \
--messageTTL 120

© Definesa backlog quota with a size limit of 2 GB and producer_request_hold policy
@ Sets the message TTL to 120 seconds

A namespace can have both a backlog quota and a TTL policy associated with it to
provide even finer control over the retention of unacknowledged messages stored
inside a Pulsar topic, as shown in listing 2.5.

Message backlog vs. message expiration

Message retention and message expiration solve two fundamentally different prob-
lems. As you can see in figure 2.18, message retention policies only apply to acknowl-
edged messages, and those messages that fall within the retention policy are retained.
Message expiration only applies to unacknowledged messages and is controlled by the
TTL setting, meaning any messages that are not processed and acked within that time-
frame are discarded and not processed.

Backlog quota applies Retention policy applies
,,,,,,,,,,,,,,,,,,,,,,,,, S R G
: ) o v Within retention Outside of '
Outside the TTL Within the TTL policy retention policy
e e e e
8 hNS ARINS NS Rl
(1) (1) (1) (x2] || (1] (0] () (s ] () (« ] B W) D @D (@D
Will be deleted Retained Not yet deleted. Can be Will be deleted

accessed by readers.
Un-acked messages Acked messages
Figure 2.18 The backlog quota applies to messages that have not been acknowledged by all

subscriptions and is based on the TTL setting, while the retention policy applies to acknowledged
messages and is based on the volume of data to retain.
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Message retention policies can be used in conjunction with tiered storage to support
infinite message retention for critical datasets you want to retain indefinitely for
backup/recovery, event sourcing, or SQL exploration.

Tiered storage

Pulsar’s tiered storage feature allows older topic data to be offloaded to more cost-
effective long-term storage, thereby freeing up disk space inside of the bookies. To the
end user, there is no difference between consuming a topic whose data is stored inside
Apache BookKeeper or one whose data is on tiered storage. The clients still produce
and consume messages in the same way, and the entire process is handled transpar-
ently behind the scenes.

As we discussed earlier, Apache Pulsar stores topics as an ordered list of ledgers that
are spread across the bookies in the storage layer. Because these ledgers are append-
only, new messages are only written to the final ledger in the list. All the previous led-
gers are sealed, so the data within the segment is immutable. Because the data is
immutable, it can be easily be copied to another storage system, such as cloud storage.
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Figure 2.19 When using tiered storage, ledgers that have been closed can be copied over to cloud
storage and removed from the bookies to free up space. The managed ledger entries are updated to
reflect the new location of the ledgers, which can still be read by the topic consumers.

Once the copy is complete, the managed ledger information can be updated to reflect
the new storage location of the data, as shown in figure 2.19, and the original copy of
the data stored in Apache BookKeeper can be deleted. When a ledger is offloaded to
an external storage system, the ledgers are copied to that storage system one by one,
from oldest to newest.
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Apache Pulsar currently supports multiple cloud storage systems for tiered storage,
but I will focus on using AWS in this section. Please consult the documentation for
more details on how to use other cloud vendors’ storage systems.

AWS OFFLOAD CONFIGURATION

The first steps you need to perform are to create the S3 bucket you will be using to
store the offloaded ledgers and to ensure that the AWS account you are going to use
has sufficient permissions to read and write data to the bucket. Once those are com-
pleted, you will need to modify the broker configuration settings again, as shown in
the following listing.

Listing 2.6 Configuring AWS tiered storage in Pulsar

managedLedgerOffloadDriver=aws-s3
s3ManagedLedgerOffloadBucket=offload-test-aws
s3ManagedLedgerOffloadRegion=us-east-1
s3ManagedLedgerOffloadRole=<aws role arn>
s3ManagedLedgerOffloadRoleSessionName=pulsar-s3-offload

Specifies the offload driver type as AWS $3

The $3 bucket name used for ledger storage

The AWS Region where the bucket is located

If you want the offloader to assume an IAM role to perform its work, use this property.
Specify the session name to use when assuming an IAM role.

00000

You will need to add the AWS-specific settings to tell the Pulsar where to store the led-
gers inside of S3. Once these settings are added, you can save the file and restart the
Pulsar brokers for the changes to take effect.

AWS AUTHENTICATION

For Pulsar to offload data to S3, it must authenticate with AWS using a valid set of cre-
dentials. As you may have already noticed, Pulsar doesn’t provide any means of config-
uring authentication for AWS. Instead, it relies on the standard mechanisms
supported by the DefaultAWSCredentialsProviderChain, which searches for AWS
credentials in various predefined locations.

If you are running your broker on an AWS instance with an instance profile that
provides credentials, Pulsar will use these credentials if no other mechanism is pro-
vided. Alternatively, you can provide your credentials via environment variables. The
easiest way to do this is to edit the conf/pulsar_env.sh file and export the environment
variables AWS_ACCESS_KEY_ID and AWS_SECRET ACCESS_KEY by adding the statements
shown in the following listing.

Listing 2.7 Providing AWS credentials via environment variables

# Add these at the beginning of the pulsar env.sh
export AWS ACCESS_KEY ID=ABC123456789
export AWS SECRET_ACCESS_ KEY=ded7db27a4558e2ea8bbf0bf37ae0e8521618f366¢C



66

CHAPTER 2  Pulsar concepts and architecture

# or you can set them here instead.

PULSAR EXTRA OPTS="${PULSAR EXTRA OPTS} ${PULSAR MEM} ${PULSAR GC}
-Daws .accessKeyId=ABC123456789
-Daws.secretKey=ded7db27a4558e2ea8bbf0bf37ae0e8521618£f366¢C
-Dio.netty.leakDetectionLevel=disabled
-Dio.netty.recycler.maxCapacity.default=1000
-Dio.netty.recycler.linkCapacity=1024"

You only need to use one of the two methods shown in listing 2.7. Both options work
equally well, so you can take your pick. However, both methods pose a security risk, as
these AWS credentials will be visible in the process if you run a linux ps command. If
you would prefer to avoid that scenario, you can store your credentials in the tradi-
tional location for AWS credentials files, ~/.aws/credentials (shown in listing 2.8),
which can be modified to have read-only permissions for the user account that will be
launching the Pulsar broker (e.g., root). However, this approach does require you to
store your unencrypted credentials on disk, which introduces some security risks, so it
is not recommend for production use.

Listing 2.8 Contents of the ~/.aws/credentials file

[default]
aws_access_key 1d=ABC123456789
aws_secret_access_key=ded7db27a4558e2ea8bbf0bf37ae0e8521618£f366cC

CONFIGURING OFFLOAD TO RUN AUTOMATICALLY

Simply because we have configured the managed ledger offloader does not mean that
the offloading will occur. We still need to define a namespace-level policy to have the
data offloaded automatically once a certain threshold is reached. The threshold is
based on the total volume of data that a Pulsar topic has stored in the BookKeeper
storage layer.

Listing 2.9 Configuring automatic offloads to tiered storage

/pulsar/bin/pulsar-admin namespaces set-offload-threshold \
-size 10GB \
E-payments/payments

You can define a policy such as the one shown in listing 2.9, which sets a threshold of
10 GB for all topics in the namespace. Once a topic reaches 10 GB of storage, an off-
load of all closed segments is triggered. Setting the threshold to zero will cause the
broker to offload ledgers as aggressively as it can and can be used to minimize the
amount of topic data stored on BookKeeper. Specifying a negative value for the
threshold effectively disables automatic offloading entirely and can be used for topics
with tight SLA response times that cannot tolerate the additional latency required to
read data from tiered storage.
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Tiered storage should be used when you have a topic for which you want to retain
the data for a very long time. One example would be clickstream data for a customer-
facing website. This information should be retained for a long period of time in case
you want to perform user behavioral analytics on your customer's interactions in
order to detect patterns of behavior.

While tiered storage is often used in conjunction with topics that have retention
policies that encompass enormous amounts of data, there is no such requirement. It
can, in fact, be used with any topic.

Summary
We discussed the logical structure of Pulsar’s address space in order to support
multitenancy.

We discussed the difference between message retention and message expiration
in Pulsar.

We discussed the low-level details of how Pulsar stores and serves messages.



Interacting with Pulsar

This chapter covers

Running a local instance of Pulsar on your
development machine

Administering a Pulsar cluster using its command-
line tools

Interacting with Pulsar using the Java, Python, and
Go client libraries

Troubleshooting Pulsar with its command-line tools

Now that we have covered the overall architecture and terminology of Apache Pul-
sar, let’s start using it. For local development and testing, I recommend running
Pulsar inside a Docker container on your own machine, which provides an easy way
to get started with Pulsar with a minimal amount of time, effort, and money. For
those of you who would prefer to use a full-size Pulsar cluster, you can refer to
appendix A for more details on how to install and run one inside a containerized
environment, such as Kubernetes. In this chapter, I will walk you through the pro-
cess of sending and receiving messages programmatically using the Java API, start-
ing with the process of creating a Pulsar namespace and topic using Pulsar’s
administrative tools.

68
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Getting started with Pulsar

For the purposes of local development and testing, you can run Pulsar on your devel-
opment machine within a Docker container. If you don’t already have Docker
installed, you should download the community edition (https://www.docker.com/
community-edition) and follow the instructions for your operating system. For those
of you unfamiliar with Docker, it is an open source project for automating the deploy-
ment of applications as portable, self-contained images that can be run from a single
command. Each Docker image bundles all the separate software components neces-
sary to run an entire application together into a single deployment. For example, the
Docker image for a simple web application would include the web server, database,
and application code—in short, everything the application needs to run. Similarly,
there is an existing Docker image that includes a Pulsar broker as well as the necessary
ZooKeeper and BookKeeper components.

Software developers can create Docker images and publish them to a central
repository known as Docker Hub. You can specify a tag when uploading an image that
uniquely identifies it. This allows people to quickly locate and download the desired
version of the image to their development machines.

To start the Pulsar Docker container, simply execute the command shown in listing
3.1, which will download the container image and start all the necessary components.
Note that we have specified a pair of ports (6650 and 8080) that will be exposed on
your local machine. You will use these ports to interact with the Pulsar cluster later in
the chapter.

Listing 3.1 Running Pulsar on your desktop

docker pull apachepulsar/pulsar-standalone

docker run -d \
-p 6650:6650 -p 8080:8080 \
-v $PWD/data:/pulsar/data \
--name pulsar \
apachepulsar/pulsar-standalone

o0 ©

Pull down the latest version from DockerHub.
Configure port forwarding for these ports.
Retain the data on a local drive.

Specify the name of the container.

The tag for the standalone image

If Pulsar has successfully started, you should be able to locate INFO-level messages in
the log file of the Pulsar container indicating that the messaging service is ready, like
those shown in the following listing. You can access the Docker log files via the docker
log command, which allows you to locate any issues if your container fails to start.


https://www.docker.com/community-edition
https://www.docker.com/community-edition
https://www.docker.com/community-edition
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Listing 3.2 Verifying that the Pulsar cluster is running

$docker logs pulsar | grep "messaging service is ready"

20:11:45.834 [main] INFO org.apache.pulsar.broker.PulsarService -
messaging service is ready
20:11:45.855 [main] INFO org.apache.pulsar.broker.PulsarService -

messaging service is ready, bootstrap service port = 8080,
broker url= pulsar://localhost:6650, cluster=standalone

These log messages indicate that the Pulsar broker is up and running and accepting
connections on port 6650 of your local development machine. Therefore, all the code
examples in this chapter will use the pulsar://localhost:6650 URL to send and
receive data from the Pulsar broker.

Administering Pulsar

Pulsar provides a single administrative layer that allows you to administer the entire
Pulsar instance, including all the subclusters, from a single endpoint. Pulsar’s admin
layer controls authentication and authorization for all tenants, resource isolation poli-
cies, storage quotas, and more, as shown in figure 3.1.
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ZXPULSAR =
pulsar-admin CLI Java API

Tiered storage Authentication
pub/sub permissions Backlog quotas authorization
subscriptions message TTL geo-replication
statistics pub/sub permissions isolation policy
l storage quotas
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store

EUROPE
cluster
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cluster Figure 3.1
Administrative

view of Pulsar

This administrative interface allows you to create and manage all the various entities
within a Pulsar cluster, such as tenants, namespaces, and topics, and configure their
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various security and data retention policies. Users can interact with this administrative
interface via the pulsar-admin command-line interface tool or programmatically via a
Java API, as shown in figure 3.1

When you start a local standalone cluster, Pulsar automatically creates a public
tenant with a namespace named default that can be used for development purposes.
However, this is not a realistic production scenario, so I will demonstrate how to create
a tenant and namespace.

