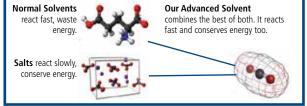


The CDRMax[®] Process

The CDRMax® process captures carbon dioxide (CO₂) from industrial flue gases or off-gases emitted from power plants, boilers, kilns and chemical facilities. The technology removes from 50 to 95% of the CO₂ from natural gas, coal, and petroleum-fired processes to produce industrial grade CO₂. The process is applicable from mid-scale (100s of metric tons per day) to large-scale (1,000s of metric tons per day) capacities for industrial carbon capture and utilization (ICCU) applications.


Technology Benefits

CDRMax® operates at atmospheric pressure to capture and purify CO₂ from low pressure flue gas and off-gas streams like kilns. The technology can be flexed to manage CO₂ concentrations in the source gas from 3% to 25% and produce CO₂ with purities between 95-99%.

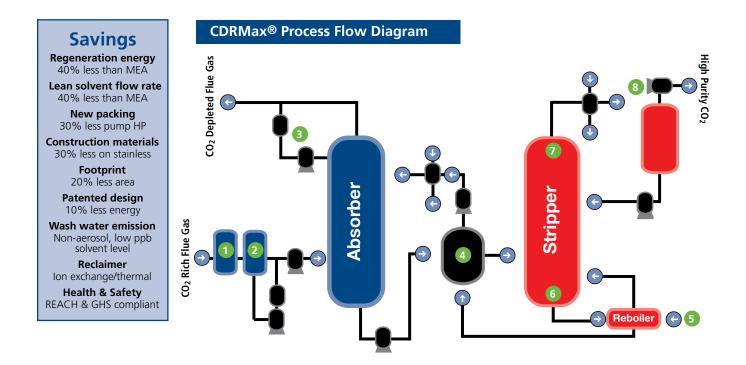
Reduced Life-Cycle Costs

The CDRMax[®] process captures more CO₂ with smaller equipment and lower operating costs. CAPEX can be reduced by 20% and OPEX by 40% when compared to conventional MEA-based absorption. The process uses a proprietary solvent that:

- Increases CO₂ loading to reduce pump sizing & circulation
- Reduces heat/power duties by 20-40%
- Minimizes corrosion thereby extending equipment life
- Requires no anti-foaming and anti-corrosion additives
- Keeps working resists solvent degradation and foaming
- Lowers solvent emissions and waste-disposal costs

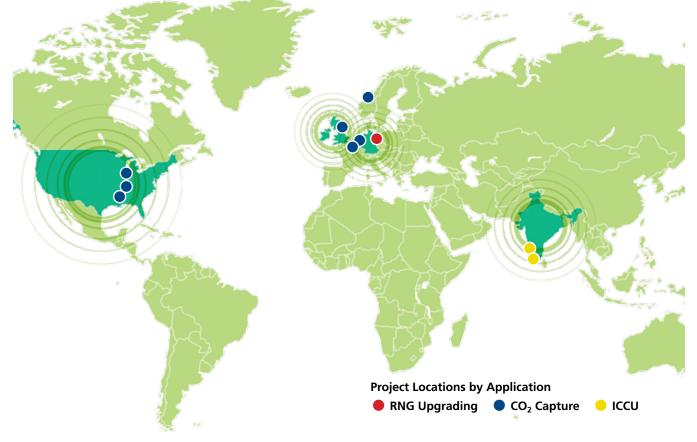
For either greenfield plants or as drop-in replacements at brownfield sites, the APBS-CDRMax® solvent will reduce costs and extend plant life without major equipment changes.

Working Principles (Refer to Process Flow Diagram below.)


Flue Gas Conditioning – Flue gas is conditioned by an SOx/NOx scrubber (1) and then cooled (2).

Absorption – The conditioned gas enters an absorption column where it contacts the counter-current flow of our proprietary solvent for efficient CO₂ absorption.

Washing – The depleted flue gas exits the absorber column and passes through an integrated water washer (3) to minimize the loss of the solvent.


Stripping – The CO₂ rich solvent from the absorber bottom flows to the lean/rich heat exchanger (4), where the rich solvent is heated before entering the stripper column. The lean solvent (low CO₂) flows to the reboiler, where it is heated by auxiliary steam (5). The steam from the reboiler enters the stripper tower (6) flowing upward, counter-current to the rich solution. The absorbed CO₂ is released from the rich solvent and flows to the top of the stripper tower (7). The lean solvent is returned to the absorber column via the lean/rich heat exchanger for further flue gas processing.

The high purity CO₂ is directed to the end-use application. (8)

Presence and Experience

Carbon Clean Solutions maintains headquarters in the UK, and conducts operations through offices in the USA, Western Europe and India.

A Proven Track Record

CCSL is a recognized leader in CO_2 capture and reuse as demonstrated by > 30 plants now operating with our technology or solvent.

ADMINISTRATION

CORPORATE HEADQUARTERS LONDON, UK SALES OFFICE HAMBURG, DE SALES OFFICE ALICANTE, ES SALES OFFICE CHICAGO, USA RESEARCH CENTER SHEFFIELD, UK ENGINEERING CENTER MUMBAI, INDIA

