

The Use of Controlled Flow Cavitation (CFC™) to Enhance Lipid Processing

Why Install CFC[™]? (Controlled Flow Cavitation)

Actual Neutralization Install (Commissioned 2021)

	warranty	actual to date
CFC™ benefits		
Acid reduction [%]	40%	45%
acid dosage at conc [kg/mt oil]	3.33	3.05
Caustic reduction [%]	20%	25%
caustic dosage at conc [kg/mt oil]	12.67	11.88
Oil yield increase 1st centrifuge [%]	0.20%	0.40%
RBD oil yield increase [mt/yr]	847	1695
Water reduction at wash centrifuge [%]	25%	100%
water dosage [%]	3%	0%
Phosphorus reduction [ppm]	10	15
Soap reduction [ppm]	400	500
operation annual savings		
Acid reduction	\$ 12,274.55	\$ 13,808.87
Caustic reduction	\$ 76,740.99	\$ 95,926.23
Oil yield increase	\$ 446,600.88	\$ 893,201.76
Water reduction	\$ 98,875.58	\$ 483,399.51
Silica reduction	\$ -	\$ -
Clay reduction	\$ -	\$ -
annual operating cost		
CFC™ annual electricity cost [\$/yr]	\$ (85,509.86)	\$ (47,612.66)

Payback Period

Actual Neutralization Install (Commissioned 2021)

	warranty	(actual to date
net benefit			
Total annual savings	\$ 548,982.13	\$	1,438,723.70
Savings per mt	\$ 1.30	\$	3.40
Payment to Arisdyne	\$ 545,700.00		CM3000
Make-ready costs	\$ 80,000.00		Hydra-Cell
Simple pay back, single pay [yrs]	1.14		0.43

ADM Public Feedback on CFC[™] Operations

- First CFC[™] installed 2011; over 15 additional refineries
- Yield increase over primary sep: +0.3%
- Additional Yield improved due to elimination of water wash and clay reduction
- Reduction in acid consumption: +50%
- Reduction in caustic consumption: +40%
- Reduction in soap content: typically below 150 ppm
- Easy installation; easy to operate
- No need for CIP, no plugging
- No issues with CFC[™]

Turn-Key Project Scope

THEFT

What sets CFC[™] apart from mere high shear

Higher yield due to lower oil entrainment

In CFC™ Process, very high energy zone

Immediately after high energy zone, very low energy zone

CFC[™] disrupts phosphatide, ffa and impurity aggregates for efficient reaction with water/acid/caustic

CFC™- Converting NHP w/ Caustic

CFC[™] enhances removal of NHP with caustic reducing the amount of acid addition required sometimes to zero

Excerpt Dijkstra, Albert J. "About the Hydration of Non-Hydratable Phosphatides" World Congress on Oils & Fats and 31st ISF Lecture Series, Rosario, 2015, pp. 30-32.

Process Changes Difference to Heavy Phase

Floc Size!

Separation Time!

Reduction in Bleaching Clay

Macro porosities in a particle of fully activated adsorbent

Hydrodynamic Cavitation

LI THIT!

Increase of speed leads to reduction of pressure

Atmospheric pressure alters the boiling point of water

Reduced pressure leads to evaporation and vapor bubbles

CFC[™]- cause & control cavitation

Compare 'Controlled' vs. 'Uncontrolled' Cavitation Demo at <u>www.arisdyne.com</u>

Adjustable Device

30+ years of design experience

US 6502979 B1: Device and method for creating hydrodynamic cavitation in fluids

IT THEFT

CFC™ Operational Advantages

Pump Selection

THEFT

	Piston Diaphragm	Centrifugal
Designed for Abrasives?	\checkmark	×
	No moving parts in contact with product	Bushing lubricated by abrasive product stream
Lead Time:	2-3 weeks	22-25 weeks
Efficiency:	90+% continuous	< 65% degrading with time
Warranty:	24 months	12 months
Filter:	800 micron	550 micron
Simpler Operation:	No mechanical seals	Double mechanical seal
Annual Maintenance:	Diaphragms and check valves (< 2 hrs)	Bearings, seals, wear parts (6-12 hrs)

CFC[™] 1st Year savings: <u>\$363k</u>

(Example based upon 750 mtpd)

OWNERSHIT

20 weeks faster than competition

\$315k (~\$3/mt savings at 3360 hours)

60% more efficient than competition

\$26.5k/yr (95% vs 60% + 25% recycle)

No CIP! vs 2x/mth \$9k/yr (~\$3/mt savings at 4h/mo down time)

No impurities exposed to moving parts

arisdyne

CFC[™]- over 25 successful years

- First applications: Reaction enhancement, Nanomaterials synthesis,
- Strong IP: 40+ issued patent families, 250+ patents and patent applications
- Currently more than 15% of all soy, canola and sun oil is produced with CFC[™]
- Non-Confidential Blue-Chip Customers:

Thank You For Your Time

Darren Litle Dir. of Techn. Sales – Oils & Fats & Biod. +1 (216) 389-0230 dlitle@arisdyne.com