Creating a tenant, namespace, and topic

Pulsar provides a command-line interface (CLI) tool called pulsar-admin inside the
bin folder of your Pulsar installation, which in our case is inside the Docker container.
Therefore, to use this command line tool, you must execute the command inside the
running Docker container. Fortunately, Docker provides a method for doing just that
via its docker exec command. Just like the name implies, this command executes the
given statement inside the container itself, rather than on your local machine. You
can start using the pulsar-admin CLI by issuing the sequence of commands shown in
the listing that follows to create a topic named persistent://manning/chapter03/
example-topic that we will use in throughout the chapter.

Listing 3.3 pulsar-admin commands

docker exec -it pulsar /pulsar/bin/pulsar-admin clusters list o
"standalone"

docker exec -it pulsar /pulsar/bin/pulsar-admin tenants list
"public"
"sample"

docker exec -it pulsar /pulsar/bin/pulsar-admin tenants create manning 9

docker exec -it pulsar /pulsar/bin/pulsar-admin tenants list o
"manning"
"public"
"sample"

docker exec -it pulsar /pulsar/bin/pulsar-admin namespaces o
create manning/chapter03

docker exec -it pulsar /pulsar/bin/pulsar-admin namespaces list manning
"manning/chapter03" 0

docker exec -it pulsar /pulsar/bin/pulsar-admin topics create
persistent://manning/chapter03/example-topic o

docker exec -it pulsar /pulsar/bin/pulsar-admin topics list manning/chaptero_“se
"persistent://manning/chapter03/example-topic"

@ List all the clusters in the Pulsar instance.
@ List all the tenants in the Pulsar instance.
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Create a new tenant named manning.

Confirm that the new tenant was created.

Create a new namespace named chapter03 under the manning tenant
List the namespaces under the manning tenant.

Create a new topic.

©00000

List the topic inside the manning/chapter03 namespace.

These commands barely scratch the surface of what you can do with the pulsar-
admin tool, and I highly recommend that you refer to the online documentation
(https://pulsar.apache.org/docs/en/pulsar-admin) for additional details on the CLI
tool and all of its features. We will revisit the pulsar-admin CLI tool later in the chap-
ter to retrieve some performance metrics from the cluster after we have published
some messages.

Java Admin API

Another way in which you can administer the Pulsar Instance is via the Java Admin
API, which provides a programmable interface for performing administrative tasks.
Listing 3.4 shows how to create the persistent://manning/chapter03/example-
topic topic using the Java API. This API provides an alternative to the CLI tool and is
particularly useful inside of unit tests when you want to create and tear down the nec-
essary Pulsar topics programmatically, rather than relying on an external tool.

Listing 3.4 Using the Java admin API

import org.apache.pulsar.client.admin.PulsarAdmin;
import org.apache.pulsar.common.policies.data.TenantInfo;

public class CreateTopic {
public static void main(String[] args) throws Exception {
PulsarAdmin admin = PulsarAdmin.builder ()
.serviceHttpUrl ("http://localhost:8080")
Lbuild() ;

TenantInfo config = new TenantInfo(
Stream.of ("admin") .collect (
Collectors.toCollection (HashSet: :new)),
Stream.of ("standalone") .collect (
Collectors.toCollection (HashSet: :new))) ;

admin.tenants () .createTenant ("manning", config) ;
admin.namespaces () .createNamespace ("manning/chapter03") ;
admin.topics () .createNonPartitionedTopic (

© 00 © 0O

"persistent://manning/chapter03/example-topic") ;

}

@ Create an admin client for the Pulsar cluster running inside Docker.
(2] Specify the admin roles for the tenant.
(3) Specify the clusters that the tenant can operate on.
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O Create the tenant.
© Create the namespace.
@ Create the topic.

Pulsar clients

Pulsar provides a CLI tool called pulsar-client that allows you to send and receive mes-
sages from a topic in a running Pulsar cluster. This tool also resides inside the bin
folder of your Pulsar installation, and thus, we will need to use the docker exec com-
mand again to interact with this tool.

Since the topic has already been created, we can start by first attaching a consumer
to it, which will establish a subscription and ensure that no messages are lost. This can
be accomplished by running the command shown in the following listing. The con-
sumer is a blocking script, meaning it will keep consuming messages from the topic until
the script is stopped by you (with Ctrl+C).

Listing 3.5 Starting a command-line consumer

$ docker exec -it pulsar /pulsar/bin/pulsar-client consume \

persistent://manning/chapter03/example-topic \ ‘)
--num-messages 0 \ 0
--subscription-name example-sub \ G,
--subscription-type Exclusive ¢)

INFO org.apache.pulsar.client.impl.ConnectionPool - [[id: 0xe410£f£77d,
L:/127.0.0.1:39276 - R:localhost/127.0.0.1:6650]] Connected to server
18:08:15.819 [pulsar-client-io-1-1] INFO
org.apache.pulsar.client.impl.ConsumerStatsRecorderImpl - Starting Pulsar
consumer perf with config: ({
"topicNames" : [ ],
"topicsPattern" : null,
"subscriptionName" : "example-sub", (’
"subscriptionType" : "Exclusive", ‘D
"receiverQueueSize" : 1000,
"acknowledgement sGroupTimeMicros"™ : 100000,
"negativeAckRedeliveryDelayMicros" : 60000000,
"maxTotalReceiverQueueSizeAcrossPartitions" : 50000,
"consumerName" : "3d7ce",
"ackTimeoutMillis" : O,
"tickDurationMillis"™ : 1000,
"priorityLevel" : 0,
"cryptoFailureAction" : "FAIL",
"properties" : { },
"readCompacted" : false,
"subscriptionInitialPosition" : "Latest", ‘)
"patternAutoDiscoveryPeriod" : 1,
"regexSubscriptionMode" : "PersistentOnly",
"deadLetterPolicy" : null,
"autoUpdatePartitions" : true,
"replicateSubscriptionState" : false,
"resetIncludeHead" : false
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[y
oo

:08:15.980 [pulsar-client-io-1-1] INFO
org.apache.pulsar.client.impl.MultiTopicsConsumerImpl -
[persistent://manning/chapter02/example] [example-sub] Success
subscribe new topic persistent://manning/chapter02/example in topics
consumer, partitions: 2, allTopicPartitionsNumber: 2

:08:47.644 [pulsar-client-io-1-1] INFO
com.scurrilous.circe.checksum.Crc32cIntChecksum - SSE4.2 CRC32C
provider initialized

A XN

=
[oo)

The name of the topic we are consuming from

The number of messages to consume; 0 means consume forever.

The unique name of the subscription

The type of subscription

Consumer configuration details

You can see the subscription name we specified on the command line.
You can see the subscription type we specified on the command line.
Start consuming from the latest available message.

0000000 11§

In a different shell, we will start a producer by issuing the command shown in the fol-
lowing listing to send two messages containing the text “Hello Pulsar” to the same
topic we just started the consumer on.

Listing 3.6 Sending a message using the Pulsar command-line producer

$ docker exec -it pulsar /pulsar/bin/pulsar-client produce \
persistent://manning/chapter03/example-topic \

--num-produce 2 \ t’
--messages "Hello Pulsar" G’
18:08:47.106 [pulsar-client-io-1-1] INFO

W» org.apache.pulsar.client.impl.ConnectionPool - [[id: 0xd47ac4ea,

W 1,:/127.0.0.1:39342 - R:localhost/127.0.0.1:6650]] Connected to server
8:08:47.367 [pulsar-client-io-1-1] INFO
> org.apache.pulsar.client.impl.ProducerStatsRecorderImpl - Starting
= Pulsar producer perf with config: ({

"topicName" : "persistent://manning/chapter02/example",

"producerName" : null,

"sendTimeoutMs" : 30000,

"blockIfQueueFull" : false,

"maxPendingMessages" : 1000,

"maxPendingMessagesAcrossPartitions" : 50000,

"messageRoutingMode" : "RoundRobinPartition",

"hashingScheme" : "JavaStringHash",

"cryptoFailureAction" : "FAIL",

"batchingMaxPublishDelayMicros" : 1000,

"batchingMaxMessages" : 1000,

"batchingEnabled" : true,

"compressionType" : "NONE",

"initialSequenceId" : null,

"autoUpdatePartitions" : true,

"properties" : { }

[y
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18:08:47.689 [main] INFO org.apache.pulsar.client.cli.PulsarClientTool - 2
messages successfully produced

The name of the topic we are publishing to
The number of times to send the message
The message contents

Producer configuration details

00000

The publishing of the messages

After executing the producer command in listing 3.6, you should see something like
the code in the following listing inside the shell where you started the consumer. This
indicates that the messages were successfully published by the producer and received
by the consumer.

Listing 3.7 Receipt of messages in consumer shell

————— got message -----

key: [null], properties:[], content:Hello Pulsar
————— got message -----
key: [null], properties:[], content:Hello Pulsar

Congratulations, you have just successfully sent your first messages using Pulsar! Now
that we have confirmed that our local Pulsar cluster is working and capable of sending
and receiving messages, let’s look at some more realistic examples, using various pro-
gramming languages. Pulsar provides a simple and intuitive client API that encapsu-
lates all the broker—client communication details from the user. Due to the popularity
of Pulsar, there are several language-specific implementations of this client, including
Java, Go, Python, and C++, just to name a few. This allows each team in your organiza-
tion to use whatever language they like to implement their services.

While there are significant discrepancies in the features supported by the official
Pulsar client libraries based on the programming language you chose (please refer to
the official client documentation for details), under the covers they all support trans-
parent reconnection and/or connection failover to brokers, queuing of messages
until acknowledged by the broker, and heuristics, such as connection retries with
backoff. This allows the developer to focus on the messaging logic, rather than having
to handle connection exceptions in their application code.

The Pulsar Java client

In addition to the Java Admin API we looked at earlier in the chapter, Pulsar also pro-
vides a Java client that can be used to create producers, consumers, and message read-
ers. The latest version of the Pulsar Java client library is available in the Maven central
repository. To use the latest version, simply add the Pulsar client library to your build
configuration, as shown in the next listing. Once you have added the Pulsar client
library to your project, you can start using it to interact with Pulsar by creating clients,
producers, and consumers inside your Java code, as we’ll see in the next section.
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Listing 3.8 Adding the Pulsar client library to your Maven project

<!-— Inside your pom.xml -->

<propertiess
<pulsar.version>2.7.2</pulsar.version>

</propertiess>

<dependency>

<groupld>org.apache.pulsar</groupId>

<artifactIdspulsar-client</artifactIds>

<versions>${pulsar.version}</versions
</dependency>

PULSAR CLIENT CONFIGURATION IN JAVA

When an application wants to create either a producer or a consumer, you first need
to instantiate a PulsarClient object, using code like that shown in the following listing.
In this object, you will provide the URL of the Pulsar broker along with any other con-
nection configuration information that may be required, such as security credentials.

Listing 3.9 Creating a PulsarClient in Java

PulsarClient client = PulsarClient.builder ()
.serviceUrl ("pulsar://localhost:6650") "
.build() ;

@ The connection URL to the Pulsar broker

The PulsarClient object handles all the low-level details involved in creating a connec-
tion to the Pulsar broker, including automatic retries and connection security if the
Pulsar broker has TLS configured. Client instances are thread safe and can be reused
for creating and managing multiple producers and consumers.

PULSAR PRODUCERS IN JAVA

In Pulsar, producers are used to write messages to topics. Listing 3.10 shows how you
can create a producer in Java by specifying the name of the topic you are going to
send messages to. While there are several configuration settings that can be used
when creating a producer, all that is required is the topic name itself.

