Inputs:				Stand Alone Glass	Balustrade	Detail Ref.	Sheet No:
WL := 5	psf (int	terior load)		(with Base S	Shoe)	A42-0099	1
P := 200	lb (po	pint load)					
W _h := 4.17	pli (ho	orizontal uniform load)	<u>Us</u>	<u>se 1/2" Glass, Fully Te</u>	mpered_		1
W _V := 0	pli (ve	ertical uniform load)	wit Mi	th polished edges inimum Glass Lite Widtl	h: 3'-0" *		
h:=43-4.25=38.75	in (he	eight of rail)					
w := 36	in (mi	inimum glass lite width)*	*N	lote: narrower widths may be	equivalent		
t := 0.469	in (gla	ass equivalent thickness	s) if a	a top channel or handrail is p	resent to		
Fg := 6000	psi (gla	ass allowable bending s	tress)	ansfer the live loads to the ad	jacent lites.		
Fgw := 6000	psi (gla	ass allowable bending s	tress WL)				
Eg := 10400000	psi gla	ass modulus of elasticty					
S:= 12	in (fas	stener spacing)					
Calculations:							
$l_{g1} := \frac{\min(h, w) \cdot t^3}{12} = 0$	0.309 in ²	$4 \qquad S_{g1} := \frac{\min(h, w) \cdot t}{6}$	2 = 1.320 in	3			
$lg_2 := \frac{S \cdot t^2}{12} = 0.103$ i	4 n	$S_{g2} := \frac{S \cdot t^2}{6} = 0.44$	0 in ³				
Point Load:							
$M_{g1} := P \cdot h$	Mg1 =	= 7750 in lb					
$f_{g1} := \frac{M_{g1}}{S_{g1}}$	fg1 =	5872 psi	<u>NOTE:</u> Und deflect abc per ASTM	der full design load, the but 1-3/16", this is acce E2358 deflection limits	rail will ptable		
$\Delta_{g1} := \frac{1}{3 \cdot E_{g} \cdot I_{g1}}$	Δ_{g1} =	= 1.205 in	Customer p	please verify the deflec	tion is		5
Uniform Load:							
$\Delta_{g2} \coloneqq \frac{\left(W_{h} \cdot S\right) \cdot h^3}{3 \cdot E_g \cdot I_{g2}}$	Δ_{g2}	2 = 0.905 in					
$M_{g2} := (W_h \cdot S) \cdot h + W_v$	·S·∆g2 =	= 1939 in·lb	Rea	actions from Point	Load:		
$f_{g2} \coloneqq \frac{M_{g2}}{S_{g2}}$	fg2 =	4408 psi		V _p := P	Vp	= 200 lb	
Wind Load:				Mp := Mg1	Mp	= 7750 in · lb	
$W_{WL} := \frac{WL \cdot S}{144}$	WWL	= 0.42 pli					
Www.h ²			Rea	actions from Wind	or Uniform	n Load:	
$M_{g3} := \frac{W_{WL}}{2}$	Mg3 =	= 313 in lb		$V_{W} := \max\left(W_{WL} \cdot h, \frac{M_{g2}}{h}\right)$	V _w	- = 50 lb	
$\Delta_{g3} := \frac{1100211}{8 \cdot E_g \cdot I_{g2}}$	Δ_{g3} =	= 0.109 in		$M_{W} := max \left(M_{g2} , M_{g3} \right)$	Mw	, = 1939 in ⋅lb	
$f_{g3} \coloneqq \frac{Mg3}{S_{g2}}$	fg3 =	711 psi			,	,	
$\Delta_{\text{all}} := \frac{h}{24} + \frac{w}{96}$	$\Delta_{\text{all}} =$	= 1.99 in G	LASS := "Of	$K^{"} \text{if} \frac{\max(fg1,fg2)}{Fg} \leq 1 \land \frac{fg2}{Fg}$	$\frac{\log 3}{\log w} \le 1 \land \frac{\max(\Delta w)}{\log w}$	$\frac{\Delta_{g1}, \Delta_{g2}, \Delta_{g3}}{\Delta_{all}}$	≦ 1
			"FA	AILS" otherwise		GL	ASS = "OK"
RICF		105 School Creek Trail	Project Desc	cription:	Job No:	R17-03-0	28
	ING	Luxemburg, WI 54217 Phone: (920) 617-1042	Morse	Industries - Base	Engineer: JJ	W Sheet No:	1
	5737	Fax: (920) 617-1100 www.rice-inc.com	She	oe 2.75 x 4.25	Date: 3/13	3/17 Rev:	
	-0707	1	1			I Dale.	