Listing 3.10 Creating a Pulsar producer in Java

Producer<byte[] > producer = client.newProducer ()
.topic ("persistent://manning/chapter03/example-topic")
.create() ;

It is also possible to attach metadata to a given message, as shown in listing 3.11, which
shows how to specify the message key that is used for routing with a key-shared
subscription, along with some message properties. This capability can be used to tag
the message with useful information, such as when the message was sent, who sent the
message, the device ID if the message is from an embedded sensor, and other
information.
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Listing 3.11 Specifying metadata in Pulsar messages

Producer<byte[] > producer = client.newProducer ()
.topic("persistent://manning/chapter03/example-topic")
.create () ;

producer.newMessage ()
.key ("tempurture-readings")
.value ("98.0".getBytes())

o0

.property ("deviceID", "1234")
.property ("timestamp", "08/03/2021 14:48:24.1")
.send () ;

@ You can specify a message key.
@ Send the message content as a byte array.
© You can attach as many properties as you like.

The metadata values you attach to the message will be available to the message con-
sumers who can then use that information when performing their processing logic.
For example, a property containing a timestamp value that represents when the mes-
sage was sent could be used to sort the incoming messages into chronological order of
occurrence or to correlate it with messages from another topic.

PULSAR CONSUMERS IN JAVA

In Pulsar, the consumer interface is used to listen on a specific topic and process the
incoming messages. After a message has been successfully processed, an acknowledg-
ment should be sent back to the broker to indicate that we are done processing the
message within the subscription. This allows the broker to know which message in the
topic needs to be delivered to the next consumer on the subscription. In Java, you can
create a consumer by specifying a topic and a subscription, as shown in the following
listing.

Listing 3.12 Creating a Pulsar consumer in Java

Consumer consumer = client.newConsumer ()

.topic("persistent://manning/chapter03/example-topic") ‘)
.subscriptionName ("my-subscription") e’
.subscribe () ;

© Specify the topic you want to consume from.
@ You must specify the unique name of your subscription.

The subscribe method will attempt to connect the consumer to the topic using the
specified subscription, which may fail if the subscription already exists and isn’t one of
the shared subscription types (e.g., you attempt to connect to an exclusive subscrip-
tion that already has an active consumer). If you are connecting to the topic for the
first time using the specified subscription name, a subscription is created for you auto-
matically. Whenever a new subscription is created, it is initially positioned at the end
of the topic by default, and consumers on that subscription will begin reading the first
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message created after the subscription was created. If you are connecting to a preexist-
ing subscription, it will begin reading from the earliest unacknowledged message
within the subscription, as shown in figure 3.2. This ensures that you pick up from
where you left off in the event that your consumer is unexpectedly disconnected from
the topic.

Acknowledged
messages

Subscription (—Jﬁ
(2) (1)) ] ] (D] @B EEE

Begins reading after
most recently acked ——
message

Figure 3.2 The consumer starts reading messages immediately after the most recently
acknowledged message in the subscription. If the subscription is new, then it starts
reading the messages that are added to the topic after the subscription was created.

One common consumption pattern is to have the consumer listen on the topic inside
a while loop. In listing 3.13, the consumer continuously listens for messages, prints
the contents of any message that’s received, and then acknowledges that the message
has been processed. If the processing logic fails, we use negative acknowledgement to
have the message redelivered at a later point in time.

Listing 3.13 Consuming Pulsar messages in Java

while (true) ({
// Wait for a message

Message msg = consumer.receive () ; o
try {
System.out.println("Message received: " +

new String(msg.getDatal()));
consumer.acknowledge (msg) ;
catch (Exception e) ({
consumer .negativeAcknowledge (msg) ;

oo

Wait for a message.
Process the message.
Acknowledge the message so it can be deleted by the broker.

o000 ~

Mark the message for redelivery.

The message consumer shown in listing 3.13 processes the messages in a synchronous
manner because the receive () method it is using to retrieve messages is a blocking
method (i.e., it waits indefinitely for a new message to arrive). While this might be fine
for some use cases where the message volume is low, or we are not concerned about
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the latency between when a message is published and when it is processed, generally
synchronous processing is not the best approach. A better approach is to process
these messages in an asynchronous manner, which relies on the MessageListener
interface provided by the Java API, as shown in the following listing.

Listing 3.14 Asynchronous message processing in Java

package com.manning.pulsar.chapter3.consumers;

import java.util.stream.IntStream;

import org.apache.pulsar.client.api.ConsumerBuilder;
import org.apache.pulsar.client.api.PulsarClient;

import org.apache.pulsar.client.api.PulsarClientException;
import org.apache.pulsar.client.api.SubscriptionType;

public class MessageListenerExample {

public static void main() throws PulsarClientException {

PulsarClient client = PulsarClient.builder () ‘)
.serviceUrl (PULSAR SERVICE_ URL)
.build() ;

ConsumerBuilder<byte[]> consumerBuilder = t)

client .newConsumer ()
.topic (MY TOPIC)
.subscriptionName (SUBSCRIPTION)
.subscriptionType (SubscriptionType.Shared)

.messagelistener ( (consumer, msg) -> { G’
try {
System.out.println("Message received: " +

new String(msg.getData()));
consumer.acknowledge (msg) ;
} catch (PulsarClientException e) {

1
3]
IntStream.range (0, 4).forEach(i -> { ‘)
String name = String.format ("mg-consumer-%d", 1i);
try
consumerBuilder
.consumerName (name)
.subscribe () ; 0

} catch (PulsarClientException e) {
e.printStackTrace() ;

I3
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The Pulsar client used to connect to Pulsar

The consumer factory that will be used to create the consumer instances later

The business logic to execute when a message is received

Create five consumers on the topic, each with the same MessageListener implementation.

00009

Connects the consumer to the topic to start receiving messages

When using the MessageListener interface, as shown in listing 3.14, you pass in the
code that you want executed whenever a message is received. In this case I used a Java
Lambda to provide the code inline, and you can see that I still have access to the con-
sumer that I can use to acknowledge the message. Using the listener pattern allows you
to separate the business logic from the management of the threads because the Pulsar
consumer automatically creates a thread pool for running the MessagelListeners
instances and handles all the threading logic for you. Putting this all together, we have
a Java program in the following listing that instantiates a Pulsar client and uses it to cre-
ate a producer and a consumer that exchange messages over the my-topic topic.

Listing 3.15 Endless Pulsar producer and consumer pair

import org.apache.pulsar.client.api.Consumer;

import org.apache.pulsar.client.api.Message;

import org.apache.pulsar.client.api.Producer;

import org.apache.pulsar.client.api.PulsarClient;

import org.apache.pulsar.client.api.PulsarClientException;

public class BackAndForth {

public static void main(String[] args) throws Exception {
BackAndForth sl = new BackAndForth() ;
sl.startConsumer () ;
sl.startProducer () ;

}

private String serviceUrl = "pulsar://localhost:6650";
String topic = "persistent://manning/chapter03/example-topic";;
String subscriptionName = "my-sub";
protected void startProducer () {
Runnable run = () -> {
int counter = 0;
while (true)
try {

getProducer () .newMessage ()
.value (String.format ("{id: %d, time: %tc}",
++counter, new Date()) .getBytes())
.send () ;
Thread.sleep(1000) ;
} catch (final Exception ex) { }
1

new Thread (run) .start () ;

}

protected void startConsumer () {
Runnable run = () -> {
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while (true) ({
Message<byte[]> msg = null;
try {
msg = getConsumer () .receive () ;
System.out.printf ("Message received: %s \n",
new String(msg.getData()));
getConsumer () .acknowledge (msg) ;
} catch (Exception e) {
System.err.printf (
"Unable to consume message: %s \n", e.getMessage());
consumer.negativeAcknowledge (msg) ;
}
Yhi

new Thread (run) .start () ;

}

protected Consumer<byte[]> getConsumer () throws PulsarClientException {
if (consumer == null) {
consumer = getClient () .newConsumer ()
.topic(topic)
.subscriptionName (subscriptionName)
.subscriptionType (SubscriptionType.Shared)
.subscribe () ;

}

return consumer;

}

protected Producer<bytel[]l> getProducer () throws PulsarClientException {
if (producer == null) {
producer = getClient () .newProducer ()
.topic(topic) .create() ;

}

return producer;

}

protected PulsarClient getClient () throws PulsarClientException {
if (client == null)
client = PulsarClient.builder ()
.serviceUrl (serviceUrl)
.build() ;

}

return client;

}
}
As you can see, this code creates both a producer and consumer on the same topic
and runs them simultaneously in separate threads. If you run this code, you should

see output like the following listing.

Listing 3.16 Endless Pulsar producer and consumer pair output

Message received: {id: 1, time: Sun Sep 06 16:24:04 PDT 2020}
Message received: {id: 2, time: Sun Sep 06 16:24:05 PDT 2020}
Message received: {id: 3, time: Sun Sep 06 16:24:06 PDT 2020}
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Notice how the first two messages we sent earlier are not included in the output, since
the subscription was created after those messages were published. This is in direct con-
trast to the Reader interface, which we will examine shortly.

DEAD LETTER POLICY
While there are several configuration options for a Pulsar consumer that are
described in the online documentation (https://pulsar.apache.org/docs/en/client-
libraries-java/#configure-consumer), I wanted to highlight the dead-letter-policy con-
figuration, which is useful when you encounter messages that cannot be processed
successfully, such as when you are parsing unstructured messages from a topic. Under
normal processing conditions, these messages would cause an exception to be thrown.
At this point you have a couple of options; the first is to trap any exceptions, and
simply acknowledge these messages as successfully processed, which effectively
ignores them. Another option is to have them redelivered by negatively acknowledg-
ing them. However, this approach might result in an infinite redelivery loop for these
messages if the underlying issue with the messages cannot be resolved (e.g., a message
that cannot be parsed will always throw an exception no matter how many times you
process it). A third option is to route these problematic messages to a separate topic,
known as a dead-letter topic. This allows you to avoid the infinite redelivery loop,
while retaining the messages for further processing and/or examination at a later
point in time.

Listing 3.17 Configure the dead letter topic policy on a consumer

Consumer consumer = client.newConsumer ()
.topic ("persistent://manning/chapter03/example-topic")
.subscriptionName ("my-subscription")
.deadLetterPolicy (DeadLetterPolicy.builder ()

.maxRedeliverCount (10) o
.deadLetterTopic ("persistent://manning/chapter03/my-dlg”)) 0
.subscribe () ;

© set the max redelivery count.
@ set the dead-letter topic name.

To configure a dead-letter policy for a particular consumer, Pulsar requires you to
specify a few properties, such as the max redelivery count, when you first build it, as
shown in listing 3.17. When a message exceeds the user-specified maximum redelivery
count, it will be sent to the dead-letter topic and acknowledged automatically. These
messages can then be examined at a later point in time.

PULSAR READERS IN JAVA

The reader interface allows applications to manage the positions from which they will
consume messages. When you connect to a topic using a reader, you must specify which
message the reader will begin consuming messages from when it connects to the topic.
In short, the reader interface provides Pulsar clients with a low-level abstraction that
allows them to manually position themselves within a topic, as shown in figure 3.3.
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Figure 3.3 When connecting to a topic, the reader interface enables you to begin with the
earliest available message, the latest available message, or an application provided message ID.

The reader interface is helpful for use cases like using Pulsar to provide effectively-
once processing semantics for a stream processing system. For this use case, it’s essen-
tial that the stream processing system is able to rewind topics to a specific message and
begin reading there. If you choose to explicitly provide a message ID, your application
will be responsible for knowing this message ID in advance, perhaps fetching it from a
persistent data store or cache. Once you’ve instantiated a PulsarClient object, you can
create a Reader, as shown in the following listing.