Inputs:					Stan	d Alone Glas	s Balus	strade	Deta	ail Ref.	Sheet No	o:
N:= 4		(Number c	of Fasteners Effective a	t Ends)		(with Base	Shoe)		A42	-0099	1 A	
t _S := 0.375	in	(Wall Thid	kness of Shoe)					7				
H:= 4.25	in	(Height of	Base)					4	1	4		
W := 2.75	in	(Width of	Base)						1		5	
w = 36	in	(Minimum	Glass Lite Width)								300	
C _f := 0.85		(Crushing	Factor Required)						1		5,±(25,]
Outputs:	(From	Previous S	Sheet)			757]					e [0,37	95 [4.
V _p = 200	lb	(Shear Fro	om Point Load)			0			1		340.	107
M _p = 7750	in∙lb	(Moment F	From Point Load)			9.05					9.5	
V _W = 50	lb	(Shear Fro	om Wind/Uniform Load))		-		- <u>L</u>	+ ;		-	
$M_{W} = 1939$	in∙lb	(Moment F	From Wind/Uniform Loa	d)				L	¹			
S = 12	in	(Fastener	Spacing)	г	900'07	C/S'T1 2'0+S4'+			-			
h = 38.75	in	(Height Fr	om Top of Rail to Top o	f Base)	,000 0+,	32013 004007		575	י 1 58'6	59	-	
<u>Calculatio</u>	<u>ns:</u>				Bas	se Shoe Analy	ysis:					
M _{tot1} := M _p +	+ Vp∙H		M _{tot1} = 8600 in I	b		$L_{eff} := \frac{M_{tot1} \cdot 6}{1}$		Ī	_eff = 2	9.35 in		
$M_{tot2} := M_W$	+ V _W ∙H		$M_{tot2} = 2152$ in \cdot I	b		$12500 \cdot t_s^2$ $L_{min} := min(w, h)$		ւ լ	-min = 3	36 in		
Anchors to	Cond	crete:				$t_{req} := \sqrt{\frac{M_{tot2} \cdot 6}{12500 \cdot S}}$		t	req = 0	.29 in		
$M_1 := \frac{M_{tot1}}{N} \cdot$	·1.6·(3)		$M_1 = 10320$ in·lb					t	s = 0.3	8 in		
$V_1 := \frac{V_p}{N} \cdot 1.6$	6⋅(3)		V ₁ = 240 lb			Use Extruded 6063-T5 Alloy	Alumin Minimun	um Bas ก	se Sh	oe As Sł	<u>nown</u>	
IN					Ar	nchors to Ste	el:					
$M_2 := M_{tot2}$	1.6 (3)		$M_2 = 10328 \text{in-lb}$			$T_1 := \frac{M_{tot1}}{N{\cdot}W{\cdot}0.5{\cdot}C_f}$		T ₁ =	1840	lb		
$V_2 := V_W \cdot 1.6$	·(3)		$V_2 = 240$ lb			$V_3 := \frac{V_p}{N}$		Va	; = 50	lb		
SEE HILT	I PRO	FIS OR P	POWERS PDA DA	TA		$T_2 := \frac{M_{tot2}}{W_{\cdot 0} 5 \cdot C_{f}}$		T2 =	1841	lb		
<u>Use 1/2" Dia</u> 300 Series S	a <u>. SS I</u> Stainle	ess Steel	<u>(Bolt IZ or Equa</u>			V ₄ := V _W		V4 =	= 50	lb		
Embedment:	: 3-5/8	" Min.				T _{all} := 5676		Tall	= 5676	lb		
2nd Edge Distant	stance	: 4"				V _{all} := 2984		Vall	= 2984	lb		
Spacing: 12' Min. Slab Th Concrete Str	" nicknes rength:	ss: 8" f'c= 4,00	00 psi, Cracked Co	ncrete		$I := \left(\frac{max(V_3, V_4)}{V_{all}}\right)$	$\Big)^2 + \left(\frac{\max}{2}\right)^2$	$\left(\frac{T_1, T_2}{T_{all}} \right)^2$	2	l = 0.1	1 < 1.0	
Instal	l per l	Manufact	urer's instruction	S		<u>Use 1/2-13 S</u> (300 Series S	5.S. Cap 5.S., Cor	Screws nd. CW,	6 @ 1 Fy =	2" O.C. 65 ksi)		
DICE			105 School Creek Trail	Project De	escription:		Job No:		R	17-03-028	3	
	INFL	RINC	Luxemburg, WI 54217 Phone: (920) 617-1042	Morse	e Indus	stries - Base	Enginee	r: JJV	V S	Sheet No:	1 A	
			Fax: (920) 617-1100	S	hoe 2.7	75 x 4.25	Date:	3/13/	/17 F	Rev:		\square