Listing 3.18 Creating a Pulsar reader

Reader<byte[] > reader = client.newReader ()

.topic ("persistent://manning/chapter03/example-topic") o
.readerName ("my-reader")

.startMessageId (MessageId.earliest) 0
.create() ;

while (true) ({
Message msg = reader.readNext () ;
System.out.printf ("Message received: %s \n", new String(msg.getData()));

}

@ Specify the topic you want to read from.
@ Specify that we want to read from the earliest message.

If you run this code, you should see output like the following listing. You would start
reading from the very first messages that were published to the topic, which were the
two “Hello Pulsar” messages we send from the CLI tool.

Listing 3.19 Earliest message reader output

Message read: Hello Pulsar

Message read: Hello Pulsar

Message read: {id: 1, time: Sun Sep 06 18:11:59 PDT 2020}
Message read: {id: 2, time: Sun Sep 06 18:12:00 PDT 2020}
Message read: {id: 3, time: Sun Sep 06 18:12:01 PDT 2020}
Message read: {id: 4, time: Sun Sep 06 18:12:02 PDT 2020}
Message read: {id: 5, time: Sun Sep 06 18:12:04 PDT 2020}
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Message read: {id: 6, time: Sun Sep 06 18:12:05 PDT 2020}
Message read: {id: 7, time: Sun Sep 06 18:12:06 PDT 2020}

In the example shown in listing 3.18, a reader is created on the specified topic and iter-
ates over each message in the topic, starting with the oldest message in the topic. There
are several configuration options for a Pulsar reader that are described in the online
documentation  (https://pulsar.apache.org/docs/en/clientlibraries-java/#reader),
but for most cases the default options are sufficient.

The Pulsar Python client

There is also an officially supported Pulsar client for the Python programming lan-
guage. The latest version of the Pulsar client library can be easily installed using the
pip package manager with the commands shown in the following listing.

Listing 3.20 Creating a Pulsar producer in Python

pip3 install pulsar-client==2.6.3 -user ‘)
pip3 list 0
Package Version

pulsar-client 2.6.3 G’

o Install the Pulsar client.
@ List all the packages.
© Confirm that the correct version of the Pulsar client has been installed.

Since Python 2.7 has already passed its official end of life, I decided to use Python 3
for all the examples throughout the chapter. Once you have installed the Pulsar client
libraries, you can start using them to interact with Pulsar by creating producers and
consumers inside your Python code.

PULSAR PRODUCERS IN PYTHON

When a Python application wants to create either a producer or a consumer, you first
need to instantiate a client object, using code like that shown in listing 3.21, where
you provide the URL of the Pulsar broker. As was the case for Java-based clients, the
Python client object handles all the low-level details involved in creating a connection
to the Pulsar broker, including automatic retries and connection security if the Pulsar
broker has TLS configured. Client instances are thread safe and can be reused for
managing multiple producers and consumers.

Listing 3.21 Creating a Pulsar producer in Python

import pulsar

client = pulsar.Client ('pulsar://localhost:6650") ‘)
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producer = client.create producer (
'persistent://public/default/my-topic!',
block_if queue_full=True,
batching enabled=True,
batching max publish delay ms=10)

for i in range(10) :
producer.send(('Hello-%d' % i) .encode('utf-8'),
properties=None)

o O

client.close () ‘3

Create a Pulsar client by providing the connection URL to the Pulsar broker.
Use the Pulsar client to create a producer.

Send the message contents.

You can attach properties to a message if you want.

00000

Close the client.

As you can see from listing 3.21, the Python library provides several different configu-
ration options when you create your clients, producers, and consumers, so you should
view the available online documentation (https://pulsar.apache.org/api/python/
2.8.0-SNAPSHOT/) for the Python client to learn more about these options. In our
case, we enabled message batching on the client side, which means that, rather than
sending/receiving each individual message to and from the broker, messages will be
grouped together in batches before being transmitted. This allows us to increase the
overall throughput of the messages at the expense of increased latency on each indi-
vidual message.

PULSAR CONSUMERS IN PYTHON

In Pulsar, the consumer interface is used to listen on a specific topic and process the
incoming messages. After a message has been successfully processed, an acknowledge-
ment should be sent back to the broker to indicate that we are done processing the
message within the subscription. This allows the broker to know which message in the
topic needs to be delivered to the next consumer on the subscription. In Python, you
can create a consumer by specifying a topic and a subscription, as shown in the follow-
ing listing.

Listing 3.22 Creating a Pulsar consumer in Python

import pulsar
client = pulsar.Client ('pulsar://localhost:6650")

consumer = client.subscribe (
'persistent://public/default/my-topic!',
'my-subscription',
consumer_ type=pulsar.ConsumerType.Exclusive
initial_position=pulsar.InitialPosition.Latest,

oo® ©
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message_listener=None,
negative ack redelivery delay ms=60000)

while True:

msg = consumer.receive () o
try:
print ("Received message '$s' id='%s'",
msg.data() .decode ('utf-8'), msg.message id())
consumer .acknowledge (msg)
except :
consumer.negative acknowledge (msg) o
client.close() 9

Create a Pulsar client by providing the connection URL to the Pulsar broker.

Use the Pulsar client to create a consumer.

You must specify the topic you want to consume from.

You must specify the unique name of your subscription.

Wait for a new message to arrive.

Once we have successfully processed the message, acknowledge it.

If we encountered an error, send a negative acknowledgment to have the message resent.

00000000

Close the client.

The subscribe method will attempt to connect the consumer to the topic using the
specified subscription, which may fail if the subscription already exists and it isn’t one
of the shared subscription types (e.g., you attempt to connect to an exclusive subscrip-
tion that already has an active consumer). If you are connecting to the topic for the
first time using the specified subscription name, a subscription is created for you auto-
matically. Whenever a new subscription is created, it is initially positioned at the end
of the topic by default, and consumers on that subscription will begin reading the first
message created after the subscription was created. If you are connecting to a preexist-
ing subscription, it will begin reading from the earliest unacknowledged message
within the subscription, as we saw earlier in figure 3.2.

As you can see in listing 3.22, the Python library provides several different configu-
ration options when specifying the subscription, including the subscription type, start-
ing position, and others. I highly recommend that you view the available online
documentation (https://pulsar.apache.org/api/python/2.8.0-SNAPSHOT/) for the
Python client to see the most up-to-date listing of these options.

The message consumer shown in listing 3.22 processes the messages in a synchro-
nous manner because the receive () method it is using to retrieve messages is a block-
ing method (e.g., it waits indefinitely for a new message to arrive). A better approach
is to process these messages in an asynchronous manner, as shown in listing 3.23.
Using the listener pattern allows you to separate the business logic from the manage-
ment of the threads because the Pulsar consumer automatically creates a thread pool
for running the message listener instances and handles all the threading logic for you.
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Listing 3.23 Asynchronous message processing in Python

import pulsar

def my listener (consumer, msg) :
# process message
print ("my listener read message '%s' id='%s'",
msg.data() .decode ('utf-8'), msg.message_id())
consumer .acknowledge (msg)

oo

client = pulsar.Client ('pulsar://localhost:6650")

consumer = client.subscribe (
'persistent://public/default/my-topic',
'my-subscription',
consumer type=pulsar.ConsumerType.Exclusive,
initial position=pulsar.InitialPosition.Latest,
message_listener=my listener, ‘)
negative ack redelivery delay ms=60000)

client.close()

The listener function needs to accept the consumer and the message.
We can access the message contents.
We can use the consumer to acknowledge the message.

Sets a message listener for the consumer

PULSAR READERS IN PYTHON

The Python client also provides a reader interface that enables consumers to manage
the position from which they will consume messages. When you connect to a topic
using a reader, you must specify which message the reader will begin consuming mes-
sages from when it connects to the topic. If you choose to explicitly provide a message
ID, then your application will be responsible for knowing this message ID in advance
and should store that information in a persistent data store somewhere such as a data-
base or cache. The code shown in the following listing connects to the topic, starts
reading messages from the earliest available messages, and outputs their contents.

Listing 3.24 Creating a Pulsar reader in Python

import pulsar
client = pulsar.Client ('pulsar://localhost:6650")

reader = client.create_ reader (
'persistent://public/default/my-topic',
pulsar.Messageld.earliest)

while True:
msg = reader.read next ()
print ("Read message '%s' id='$s'",
msg.data() .decode ('utf-8'), msg.message id())

©O o0 ©

client.close()
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Create a Pulsar client by providing the connection URL to the Pulsar broker.
Use the Pulsar client to create a reader on the specified topic.

Specify that we want to read from the earliest message.

Read the messages.

Close the client.

00009

The Pulsar Go client

There is also an officially supported Pulsar client for the Golang programming lan-
guage, and the latest version of the Pulsar client library can be installed using the fol-
lowing command: go get -u "github.com/apache/pulsar-client-go/pulsar". Once
you have installed the Pulsar client libraries, you can start using them to interact with
Pulsar by creating producers and consumers inside your Go code.

CREATING A PULSAR CLIENT WITH GO

When a Go application wants to create either a producer or a consumer, you first
need to instantiate a client object, using code like the following listing. In this code,
you will provide the URL of the Pulsar broker along with any other connection config-
uration information that may be required, such as security credentials.

Listing 3.25 Creating a Pulsar client in Go

import (
lllog"
"time"
"github.com/apache/pulsar-client-go/pulsar" ‘)
)
func main() {
client, err := pulsar.NewClient ( t’
pulsar.ClientOptions({ ‘,
URL: "pulsar://localhost:6650",
OperationTimeout: 30 * time.Second,
ConnectionTimeout: 30 * time.Second,
3]
if err != nil { ¢’

log.Fatalf ("Could not instantiate Pulsar client: %v", err)

}

defer client.Close()

Import the Pulsar client library.

Create a new client using the specified client options.

The client options, including the broker URL, connection timeout, etc.
Check to see if the client was able to connect.

o000 ~

The client object handles all the low-level details involved in creating a connection to
the Pulsar broker, including automatic retries and connection security if the Pulsar
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broker has TLS configured. Client instances are thread safe and can be reused for cre-
ating and managing multiple producers and consumers. Once you have created a cli-
ent, you can use it to create producers, consumers, and readers.

PULSAR PRODUCERS IN GO

As you can see from listing 3.26, after you have created a client object, you can use it
to create a producer on any topic you choose. While there are several configuration
options for a Pulsar producer described in the online documentation (https://pkg.go
.dev/github.com/apache/pulsar-client-go/pulsar#ConsumerOptions), I wanted to
highlight the delayed message delivery configuration we used in this example, which
allows us to defer delivery of the messages to the topic consumers for a specified
amount of time.

Listing 3.26 Creating a Pulsar producer in Go

import (
"context"
n fmt n
n 1ogll
"time"

"github.com/apache/pulsar-client-go/pulsar" ‘)

func main() {
producer, err := client.CreateProducer (pulsar.ProducerOptions{
Topic: topicName,

3]

ctx := context.Background ()
deliveryTime := (time.Minute * time.Duration(1l)) +
(time.Second * time.Duration(30))

®© ©

for 1 := 0; 1 < 3; i++ {
msg := pulsar.ProducerMessage
Payload: [lbyte(fmt.Sprintf ("Delayed-messageId-%d", 1i)),
Key: "message-key",
Properties: map [string]string{ ‘3
"delayed": "90sec",
¥
EventTime: time.Now (), i’
DeliverAfter: deliveryTime, ‘)
}
messageID, err := producer.Send(ctx, &msg) ‘)

}
}

© Import the Pulsar client library.
@ Code that creates the Pulsar client
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Create a new producer for the specified topic.

Calculate the delivery time you want for the message.

Create the message to send.

The Go client supports providing both key and properties metadata.
Provide the event timestamp metadata.

Specify the delivery time for the message.

0000000

Send the message.

Delayed message delivery is useful if you do not want the message to be immediately
processed but, rather, processed at a future point in time. Consider the scenario
where you receive several messages that contain new subscriptions to your company’s
newsletter, which contains daily specials and promotions. Rather than immediately
sending these customers the previous day’s flier, you want to wait until the new edition
is available. So, if your marketing team has committed to having a fresh version of the
newsletter available every morning at 9 a.m., you can delay the message delivery until
after 9 a.m. to ensure the customers get the latest version of the newsletter.

PULSAR CONSUMERS

As we have seen, the consumer interface is used to listen on a specific topic and pro-
cess the incoming messages. After a message has been successfully processed, an
acknowledgment should be sent back to the broker to indicate that we are done pro-
cessing the message within the subscription. This allows the broker to know which
message in the topic needs to be delivered to the next consumer on the subscription.
In Go, you can create a consumer by specifying a topic and a subscription, as shown in
listing 3.27.

The message consumer shown in listing 3.27 processes the messages in a synchro-
nous manner because the receive () method that it is using to retrieve messages is a
blocking method (e.g., it waits indefinitely for a new message to arrive). Unlike the
previous two client libraries I have discussed, the Go client doesn’t currently support
asynchronous message consumption using the message listener pattern. Therefore, if
you want to perform asynchronous processing, you will need to write all the threading
logic yourself.

Listing 3.27 Creating a Pulsar consumer in Go

import (
"context"
"fmt"
"log"
"time"

"github.com/apache/pulsar-client-go/pulsar" ‘)
)

func main() {
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consumer, err := client.Subscribe (pulsar.ConsumerOptions{ G’
Topic: topicName,
SubscriptionName: subscriptionName,

)

if err != nil {
log.Fatal (err)

}

for {
msg, err := consumer.Receive (ontext.Background()) ¢)
if err != nil {

log.Fatal (err)
consumer .Nack (msg)
} else {
fmt.Printf ("Received message : %v\n", string(msg.Payload()))

}

consumer.Ack (msg) (3

—

Import the Pulsar client library.

Code that creates the Pulsar client

Create a new consumer for the specified topic.

Blocking call to receive incoming messages

Send a negative acknowledgment to have the message redelivered.

000000 ~

Acknowledge the message so it can be marked as processed.

The subscribe method will attempt to connect the consumer to the topic using the
specified subscription, which may fail if the subscription already exists, and it isn’t one
of the shared subscription types (e.g., you attempt to connect to an exclusive subscrip-
tion that already has an active consumer). If you are connecting to the topic for the
first time using the specified subscription name, a subscription is created for you auto-
matically. Whenever a new subscription is created, it is initially positioned at the end
of the topic by default, and consumers on that subscription will begin reading the first
message created after the subscription was created. If you are connecting to a preexist-
ing subscription, it will begin reading from the earliest unacknowledged message
within the subscription, as we saw earlier in figure 3.2.

As you can see from listing 3.27, the Go library provides several different configura-
tion options when specifying the subscription, including the subscription type, starting
position, and others. I highly recommend you view the available online documentation
(https://pkg.go.dev/github.com/apache/pulsar-client-go/pulsar) for the Go client to
view the most up-to-date listing of these options.

PULSAR READERS

The Go client also provides a reader interface that enables consumers to manage the
position from which they will consume messages. When you connect to a topic using a
reader, you must specify which message the reader will begin consuming messages
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from when it connects to the topic. If you choose to explicitly provide a message 1D,
then your application will be responsible for knowing this message ID in advance and
should store that information in a persistent data store somewhere, such as in a data-
base or cache. The code shown in the following listing connects to the topic, starts
reading messages from the earliest available messages, and outputs their contents.

Listing 3.28 Creating a Pulsar reader in Go

import (
"context"
n fmt n
n log n
"time"

"github.com/apache/pulsar-client-go/pulsar" ‘)
func main() {

reader, err := client.CreateReader (pulsar.ReaderOptions{ G’
Topic: topicName,
StartMessageID: pulsar.EarliestMessageID(), ‘,

3]

for {
msg, err := reader.Next (context.Background()) €,
if err != nil {
log.Fatal (err)
} else {
fmt.Printf ("Received message : %$v\n", string(msg.Payload()))

}
}

Import the Pulsar client library.

Code that creates the Pulsar client

Create a new reader for the specified topic.
Start at the earliest message available.

0000 ~

Read the next message.

Advanced administration

Pulsar acts as a black box from a producer or consumer perspective (i.e., you simply
connect to the cluster to send and receive messages). While it is good to have the
implementation details hidden from the end user, this can be problematic when you
need to troubleshoot issues with the message delivery itself. For instance, if your con-
sumer isn’t receiving any messages, how do you go about diagnosing the issue? Fortu-
nately, the pulsar-admin CLI tool provides some tools that give you deeper insights
into the inner workings of the Pulsar cluster.
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Persistent topic metrics

Internally, Pulsar collects a lot of topic-level metrics that can help you diagnose and
troubleshoot issues between your producers and consumers, such as your consumer
not receiving any messages, or backpressure when consumers cannot keep pace with
your producers, which would be reflected in the unacknowledged message count
growing. You can access these topic statistics from the pulsar-admin CLI tool we used
earlier to create the tenant, namespace, and topic by issuing the command shown in
the following listing.

Listing 3.29 Retrieving Pulsar topic statistics from the command-line

$docker exec -it pulsar /pulsar/bin/pulsar-admin topics stats
persistent://manning/chapter03/example-topic
{

"msgRateIn" : 137.49506548471038,
"msgThroughputIn" : 13741.401370605108,
"msgRateOut" : 97.63210798236112,
"msgThroughputOut" : 9716.05449008063,
"bytesInCounter" : 1162174,
"msgInCounter" : 11538,
"bytesOutCounter" : 1500009,
"msgOutCounter" : 1500,
"averageMsgSize" : 99.94105113636364,
"msgChunkPublished" : false,
"storageSize" : 1161944,
"backlogSize" : 1161279,
"publishers" : [ {
"msgRateIn" : 137.49506548471038,
"msgThroughputIn" : 13741.401370605108,
"averageMsgSize" : 99.0,
"chunkedMessageRate" : 0.0,
"producerId" : 0,
"metadata" : { },
"producerName" : "standalone-12-6",
"connectedSince" : "2020-09-07T20:44:45.5142",
"clientVersion" : "2.6.1",
"address" : "/172.17.0.1:40158"
1,
"subscriptions" : {
"my-sub" : {
"msgRateOut" : 97.63210798236112,
"msgThroughputOut" : 9716.05449008063,
"bytesOutCounter" : 150009,
"msgOutCounter" : 1500,
"msgRateRedeliver" : 0.0,
"chuckedMessageRate" : 0,
"msgBacklog" : 9458,
"msgBacklogNoDelayed" : 9458,
"blockedSubscriptionOnUnackedMsgs" : false,
"msgDelayed" : O,
"unackedMessages" : 923,
"type" : "Shared",

© © O 0 00ed ©
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"msgRateExpired" : 0.0,
"lastExpireTimestamp" : O,
"lastConsumedFlowTimestamp" : 1599511537220,
"lastConsumedTimestamp" : 1599511537452,
"lastAckedTimestamp" : 1599511545269,
"consumers" : [ {
"msgRateOut" : 97.63210798236112,
"msgThroughputOut" : 9716.05449008063,
"bytesOutCounter" : 150009,
"msgOutCounter" : 1500,
"msgRateRedeliver" : 0.0,
"chuckedMessageRate" : 0.0,
"consumerName" : "Sbf2b",
"availablePermits" : 0,
"unackedMessages" : 923,
"avgMessagesPerEntry" : 6,
"blockedConsumerOnUnackedMsgs" : false,
"lastAckedTimestamp" : 1599511545269,
"lastConsumedTimestamp" : 1599511537452,
"metadata" : { },
"connectedSince" : "2020-09-07T20:44:45.5122Z",
"clientVersion" : "2.6.1",
"address" : "/172.17.0.1:40160"
P
"isDurable" : true,
"isReplicated" : false
b
"example-sub" : {
"msgRateOut" : 0.0,
"msgThroughputOut" : 0.0,
"bytesOutCounter" : 0,
"msgOutCounter" : 0,
"msgRateRedeliver" : 0.0,
"chuckedMessageRate" : 0,
"msgBacklog" : 11528,
"msgBacklogNoDelayed" : 11528,
"blockedSubscriptionOnUnackedMsgs" : false,
"msgDelayed" : O,
"unackedMessages" : 0,
"type" : "Exclusive",
"msgRateExpired" : 0.0,
"lastExpireTimestamp" : O,
"lastConsumedFlowTimestamp" : 1599509925751,
"lastConsumedTimestamp" : O,
"lastAckedTimestamp" : O,
"consumers" : [ ],
"isDurable" : true,
"isReplicated" : false
}}
"replication" : { },
"deduplicationStatus" : "Disabled"

}

@ The name of the topic we want statistics from

(=[S
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The sum of all local and replication publishers’ rates in messages per second

The sum of all local and replication publishers’ rates in bytes per second

The sum of all local and replication consumers’ dispatch rates in messages per second
The sum of all local and replication consumers’ dispatch rates in bytes per second
The total number of messages published to the topic

The total number of messages consumed from the topic

The total amount of disk space used to store the topic messages in bytes

Total rate of messages published by the publisher in messages per second

Timestamp of when the publisher first connected to the topic

The IP address of the producer

A list of all the subscriptions for the topic

Total rate of messages delivered on this subscription in bytes per second

Total number of messages delivered on this subscription

Number of messages in the subscription backlog that haven’t been delivered yet
Number of messages that have been delivered but haven’t been acknowledged yet
Timestamp of when the last message was consumed on this subscription

Timestamp of when the last message acknowledgment was received on this subscription
Whether or not the consumer is blocked due to too many unacknowledged messages
The IP address of the consumer

Indicative of a subscription without any active consumers

000000080008 00000000

Number of messages in the subscription backlog

As you can see, Pulsar collects an extensive set of metrics for each persistent topic,
which can be very useful when attempting to diagnose an issue. The metrics returned
include the connected producers and consumers along with all the message produc-
tion and consumption rates, message backlog, and subscriptions. Therefore, if you are
trying to determine why a particular consumer isn’t receiving messages, you can verify
that the consumer is connected and look at the message consumption rate for its cor-
responding subscription.

All these metrics are published to Prometheus by default and can be easily viewed
through a Grafana dashboard that comes bundled with the Pulsar Kubernetes deploy-
ment defined in a Helm chart inside the open source project. You can configure any
observability tool that works with Prometheus as well.

Message inspection

Sometimes you may want to view the contents of a particular message or group of mes-
sages within a Pulsar topic. Consider the scenario where one of the message producers
changes the output format of its messages by encrypting the message contents. Con-
sumers that are currently subscribed to the topic would suddenly start encountering
exceptions when they attempt to process these encrypted contents, which would result
in the messages not getting acknowledged. Eventually, these messages would accumu-
late on the topic, since they never get acknowledged. If the change to the producer
code was not coordinated with you, then you will be unaware of the underlying issue.
Fortunately, you can use the peek-messages command of the pulsar-admin CLI tool to
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view the raw bytes of the messages inside a given subscription, as shown in the following

listing, which shows the syntax for peeking at the last 10 messages for the subscription

example-sub on the persistent://manning/chapter03/example-topic.

Listing 3.30 Peeking at messages inside Pulsar

$ docker exec -it pulsar /pulsar/bin/pulsar-admin \
Topic peek-messages \
--count 10 \ o
--subscription example-sub \
persistent://manning/chapter03/example-topic

Batch Message ID: 19460:9:0 0
Tenants:
{
"X-Pulsar-num-batch-message" : "1",
"publish-time" : "2020-09-07T20:20:13.136%Z" (3)
}
B +

|00000000| 7b 69 64 3a 20 31 30 2c 20 74 69 6d 65 3a 20 4d |{id: 10, time: M|
|00000010| 6f 6e 20 53 65 70 20 30 37 20 31 33 3a 32 30 3a |on Sep 07 13:20:|
[00000020| 31 33 20 50 44 54 20 32 30 32 30 7d |13 PDT 2020} |

[P

e o +

Request the last 10 messages.

The time the message was published by the producer

o
Q The message ID
(3]
(4]

The message contents in raw bytes

As you can see, the peek-messages command provides many details about the mes-

sage, including the message ID, publish time, and the message contents as raw bytes
(and as a String). This information should make it easier to determine the issue with
the message contents.