Chk By:

Date:

www.rice-inc.com

Template:

REI-MC-5737

Profis Anchor 2.7.2

www.hilti.us

Company: Specifier: Address: Phone I Fax: E-Mail:

Page: Project: Sub-Project I Pos. No.: Date:

3/15/2017

1

Specifier's comments:

Ι

1 Input data

Anchor type and diameter:	Kwik Bolt TZ - SS 316 1/2 (3 1/4)
Effective embedment depth:	h _{ef} = 3.250 in., h _{nom} = 3.625 in.
Material:	AISI 316
Evaluation Service Report:	ESR-1917
Issued I Valid:	6/1/2016 5/1/2017
Proof:	Design method ACI 318 / AC193
Stand-off installation:	e_{b} = 0.000 in. (no stand-off); t = 0.500 in.
Anchor plate:	$I_x \times I_y \times t$ = 2.750 in. x 26.000 in. x 0.500 in.; (Recommended plate thickness: not calculated
Profile:	no profile
Base material:	cracked concrete, 4000, f _c ' = 4000 psi; h = 8.000 in.
Reinforcement:	tension: condition B, shear: condition B; no supplemental splitting reinforcement present
	edge reinforcement: none or < No. 4 bar
Seismic loads (cat. C, D, E, or F)	no

Geometry [in.] & Loading [lb, in.lb]

Profis Anchor 2.7.2

₽,

Company:	
Specifier:	
Address:	
Phone I Fax:	
F-Mail [.]	

www.hilti.us

Page: Project: Sub-Project I Pos. No.: Date:

3/15/2017

2

2 Load case/Resulting anchor forces %γ Load case: Design loads Anchor reactions [lb] Tension force: (+Tension, -Compression) Tension force 2766 Anchor Shear force y Shear force Shear force x 80 -80 1 0 Censicession 2 2766 80 -80 0 3 2766 80 -80 0 max. concrete compressive strain: 0.38 [‰] 1632 [psi] max. concrete compressive stress: resulting tension force in (x/y)=(0.000/0.000): 8298 [ib] resulting compression force in (x/y)=(1.245/0.000): 8298 [lb]

3 Tension load

	Load N _{ua} [lb]	Capacity _φ N _n [lb]	Utilization $\beta_N = N_{ua}/\phi N_n$	Status
Steel Strength*	2766	8665	32	OK
Pullout Strength*	N/A	N/A	N/A	N/A
Concrete Breakout Strength**	8298	10263	81	OK
* anchor having the highest loading	**anchor group (anchors in tension)			

3.1 Steel Strength

N _{sa}	= ESR value	refer to ICC-ES ESR-1917
φN _s	_a ≥ N _{ua}	ACI 318-08 Eq. (D-1)

I

Variables

A _{se,N} [in. ²]	f _{uta} [psi]	-	
Calculations	110000		
N _{sa} [lb] 11554			
Results			
N _{sa} [lb]	∲ steel	φ N _{sa} [lb]	N _{ua} [lb]
11554	0.750	8665	2766

www.hilti.us

Company: Specifier: Address: Phone I Fax: E-Mail:

Page: 3 Project: 3 Sub-Project I Pos. No.: 3 Date: 3/

3/15/2017

3.2 Concrete Breakout Strength

$N_{\rm cbg}$	$= \left(\frac{A_{\rm Nc}}{A_{\rm Nc0}}\right) \psi_{\rm ec,N} \psi_{\rm ed,N} \psi_{\rm c,N} \psi_{\rm cp,N} N_{\rm b}$	ACI 318-08 Eq. (D-5)
φ N _{cbg}	g≥N _{ua}	ACI 318-08 Eq. (D-1)
A _{Nc}	see ACI 318-08, Part D.5.2.1, Fig. RD.5.2.1(b)	
A_{Nc0}	$= 9 h_{ef}^2$	ACI 318-08 Eq. (D-6)
Ψ ec,N	$= \left(\frac{1}{1 + \frac{2 e_{N}}{3 h_{ef}}}\right) \le 1.0$	ACI 318-08 Eq. (D-9)
$\psi_{\text{ed},\text{N}}$	$= 0.7 + 0.3 \left(\frac{c_{a,min}}{1.5h_{ef}} \right) \le 1.0$	ACI 318-08 Eq. (D-11)
$\psi_{\text{ cp,N}}$	$= MAX\left(\frac{c_{a,min}}{c_{ac}}, \frac{1.5h_{ef}}{c_{ac}}\right) \le 1.0$	ACI 318-08 Eq. (D-13)
N _b	$= k_c \lambda \sqrt{f_c} h_{ef}^{1.5}$	ACI 318-08 Eq. (D-7)