Summary

Docker is an open source container framework that allows you to bundle entire
applications into a single image and publish them for reuse.

There is a completely self-contained Docker image of Pulsar that you can use to
run Pulsar on your machine for development.

Pulsar provides command-line tools that can be used to administer tenants,
namespaces, and topics, including creating, listing, and deleting them.

Pulsar provides client libraries for several popular programming languages,
including Java, Python, and Go, that allow you to create Pulsar producers, con-
sumers, and readers.

You can use Pulsar’s command-line tools to retrieve topic statistics that are use-
ful for monitoring and troubleshooting.
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Apache Pulsar
development essentials

Part 2 focuses on Pulsar’s built-in serverless computing framework, known as
Pulsar Functions, and how it can be used to provide stream processing capabili-
ties without requiring an additional computational framework, such as Apache
Flink or Kafka Streams. This type of serverless stream processing is also referred
to as stream-native processing and has a broad range of applications—from real-
time ETL and event-driven programming to microservices development and
real-time machine learning.

After covering the basics of the Pulsar Functions framework, I spend a good
amount of time focusing on how to properly secure your Pulsar cluster to ensure
that all your data is kept safely away from prying eyes. Lastly, I wrap up the sec-
tion with an introduction to Pulsar’s schema registry, which helps you retain
information about the structure of the messages being held inside your Pulsar
topics in a central location.

Chapter 4 introduces Pulsar’s stream-native computing framework, called
Pulsar Functions, provides some background on its design and configuration,
and shows you how to develop, test, and deploy the individual functions. Chap-
ter 5 introduces Pulsar’s connector framework, which is designed to move
between Apache Pulsar and external storage systems, such as relational data-
bases, key-value stores, or blob storage. It teaches you how to develop a connec-
tor in a step-by-step fashion.
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In chapter 6, I provide step-by-step instructions on how to secure your Pulsar clus-
ter to ensure that your data is safe while it is in transit and at rest. Finally, chapter 7
covers Pulsar’s built-in schema registry, why it is necessary, and how it can help simplify
microservice development. We also cover the schema evolution process and how to
update the schemas used inside your Pulsar functions.



4.1

Pulsar functions

This chapter covers

An introduction to the Pulsar Functions framework
The Pulsar Functions programming model and API
Writing your first Pulsar function in Java

Configuring, submitting, and monitoring a Pulsar
function

In our previous chapter, we looked at how you can work with Pulsar using some of
the various client libraries. In this chapter, we will look at a stream-native processing
engine known as Pulsar Functions that makes the development of Pulsar-based
applications much simpler. This lightweight processing framework automatically
handles a lot of the boilerplate coding required to set up Pulsar consumers and
producers, allowing you to focus on the processing logic itself, rather than the con-
sumption and processing of the messages.

Stream processing

While there isn’t an official definition, the term stream processing generally refers to
the processing of unbounded datasets that stream in continuously from some
source system. There are several datasets that occur naturally as continuous

97
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streams, such as sensor events, user activity on a website, and financial trades, which
can be processed in this manner.

Prior to stream processing, these datasets had to first be stored in a database, file
system, or other persistent storage before they could be analyzed. Often, there was an
additional data processing phase required to extract the information, transform it
into the correct format, and load the data into these systems. Only after the ETL pro-
cess was completed was the data ready to be analyzed using traditional SQI-based or
other tools. As you can imagine, there was a significant latency between the time an
event occurred and when it was available for analysis. The goal of stream processing is
to minimize that latency so critical business decisions can be made against the most
recent data. There are three basic approaches to processing these datasets—batch
processing, micro-batching, and streaming-native processing—and each take different
approaches regarding how and when to process these endless datasets.

Traditional batching

Historically, the vast majority of data processing frameworks have been designed for
batch processing. Traditional data warehouses, Hadoop, and Spark are just a few com-
mon examples of systems that process large datasets in batches. Data is often fed into
these systems via long-running and complex ETL pipelines that cleanse, prepare, and
format the incoming data for consumption. Messaging systems often serve as little
more than intermediate buffers that store and route the data between the various pro-
cessing stages of the pipeline.

These long-running data ingestion pipelines were often implemented using
stream processing engines, such as Apache Spark or Flink, that were designed to pro-
cess large datasets efficiently by performing the processing in parallel. Newly arriving
data elements were collected and then processed together at some point in the future
as a batch. To maximize the throughput of these frameworks, the accumulation would
take place over very large time intervals (hours) or until a certain amount of data (10s
GBs) had been collected, which introduced an artificial delay in the data processing
pipeline.

Micro-batching

One technique that was introduced to address the processing latency that plagued
these traditional batch processing engines was to dramatically reduce either the batch
size or the processing interval. In micro-batch processing, newly arriving data ele-
ments are still collected into batches, as shown in figure 4.1, but the size of the batches
is dramatically reduced by adjusting the time interval to a few seconds. Even though
the processing may occur more frequently, the data is still processed one batch at a
time, so it is often referred to as micro-batching and is used by such processing frame-
works as Spark Streaming.

While this approach does decrease the processing latency between when a data ele-
ment arrives and when it is processed, it still introduces artificial delays into the process
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Figure 4.1 With batch processing, the message processing occurs at predetermined intervals and follows a
consistent cadence.

that compound as the complexity of the data pipeline increases. Consequently, even
micro-batch processing applications cannot rely on consistent response times and need
to account for delays between when the data arrives and when it is processed. This
makes micro-batch processing more appropriate for use cases that do not require hav-
ing the most recent data and can tolerate slower response times, whereas stream native
processing is better suited for use cases that require near real-time responsiveness, such
as fraud detection, real-time pricing, and system monitoring.

4.1.3 Stream native processing

With stream native processing, each new piece of data is processed as soon as it
arrives, as illustrated in figure 4.2. Unlike batch processing, there are no arbitrary pro-
cessing intervals, and each individual data element is processed separately.
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Figure 4.2 With stream processing, the processing is triggered by the arrival of each message, so the
processing cadence is irregular and unpredictable.

Although it may seem as though the differences between stream processing and
micro-batching are just a matter of timing, there are implications for both the data
processing systems and the applications that rely on them. The business value of data
decreases rapidly after it is created, particularly in use cases such as fraud prevention
or anomaly detection. The high-volume, high-velocity datasets used to feed these use
cases often contain valuable, but perishable, insights that must be acted upon immedi-
ately. A fraudulent business transaction, such as transferring money or downloading
licensed software, must be identified and acted upon before the transaction com-
pletes; otherwise it will be too late to prevent the thief from obtaining the funds ille-
gally. To maximize the value of their data for these use cases, developers must
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fundamentally change their approach to processing real-time data by focusing on
reducing the processing latency introduced from traditional batch processing frame-
works and utilizing a more reactive approach, such as stream-native processing.

What is Pulsar Functions?

Included with Apache Pulsar is a lightweight computing engine named Pulsar Func-
tions, which allows developers to deploy a simple function implementation in Java,
Python, or Golang. This feature allows users to enjoy the benefits of serverless com-
puting similar to those provided by AWS Lambda within an open source messaging
platform, rather than being tied to a cloud provider’s proprietary API.

Pulsar Functions allows you to apply processing logic to data as it is routed through
the messaging system itself. These lightweight compute processes execute natively
within the Pulsar messaging system itself as close to the message as they can be and
without the need for another processing framework such as Spark, Flink, or Kafka
Streams. Unlike other messaging systems, which act as “dumb pipes” for moving data
from system to system, Pulsar Functions provides the capability to perform simple
computations on messages before they are routed to consumers. Pulsar Functions
consumes messages from one or more Pulsar topics, applies a user-supplied function
(processing logic) to each incoming message, and publishes the results to one or
more Pulsar topics, as shown in figure 4.3.

Input topics

Output topics
Output
message
b -
Input
messages :
|
I Log
:message
Log topic

Figure 4.3 Pulsar Functions executes user-defined code on data published to
Pulsar topics.

Pulsar functions can be best characterized as Lambda-style functions that are specifi-
cally designed to use Pulsar as the underlying message bus. This is because they take
several design cues from the popular AWS Lambda framework that allows you to run
code without provisioning or managing servers to host the code. Hence, the common
term for this programming model is serverless.
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The Pulsar function framework allows users to develop self-contained pieces of
code and then deploy them with a simple REST call. Pulsar takes care of the underly-
ing details required to run your code, including creating the Pulsar consumer and
producers for the function’s input and output topics. Developers can focus on the
business logic itself and not have to worry about the boilerplate code necessary to
send messages with Pulsar. In short, the Pulsar Functions framework provides a ready-
made computing infrastructure on your existing Pulsar cluster.

Programming model

The programming model behind Pulsar Functions is very straightforward. Pulsar
functions receive messages from one or more input topics, and every time a message is
published to the topic, the function code is executed. Upon being triggered, the func-
tion code executes its processing logic upon the incoming message and writes its
(optional) output to an output topic. Although all functions are required to have an
input topic, they are not strictly required to produce any output to an output topic.

It is possible to have the output topic of one Pulsar function be the input topic of
another, allowing us to effectively create a directly acyclic graph (DAG) of the Pulsar
functions, as shown in figure 4.4. In such a graph, each edge represents a flow of data,
and each vertex represents a Pulsar function that applies the user-defined logic to pro-
cess the data. The combinations of Pulsar functions into these DAGs are endless, and
it is possible to write an application that is entirely composed of Pulsar functions and
structured as a DAG if you so choose.

Puls.ar Topic-3 Pulsar
function function

Pulsar
function
. Pulsar
Topic-2 Pulsar
function

Figure 4.4 Pulsar functions can be logically structured into a processing network.
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Developing Pulsar functions

Pulsar functions can currently be written in Java, Python, and Go. Therefore, if you
are already familiar with any of these popular languages, you will be able to develop
Pulsar functions relatively quickly.

Language native functions

Pulsar supports what are commonly referred to as language-native functions, which
means no Pulsar-specific libraries or special dependencies are required. The benefit
of language-native functions is that they don’t have any dependencies beyond what'’s
already available in the programming language itself, which makes them extremely
lightweight and easy to develop. Currently, language-native functions can only be
developed using Java or Python. Golang support for this feature is not yet available.

JAVA LANGUAGE NATIVE FUNCTIONS

In order for a piece of Java code to be used as a language-native function, it must
implement the java.util.Function interface, which has just a single apply method,
as shown in listing 4.1. While this simplistic function merely echoes back any string
value it receives, it does demonstrate just how easy it is to develop a function using
only features of the Java language itself. Any sort of complex logic can be included
inside the apply method to provide more robust stream-processing capabilities.

Listing 4.1 Java-native function

import java.util.Function;

public class EchoFunction implements Function
= <String, String> {

public String apply(String input) { e’
return input;

}
}

@ specifies that the input topic content will be a string and that we will return a string
O The only method defined in the function interface, which is executed when a message is received

PYTHON LANGUAGE-NATIVE FUNCTIONS

For a piece of Python code to be used as a language-native function, it must have a
method named process, like the functions shown in the following listing, that merely
appends an exclamation point to any string value it receives.

Listing 4.2 Python-native function

def process (input) : ‘)
return "{}!".format (input) (2]

© The method that gets called when a message arrives
@ Returns the provided input with an exclamation point appended to the end
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As you can see, the language-native approach provides a clean, API-free way of writing
Pulsar functions. It is ideal for the development of simple, stateless functions.

The Pulsar SDK

Another option is to develop your functions using the Pulsar Functions SDK, which
leverages Pulsar-specific libraries that provide a range of functionality not available in
the native interfaces, such as state management and user configuration. Additional
capabilities and information can be accessed through a Context object that is defined
inside the SDK, including

= The name, version, and ID of the Pulsar function

= The message ID of each message

= The name of the topic on which the message was sent

= The names of all input topics as well as the output topic associated with the
function

= The tenant and namespace associated with the function

= The logger object used by the function, which can be used to write log messages

= Access to arbitrary user config values supplied via the CLI

= An interface for recording metrics

An implementation of the Pulsar SDK is available for Java, Python, and Golang, and
each specifies a functional interface that includes the Context object as a parameter
that is populated and provided by the Pulsar Functions runtime environment.

Java SDK FUNCTIONS

To get started developing Pulsar functions using the Java SDK, you’ll need to add a
dependency on the pulsar-functions-api artifact to your project, as shown in the
following listing.

Listing 4.3 Adding Pulsar SDK dependencies to you pom.xml file

<properties>
<pulsar.version>2.7.2</pulsar.version>
</properties>

<dependency>
<grouplds>org.apache.pulsar</groupIld>
<artifactIdspulsar-functions-api</artifactId>
<version>${pulsar.version}</version>
</dependency>

When you are developing a Pulsar function that is based on the SDK, the function
should implement the org.apache.pulsar.functions.api.Function interface. As
you can see from the following listing, this interface specifies only one method that
you need to implement, called process.
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Listing 4.4 The Pulsar SDK function interface definition

@FunctionalInterface
public interface Function<I, O> {
O process (I input, Context context) throws Exception;

}

The process method is called at least once, depending on the processing guarantees
you specify for the function for every message that is published to the configured
input topic of the function. The incoming input bytes are serialized to the input type
I for JSON-based messages as well as simple Java types, such as String, Integer, and
Float. If these types do not meet your needs, you can also use your own types as long
as you provide your own implementation of the org.apache.pulsar.functions.api
.SerDe interface for the type, or you can register the incoming message type in the
Pulsar schema registry, which I will cover in greater detail in chapter 7. An implemen-
tation of the echo function that demonstrates several different features of the SDK,
such as logging and recording metrics, is shown in the following listing.

Listing 4.5 Pulsar SDK function in Java

import java.util.stream.Collectors;

import org.apache.pulsar.functions.api.Context;

import org.apache.pulsar.functions.api.Function; "
import org.slf4j.Logger;

public class EchoFunction implements Function<String, Strings> {

public String process (String input, Context ctx) { t’
Logger LOG = ctx.getLogger () ;
String inputTopics =
ctx.getInputTopics () .stream()
.collect (Collectors.joining(", ")); ‘,

String functionName = ctx.getFunctionName () ; ‘;

String logMessage =
String.format ("A message with a value of \"%s\"" +
“has arrived on one of the following topics: %s\n",
input, inputTopics) ;

LOG.info (logMessage) ; ‘3
String metricName =
String.format ("function-%s-messages-received", functionName) ;

ctx.recordMetric (metricName, 1) ; "
return input;

The class must implement the Pulsar Functions interface.
The interface defines a single method with two parameters, including a context object.

oo -
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We use the context object to access the LOGGER object.
We use the context object to get the list of input topics
We use the context object to get the function name.
We generate a log message.

We record a user-defined metric.

00000
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The Java SDK’s context object enables you to access key/value pairs provided to the
Pulsar function via the command line (as JSON). This feature allows you to write
generic functions that can be used multiple times but with a slightly different configu-
ration. For instance, let’s say you want to write a function that filters events based on a
user-defined regular expression. When an event arrives, the contents are compared to
the configured regex, and those entries that match the provided pattern are returned,

and all others are ignored. Such a function could be useful if you want to verify the

format of the incoming data before you begin processing it. An example of such a
function that accesses the regular expression from the key/value pairs in the context

object is shown in the following listing.

Listing 4.6 User-configured Pulsar function in Java

import java.util.regex.Pattern;
import org.apache.pulsar.functions.api.Context;
import org.apache.pulsar.functions.api.Function;

public class RegexMatcherFunction implements Function<String, Strings>
public static final String REGEX CONFIG = "regex-pattern";

@Override
public String process (String input, Context ctx) throws Exception {
Optional<Object> config =
ctx.getUserConfigValue (REGEX CONFIG) ; ‘)

if (config.isPresent () && config.get () .getClass|()
.getName () .equals (String.class.getName ())) { i)

Pattern pattern = Pattern.compile(config.get().toString()) ;
if (pattern.matcher (input) .matches()) {
String metricName =
String.format ("$s-regex-matches", ctx.getFunctionName ()) ;

ctx.recordMetric (metricName, 1);
return input;

1
}

return null; ¢’

Retrieve the regex pattern from the user-provided configs.
If a regex string was provided, then compile the regex.

oo -
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© If the input matches the regex, allow it to pass.
0 Otherwise, return null.

Pulsar Functions can publish results to an output topic, but this isn’t required. You
can also have functions that don’t always return a value, such as the function in listing
4.5 that filters out non-matching inputs. In such a scenario, you can simply return a
value of null from the function.

PYTHON SDK FUNCTIONS

To getstarted developing Pulsar functions using the Python SDK, you’ll need to add the
Pulsar client dependency to your Python installation. The latest version of the Pulsar
client library can be easily installed using the pip package manager and the commands
shown in the following listing. Once this is installed on your local development
environment, you will be able to start developing Pulsar functions in Python that
leverage the SDK.

Listing 4.7 Adding Pulsar SDK dependencies to your Python environment

pip3 install pulsar-client==2.6.3 -user ‘)
pip3 list 0
Package Version

pulsar-client 2.6.3 c’

@ Install the Pulsar client.
@ List all the packages.
© Confirm that the correct version of the Pulsar client has been installed.

Let’s look at a Python-based implementation of the Echo function to demonstrate
some of the SDK capabilities in the following listing.

Listing 4.8 Pulsar SDK function in Python

from pulsar import Function

class EchoFunction (Function) :
def  init (self):
pass

def process(self, input, context): ‘)
logger = context.get logger () t’
evtTime = context.get message eventtime ()
msgKey = context.get message key () ;

logger.info("""A message with a value of {0}, a key of {1},
and an event time of {2} was received"""
.format (input, msgKey, evtTime))
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metricName = """function-%s-
messages-received""".format (context.get function name())

context.record metric(metricName, 1)

return input 9

The function definition required by the Pulsar SDK
The Python SDK provides access to the logger.

The Python SDK provides access to message metadata.
The Python SDK supports metrics.

Echo back the original input value.

The Python SDK’s context object provides nearly all the same capabilities as the Java
SDK, with two notable exceptions. The first is that, as of version 2.6.0, Python-based
Pulsar Functions does not support schemas, which I will discuss in greater detail in
chapter 7; essentially this means that the Python function is responsible for the serial-
ization and deserialization of the message bytes into the expected format. The second
capability that is not present in Python-based Pulsar Functions is access to the Pulsar
Admin API, which, as I discussed in chapter 3, is only available in Java.

GOLANG SDK FUNCTIONS

To getstarted developing Pulsar functions using the Golang SDK, you’ll need to add the
Pulsar client dependency to your Golang installation. The latest version of the pulsar
client library can be installed using the following command: go get -u "github.com/
apache/pulsar-client-go/pulsar". Let’s look at a Golang-based implementation of
the Echo function that we used earlier to demonstrate some of the SDK capabilities in
the following listing.

Listing 4.9 Pulsar SDK function in Go

package main

import (
"context"
n fmt n

"github.com/apache/pulsar/pulsar-function-go/pf"

log "github.com/apache/pulsar/pulsar-function-go/logutil"
)

func echoFunc (ctx context.Context, in [lbyte) [lbyte {
if fc, ok := pf.FromContext (ctx); ok {
log.Infof ("This input has a length of: %d", len(in))

fmt.Printf ("Fully-qualified function name is:%s\\%s\\%s\n",
fc.GetFuncTenant (), fc.GetFuncNamespace (), fc. GetFuncName ())

}

return in

© 00 ©¢
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func main() {
pf.Start (echoFunc) o

Import the SDK library.

Import the function logger library.

The function code with the correct method signature
The Golang SDK provides access to the logger.

The Golang SDK provides access to function metadata.
Echo back the original input value.

0000000 ~

Register the echofunc with the Pulsar Functions framework.

When writing Golang-based functions, remember that you need to provide the name
of the function you wish to perform the actual logic to the pf.Start () method inside
the main () method call, as shown in listing 4.8. This registers the function with the
Pulsar Functions framework and ensures that the specified function is the one that is
invoked when a new message arrives. In this case, we named used the echoFunc func-
tion, but it can be named anything, provided that the method signature matches any
of the supported ones shown in the following listing. Any other function signatures
will not be accepted, and consequently, no processing logic will be executed inside
your Golang function.

Listing 4.10 Supported method signatures in Go

func ()

func () error

func (input) error

func () (output, error)

func (input) (output, error)

func (context.Context) error

func (context.Context, input) error

func (context.Context) (output, error)

func (context.Context, input) (output, error)

There are currently some limitations when it comes to using the SDK to develop Golang-
based Pulsar functions, but this is subject to change as the project matures, so I highly
recommend checking the most recent version of the online documentation for the lat-
est capabilities. However, as of the writing of this book, Golang functions do not support
the recording of function-level metrics (e.g., there isn’t a recordMetric method
defined inside the context object of the Golang SDK). Furthermore, you cannot imple-
ment stateful functions using Golang at this time.

Stateful functions

Stateful functions utilize information gathered from previous messages they have pro-
cessed to generate their output. One such application would be a function that
receives temperature reading events from an IoT sensor and calculates the average
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temperature of the sensor. Providing this value would require us to calculate and store
a running average of the previous temperature readings.

When using the Pulsar SDK to develop your functions, regardless of which of the
three supported languages you are using, the second parameter in the process
method is a Context object that is automatically provided by the Pulsar Functions
framework. If you are using Java or Python, then the Context object’s API also pro-
vides two separate mechanisms for retaining information between successive calls to a
Pulsar function. The first mechanism that the Context API provides is a map inter-
face for storing and retrieving key/value pairs via its putState and getState meth-
ods. These methods act like any other map interface you are familiar with and allow
you to store and retrieve values of any type using string values as the keys.

The other state mechanisms provided by the Context object are counters, which
only allow you to retain numeric values using strings as the keys. These counters are a
specialized version of the key/value mapping that is functionally designed specifically
for storing numerical values. Internally, counters are stored as 64-bit big-endian binary
values and can only be changed via the incrCounter and incrCounterAsync methods.

Let’s take a function that receives temperature reading events from an IoT sensor
and calculates the average temperature of the sensor as an example to show how you
would utilize state inside a Pulsar function. The function shown in listing 4.11 receives
a sensor reading and compares it to the average temperature reading it has calculated
from the previous reading to determine whether it should trigger an alarm of
some sort.

Listing 4.11 Average sensor reading function

public class AvgSensorReadingFunction implements

Function<Double, Voids> ({ ‘)
private static final String VALUES_KEY = "VALUES";
@Override

public Void process (Double input, Context ctx) throws Exception {
CircularFifoQueue<Double> values = getValues (ctx) ;

if (Math.abs (input - getAverage (values)) > 10.0) {
// trigger an alarm.

}

values.add (input) ;
ctx.putState (VALUES_KEY, serialize(values));
return null;

e o ©

}

private Double getAverage (CircularFifoQueue<Double> values) {
return StreamSupport.stream(values.spliterator(), false)
.collect (Collectors.summingDouble (Double: :doubleValue) )
/ values.size() ;

o
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private CircularFifoQueue<Double> getValues (Context ctx) {

if (ctx.getState (VALUES KEY) == null) {

return new CircularFifoQueue<Doubles> (100) ; o
} else {

return deserialize (ctx.getState (VALUES_ KEY)) ; 0

}

The function takes in a double and doesn’t produce an output message.
We deserialize the Java object used to store the previous sensor readings.
If the current reading is significantly different, then we generate an alert.
We add the current value to the list of observed values.

We store the updated Java object in the state store.

We use the Streams API to calculate the average.

Instantiate the Java object if none exists in the state store.

00000000

Convert the bytes in the state store into the Java object we need.

There are a few points I want to highlight from the function in listing 4.11. The first
thing you may notice is that the return type of function is defined as Void. This means
that the function does not produce an output value. Another point I want to highlight
is the fact that the function relies on Java serialization to store and retrieve a list of the
last 100 values (sensor readings) it has received. It relies on a third-party library imple-
mentation of a FIFO queue to retain the 100 most-recent values to compute the aver-
age before comparing it to the most recent sensor reading. If that value significantly
deviates from the average, then an alert is raised. Finally, the most recent reading is
added to the FIFO queue, which is then serialized and written to the state store.