Ι

Variables

h _{ef} [in.]	e _{c1,N} [in.]	e _{c2,N} [in.]	c _{a,min} [in.]	Ψ c,N		
3.250	0.000	0.000	4.000	1.000		
c _{ac} [in.]	k _c	λ	ť _c [psi]			
6.000	17	1	4000			
Calculations						
A _{Nc} [in. ²]	A _{Nc0} [in. ²]	Ψ ec1,N	Ψ ec2,N	Ψ ed,N	Ψ cp,N	N _b [lb]
251.83	95.06	1.000	1.000	0.946	1.000	6299
Results						

N _{cbg} [lb]	∮ concrete	φ N _{cbg} [lb]	N _{ua} [lb]
15789	0.650	10263	8298

www.hilti.us		Profis Anchor 2.7
Company:	Page:	4
Specifier:	Project:	
Address:	Sub-Project I Pos. No	
Phone I Fax:	Date:	3/15/2017
E-Mail:		

4 Shear load

	Load V _{ua} [lb]	Capacity 🖕 V _n [lb]	Utilization $\beta_V = V_{ua}/\phi V_n$	Status
Steel Strength*	80	4472	2	OK
Steel failure (with lever arm)*	N/A	N/A	N/A	N/A
Pryout Strength**	240	22105	2	ОК
Concrete edge failure in direction y-**	240	4248	6	ОК
	<i>,</i> , , , ,			

* anchor having the highest loading **anchor group (relevant anchors)

4.1 Steel Strength

V_{sa}	= ESR value	refer to ICC-ES ESR-1917
$\phi \ V_{stee}$	l ≥ V _{ua}	ACI 318-08 Eq. (D-2)

Variables

A _{se,V} [in. ²]	f _{uta} [psi]
0.10	115000

Calculations

V_{sa} [lb] 6880

Results

V _{sa} [lb]	∲ steel	φ V _{sa} [lb]	V _{ua} [lb]
6880	0.650	4472	80

4.2 Pryout Strength

V_{cpg}	$= k_{cp} \left[\left(\frac{A_{Nc}}{A_{NcN}} \right) \psi_{ec,N} \psi_{ed,N} \psi_{c,N} \psi_{cp,N} N_{b} \right]$	ACI 318-08 Eq. (D-31)
ϕV_{cpg}	l≥V _{ua}	ACI 318-08 Eq. (D-2)
A _{Nc}	see ACI 318-08, Part D.5.2.1, Fig. RD.5.2.1(b)	
A_{Nc0}	= 9 h _{ef} ²	ACI 318-08 Eq. (D-6)
$\psi_{\text{ec,N}}$	$= \left(\frac{1}{1 + \frac{2}{3} \frac{e_N}{h_{ef}}}\right) \le 1.0$	ACI 318-08 Eq. (D-9)
$\psi \; ed, N$	$= 0.7 + 0.3 \left(\frac{c_{a,min}}{1.5h_{ef}} \right) \le 1.0$	ACI 318-08 Eq. (D-11)
$\psi_{\text{ cp,N}}$	= MAX $\left(\frac{c_{a,min}}{c_{ac}}, \frac{1.5h_{ef}}{c_{ac}}\right) \le 1.0$	ACI 318-08 Eq. (D-13)
N _b	$= k_c \lambda \sqrt{f_c} h_{ef}^{1.5}$	ACI 318-08 Eq. (D-7)

Variables

k _{cp}	h _{ef} [in.]	e _{c1,N} [in.]	e _{c2,N} [in.]	c _{a,min} [in.]		
2	3.250	0.000	0.000	4.000		
Ψ c,N	c _{ac} [in.]	k _c	λ	f _c [psi]		
1.000	6.000	17	1	4000		
Calculations						
A _{Nc} [in. ²]	A _{Nc0} [in. ²]	Ψ ec1,N	Ψ ec2,N	Ψ ed,N	Ψ cp,N	N _b [lb]
251.83	95.06	1.000	1.000	0.946	1.000	6299
Results						
V _{cpg} [lb]	∲ concrete	φ V _{cpg} [lb]	V _{ua} [lb]			
31578	0.700	22105	240			

www.hilti.us			Profis Anchor 2.
Company:		Page:	5
Specifier:		Project:	
Address:		Sub-Project I Pos. No.:	
Phone I Fax:		Date:	3/15/2017
F-Mail [.]	·		