On subsequent calls, the AvgSensorReadingFunction will retrieve the bytes of the
FIFO queue, deserialize them back into the Java object, and use it to calculate the aver-
age again. This process repeats indefinitely and only retains the most recent values for
comparison against the trend (e.g., the moving average of the sensor readings). This
approach is very different from the windowing capability provided by Pulsar Functions
that is discussed in chapter 12. In short, the windowing capability provided by the Pul-
sar Functions framework permits the collection of multiple inputs before executing the
function method based on either time or a fixed count. Once the window is filled, the
function is provided the entire list of inputs at one time, whereas the function shown in
listing 4.6 is provided the values one at a time, and must maintain the previous values
inside its state.

So, you might be asking yourself why you wouldn’t just use Pulsar’s built-in window-
ing for our use case. In our case, we want to react to every individual reading as it
becomes available, rather than waiting to accumulate a sufficient number of readings.
This allows us to detect any issue much sooner.
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Now, let’s wrap up our discussion on stateful functions by looking at the counter
interface provided by the Context API. A good example of how and when to use this
functionality would be a WordCount function that stores the number of each individ-
ual word, using the counter methods provided by the context object API, as shown in
the following listing.

Listing 4.12 WordCount function using stateful counters

package com.manning.pulsar.chapter4.functions.sdk;

import java.util.Arrays;
import java.util.List;

import org.apache.pulsar.functions.api.Context;
import org.apache.pulsar.functions.api.Function;

public class WordCountFunction implements Function<String, Integers {
@Override
public Integer process(String input, Context context) throws Exception {
List<String> words = Arrays.asList (input.split ("\\."));
words . forEach (word -> context.incrCounter (word, 1)) ;
return Integer.valueOf (words.size()) ;

The logic of the function is straightforward; it first splits the incoming string object
into multiple words, using a regex pattern; then for each word generated from the
split it increments the corresponding counter by one. This function is a good candi-
date for effectively once processing semantics to ensure an accurate result. If you were
to use at-least-once processing semantics instead, you could potentially end up pro-
cessing the same message more than once in a failure scenario, which would result in
the double counting of multiple words.

Testing Pulsar functions

In this section I will walk you through the process of developing and testing your first
Pulsar function. Let’s use the KeywordFilterFunction shown in listing 4.13 to
demonstrate the software development lifecycle for a Pulsar function. This function
takes in a user-provided keyword and filters out any input string that does not contain
that keyword. An example application of this function would be to scan a Twitter feed
for tweets related to a particular topic or containing a certain phrase.

Listing 4.13 KeywordFilterFunction

package com.manning.pulsar.chapter4.functions.sdk;

import java.util.Arrays;
import java.util.List;
import java.util.Optional;
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import org.apache.pulsar.functions.api.Context;
import org.apache.pulsar.functions.api.Function;

public class KeywordFilterFunction

implements Function<String, String> { ‘)
public static final String KEYWORD_ CONFIG = "keyword";
public static final String IGNORE CONFIG = "ignore-case";
@Override

public String process(String input, Context ctx) {
Optional<Object> keyword =
ctx.getUserConfigValue (KEYWORD CONFIG) ;
Optional<Object> ignoreCfg =
ctx.getUserConfigValue (IGNORE CONFIG) ;

oo

boolean ignoreCase = ignoreCfg.isPresent () ?
(boolean) ignoreConfig.get(): false;

List<String> words = Arrays.asList (input.split("\\s"));

if (!keyword.isPresent()) ({
return null;

} else if (ignoreCase && words.stream() .anyMatch (
s -> s.equalsIgnoreCase((String) keyword.get()))) {
return input;

© o ©

} else if (words.contains(keyword.get())) {
return input;
}

return null;

The function takes in a string and returns a string.
Get the keyword from the context object.

Get the ignore-case setting from the context object.
Split the input string into individual words.
Without a keyword, nothing can match.

Evaluate each word, ignoring case.

0000000 ~

Check for an exact match.

While this code is simplistic, I will walk through the testing process you would typically
use when developing a function for production use. Since this is just plain Java code,
we can leverage any of the existing unit-testing frameworks, such as JUnit or TestNG,
to test the function logic.

Unit testing

The first step would be to write a suite of unit tests that test some of the more common
scenarios to validate that the logic is correct and produces accurate results for various
sentences we send it. Since this code uses the Pulsar SDK API, we will need to use a
mocking library, such as Mockito, to mock the Context object, as shown in the follow-
ing listing.
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Listing 4.14 KeywordFilterFunction unit tests

package com.manning.pulsar.chapter4.functions.sdk;

import static org.mockito.Mockito.*;
import static org.junit.Assert.*;

public class KeywordFilterFunctionTests {
private KeywordFilterFunction function = new KeywordFilterFunction() ;

@Mock
private Context mockedCtx;

@Before
public final void setUp() ({
MockitoAnnotations.initMocks (this) ;

}

@Test
public final void containsKeywordTest () throws Exception {
when (mockedCtx.getUserConfigvalue (
KeywordFilterFunction.KEYWORD CONFIG))

.thenReturn (Optional.of ("dog")) ; ‘)
String sentence = "The brown fox jumped over the lazy dog";
String result = function.process(sentence, mockedCtx) ;
assertNotNull (result) ; e)

assertEquals (sentence, result);

}

@Test

public final void doesNotContainKeywordTest () throws Exception {
when (mockedCtx.getUserConfigvValue (
KeywordFilterFunction.KEYWORD CONFIG))

.thenReturn (Optional.of ("cat")) ; G,
String sentence = "It was the best of times, it was the worst of times";
String result = function.process(sentence, mockedCtx) ;
assertNull (result) ; ‘)
@Test
public final void ignoreCaseTest () {

when (mockedCtx.getUserConfigValue (
KeywordFilterFunction.KEYWORD CONFIG))
.thenReturn (Optional.of ("RED")) ; ‘a

when (mockedCtx.getUserConfigvValue (
KeywordFilterFunction.IGNORE_CONFIG))

.thenReturn (Optional.of (Boolean.TRUE)) ; ‘3
String sentence = "Everyone watched the red sports car drive off.";
String result = function.process (sentence, mockedCtx) ;
assertNotNull (result) ; ‘D

assertEquals (sentence, result);
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Configure the keyword to be dog.

We expect the sentence to be returned, since it contained the keyword.

Configure the keyword to be cat.

We don’t expect the sentence to be returned, since it did not contain the keyword.
Configure the keyword to be RED.

Configure the function to ignore case when filtering on the keyword.

0000200 ~

We expect the sentence to be returned, since it contained a lowercase version of the keyword.

As you can see, these unit tests cover the very basic functionality Node-1

of the function and rely on the use of a mock object for the Pul-

sar context object. This type of test suite is just like one you |

would write to test any Java class that wasn’t a Pulsar function.

Integration testing

After we are satisfied with our unit testing results, we will want Function -

to see how the Pulsar function will perform on a Pulsar cluster. worker

The easiest way to test a Pulsar function is to start a Pulsar server Debugger

and run the Pulsar function locally, using the LocalRunner
helper class. In this mode, the function runs as a standalone .

. L. . . . . Figure 4.5 When you
process on the machine it is submitted from. This option is best ;1 4 pulsar function

when you are developing and testing your functions, as it allows  using LocalRunner,
the function runs on
the local machine,
allowing you to attach
To use the LocalRunner, you must first add a few dependen-  a debugger and step

cies to your Maven project, as shown in the following listing. ~ through the code.
This brings in the LocalRunner class that is used to test the
function against a running Pulsar cluster.

you to attach a debugger to the function process on the local
machine, as shown in figure 4.5.

Listing 4.15 Including the LocalRunner dependencies

<dependenciess>

<dependency>
<groupIds>com. fasterxml.jackson.core</groupIds>
<artifactId>jackson-core</artifactIds>
<version>${jackson.version}</version>
</dependency>
<dependency>
<groupld>org.apache.pulsar</groupId>
<artifactIdspulsar-functions-local-runner-original</artifactIds>
<versions>${pulsar.version}</versions
</dependency>
</dependencies>



Testing Pulsar functions 115

Next, we need to write a class to configure and launch the LocalRunner, as shown in
the following listing. As you can see, this code must first configure the Pulsar function
to execute on the LocalRunner, and it specifies the address of the actual Pulsar cluster
instance that will be used for the testing.

Listing 4.16 Testing the KeywordFilterFunction with the LocalRunner

public class KeywordFilterFunctionLocalRunnerTest {

final static String BROKER URL = "pulsar://localhost:6650";
final static String IN = "persistent://public/default/raw-feed";
final static String OUT = "persistent://public/default/filtered-feed";

private static ExecutorService executor;
private static LocalRunner localRunner;
private static PulsarClient client;
private static Producer<Strings> producer;
private static Consumer<Strings> consumer;
private static String keyword = "";

public static void main(String[] args) throws Exception
if (args.length > 0) {

keyword = args[0]; ‘)
}

startLocalRunner () ;

init () ;

startConsumer () ;

sendData () ;

shutdown () ;

}

private static void startLocalRunner () throws Exception {
localRunner = LocalRunner.builder ()
.brokerServiceUrl (BROKER URL)
.functionConfig(getFunctionConfig())
.build() ;
localRunner.start (false) ; ‘)

}

oo

private static FunctionConfig getFunctionConfig() {
Map<String, ConsumerConfigs> inputSpecs =
new HashMap<String, ConsumerConfigs> () ;

inputSpecs.put (IN, ConsumerConfig.builder () ‘3
.schemaType (Schema.STRING.getSchemaInfo () .getName ())
.build()) ;

Map<String, Object> userConfig = new HashMap<String, Objects>();
userConfig.put (KeywordFilterFunction.KEYWORD CONFIG, keyword) ;
userConfig.put (KeywordFilterFunction.IGNORE CONFIG, true);

return FunctionConfig.builder()
.className (KeywordFilterFunction.class.getName ())
.inputs (Collections.singleton (IN))

©o
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.inputSpecs (inputSpecs)
.output (OUT)

.name ("keyword-filter")
.tenant ("public")
.namespace ("default")

80

.runtime (FunctionConfig.Runtime.JAVA) m
.subName ("keyword-filter-sub")
.userConfig(userConfig) (D
.build() ;

}

private static void init () throws PulsarClientException { @

executor = Executors.newFixedThreadPool (2) ;
client = PulsarClient.builder()
.serviceUrl (BROKER_URL)
.build() ;
producer = client.newProducer (Schema.STRING) .topic (IN) .create() ;
consumer = client.newConsumer (Schema.STRING) .topic (OUT)
.subscriptionName ("validation-sub") .subscribe () ;

private static void startConsumer () { (B
Runnable runnableTask = () -> {
while (true)
Message<String> msg = null;
try {
msg = consumer.receive() ;
System.out.printf ("Message received: %s \n", msg.getValue()) ;
consumer.acknowledge (msg) ;
} catch (Exception e)
consumer .negativeAcknowledge (msg) ;
}

1}

executor.execute (runnableTask) ;

}

private static void sendData() throws IOException { (B
InputStream inputStream = Thread.currentThread () .getContextClassLoader ()
.getResourceAsStream("test-data.txt") ;

InputStreamReader streamReader = new InputStreamReader (inputStream,
StandardCharsets.UTF_8) ;

BufferedReader reader = new BufferedReader (streamReader) ;
for (String line; (line = reader.readLine()) != null;) {
producer.send (line) ;
}
1

private static void shutdown() throws Exception { (B
executor.shutdown () ;
localRunner.stop() ;
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Get the user-provided keyword.

The service URL for the Pulsar cluster the function will run on

Pass in the function configuration to the LocalRunner.

Start the LocalRunner and function.

Specifies that the data inside the input topic will be strings

Initialize the user configuration properties with the user-provided keyword.
S