4.3 Concrete edge failure in direction y-

V_{cbg}	$= \left(\frac{A_{Vc}}{A_{Vc0}}\right) \psi_{ec,V} \psi_{ed,V} \psi_{c,V} \psi_{h,V} \psi_{parallel,V} V_{b}$	ACI 318-08 Eq. (D-22)
φ V _{cbg}	$_{\rm J} \geq V_{\rm ua}$	ACI 318-08 Eq. (D-2)
A _{Vc}	see ACI 318-08, Part D.6.2.1, Fig. RD.6.2.1(b)	
A _{Vc0}	$= 4.5 c_{a1}^2$	ACI 318-08 Eq. (D-23)
ψ ec,V	$= \left(\frac{1}{1 + \frac{2e_v}{3c_{a1}}}\right) \le 1.0$	ACI 318-08 Eq. (D-26)
$\psi_{\text{ed},\text{V}}$	$= 0.7 + 0.3 \left(\frac{c_{a2}}{1.5c_{a1}} \right) \le 1.0$	ACI 318-08 Eq. (D-28)
$\psi_{\text{h,V}}$	$=\sqrt{\frac{1.5c_{a1}}{h_a}} \ge 1.0$	ACI 318-08 Eq. (D-29)
V_{b}	$= \left(7 \left(\frac{l_e}{d_a}\right)^{0.2} \sqrt{d_a}\right) \lambda \sqrt{f_c} c_{a1}^{1.5}$	ACI 318-08 Eq. (D-24)

Variables

5 Combined tension and shear loads

β _N	βv	ζ	Utilization β _{N,V} [%]	Status
0.809	0.056	5/3	72	OK

 $\beta_{\mathsf{N}\mathsf{V}} = \beta_\mathsf{N}^\zeta + \beta_\mathsf{V}^\zeta <= 1$

6 Warnings

- The anchor design methods in PROFIS Anchor require rigid anchor plates per current regulations (ETAG 001/Annex C, EOTA TR029, etc.). This means load re-distribution on the anchors due to elastic deformations of the anchor plate are not considered - the anchor plate is assumed to be sufficiently stiff, in order not to be deformed when subjected to the design loading. PROFIS Anchor calculates the minimum required anchor plate thickness with FEM to limit the stress of the anchor plate based on the assumptions explained above. The proof if the rigid base plate assumption is valid is not carried out by PROFIS Anchor. Input data and results must be checked for agreement with the existing conditions and for plausibility!
- Condition A applies when supplementary reinforcement is used. The Φ factor is increased for non-steel Design Strengths except Pullout Strength and Pryout strength. Condition B applies when supplementary reinforcement is not used and for Pullout Strength and Pryout Strength. Refer to your local standard.
- · Refer to the manufacturer's product literature for cleaning and installation instructions.
- Checking the transfer of loads into the base material and the shear resistance are required in accordance with ACI 318 or the relevant standard!

Fastening meets the design criteria!

www.hilti.us

Company: Specifier: Address: Phone I Fax: E-Mail: Page: Project: Sub-Project I Pos. No.: Date:

3/15/2017

6

7 Installation data

Anchor plate, steel: -Anchor type aProfile: no profileInstallation torHole diameter in the fixture: $d_f = 0.563$ in.Hole diameterPlate thickness (input): 0.500 in.Hole depth in fRecommended plate thickness: not calculatedMinimum thickDrilling method: Hammer drilledCleaning: Manual cleaning of the drilled hole according to instructions for use is required.

I

Anchor type and diameter: Kwik Bolt TZ - SS 316 1/2 (3 1/4) Installation torque: 480.001 in.lb Hole diameter in the base material: 0.500 in. Hole depth in the base material: 4.000 in. Minimum thickness of the base material: 8.000 in.

7.1 Recommended accessories

Input data and results must be checked for agreement with the existing conditions and for plausibility! PROFIS Anchor (c) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

4.000

4.000

3

0.000

-12.000

www.hilti.us			Profis Anchor 2.7.2	
Company: Specifier: Address: Phone I Fax: E-Mail:	I	Page: Project: Sub-Project I Pos. No.: Date:	7 3/15/2017	

8 Remarks; Your Cooperation Duties

- Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas
 and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must be
 strictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted
 prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the
 data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be
 put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly
 with regard to compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an
 aid to interpret norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or
 suitability for a specific application.
- You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for the regular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do not use the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software in each case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost or damaged data or programs, arising from a culpable breach of duty by you.