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VARIANCE AS APPLIED TO CRYSTAL OSCILLATOR

Before we can discuss VARIANCE AS APPLIED TO CRYSTAL OSCILLATORS we need to understand what a 

Variance is, or is trying to achieve.

actually receive’ against ‘what we expect to receive’. It is, simply, a mathematical formula applied to a set of 

data points / samples / readings which are usually collected over a specified per

types of Variances, each tailored to suit a particular application. Variance is σ

used for √σy
2
, it is up to the individual to interpret which is being quoted. Variance is only useful if it c

Convergence means the more samples we take the closer the resulting Variance gets to a steady value. Non 

convergence means the Variance just gets bigger and bigger as we take more and more samples.

 
An example of a converging Variance is the numb

times we flip the coin the more likely the Variance is to converge to 0.25 (0.25 is 0.5

converging Variance is the age of a person, the more data we collect the larger t

heading for a steady value. This means we have to have an understanding of the underlying causes of the 

variability of the collected data before we can decide if a 

 

For a crystal oscillator ‘what we expect to receive’ is a fixed / stable frequency that never changes. ‘What we 

actually receive’ is very close to a fixed / stable frequency but it is perturbed by the 

noise sources. This means Variance is another way of meas

domain, (as is jitter). To understand the underlying inherent noise sources of a 

consider the stability of the crystal 

These inherent noise sources are covered by the article PHASE NOISE IN CRYSTAL OSCILLATORS.

 
Variance, Jitter and Phase Noise are all inter related, the choice of which to use when considering the stability 

of a crystal oscillator is usually application specific. RF (Radio Frequency) Engineers working in Radar or Base 

Station design will be interested in Phase Noise as poor Phase Noise performance will affect Up/Down 

conversions and channel spacing. Digital Engineers working 

modern Telecoms infrastructure) will be interested in 

slips and excessive re-send traffic. Engineers working in GPS will be interested in Variance as 

increase acquisition lock times and may cause loss of lock. Each application is interested in a different part of 

the Phase Noise spectrum. 

 
As stated earlier there are various types of Variances, each tailored to suit a particular applic

discussion is about VARIANCE AS APPLIED TO CRYSTAL OSCILLATORS we will consider Standard Variance, and 

show why it is not suitable for 

Variance, which are suitable for cr

frequency stability of the oscillator with respect to time.
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VARIANCE AS APPLIED TO CRYSTAL OSCILLATOR

Before we can discuss VARIANCE AS APPLIED TO CRYSTAL OSCILLATORS we need to understand what a 

Variance is, or is trying to achieve. In simple terms a Variance tries to put a meaningful figure to ‘what we 

actually receive’ against ‘what we expect to receive’. It is, simply, a mathematical formula applied to a set of 

data points / samples / readings which are usually collected over a specified period of time. There are various 

types of Variances, each tailored to suit a particular application. Variance is σy
2
 , but the term Variance is also 

, it is up to the individual to interpret which is being quoted. Variance is only useful if it c

Convergence means the more samples we take the closer the resulting Variance gets to a steady value. Non 

convergence means the Variance just gets bigger and bigger as we take more and more samples.

An example of a converging Variance is the number of times the flip of a regular coin turns up heads. The more 

times we flip the coin the more likely the Variance is to converge to 0.25 (0.25 is 0.5
2
). An example of a non 

converging Variance is the age of a person, the more data we collect the larger the Variance gets, it is not 

This means we have to have an understanding of the underlying causes of the 

variability of the collected data before we can decide if a Variance will have any meaning.

we expect to receive’ is a fixed / stable frequency that never changes. ‘What we 

actually receive’ is very close to a fixed / stable frequency but it is perturbed by the crystal 

noise sources. This means Variance is another way of measuring the stability of a crystal 

itter). To understand the underlying inherent noise sources of a crystal o

rystal oscillator in the frequency domain, i.e. the crystal o

These inherent noise sources are covered by the article PHASE NOISE IN CRYSTAL OSCILLATORS.

Variance, Jitter and Phase Noise are all inter related, the choice of which to use when considering the stability 

llator is usually application specific. RF (Radio Frequency) Engineers working in Radar or Base 

Station design will be interested in Phase Noise as poor Phase Noise performance will affect Up/Down 

conversions and channel spacing. Digital Engineers working in Time Division Multiplexing (the majority of 

modern Telecoms infrastructure) will be interested in jitter as poor jitter performance will result in Network 

send traffic. Engineers working in GPS will be interested in Variance as 

increase acquisition lock times and may cause loss of lock. Each application is interested in a different part of 

As stated earlier there are various types of Variances, each tailored to suit a particular applic

discussion is about VARIANCE AS APPLIED TO CRYSTAL OSCILLATORS we will consider Standard Variance, and 

show why it is not suitable for crystal oscillator stability measurements, Allan Variance and Hadamard 

rystal oscillator stability measurements. In particular we will consider the 

scillator with respect to time. 
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VARIANCE AS APPLIED TO CRYSTAL OSCILLATORS 

Before we can discuss VARIANCE AS APPLIED TO CRYSTAL OSCILLATORS we need to understand what a 

terms a Variance tries to put a meaningful figure to ‘what we 

actually receive’ against ‘what we expect to receive’. It is, simply, a mathematical formula applied to a set of 

iod of time. There are various 

, but the term Variance is also 

, it is up to the individual to interpret which is being quoted. Variance is only useful if it converges. 

Convergence means the more samples we take the closer the resulting Variance gets to a steady value. Non 

convergence means the Variance just gets bigger and bigger as we take more and more samples. 

er of times the flip of a regular coin turns up heads. The more 

). An example of a non 

he Variance gets, it is not 

This means we have to have an understanding of the underlying causes of the 

Variance will have any meaning. 

we expect to receive’ is a fixed / stable frequency that never changes. ‘What we 

rystal oscillators inherent 

rystal oscillator in the time 

oscillator it is useful to 

oscillators Phase Noise. 

These inherent noise sources are covered by the article PHASE NOISE IN CRYSTAL OSCILLATORS. 

Variance, Jitter and Phase Noise are all inter related, the choice of which to use when considering the stability 

llator is usually application specific. RF (Radio Frequency) Engineers working in Radar or Base 

Station design will be interested in Phase Noise as poor Phase Noise performance will affect Up/Down 

ultiplexing (the majority of 

itter performance will result in Network 

send traffic. Engineers working in GPS will be interested in Variance as poor Variance can 

increase acquisition lock times and may cause loss of lock. Each application is interested in a different part of 

As stated earlier there are various types of Variances, each tailored to suit a particular application. As this 

discussion is about VARIANCE AS APPLIED TO CRYSTAL OSCILLATORS we will consider Standard Variance, and 

scillator stability measurements, Allan Variance and Hadamard 

scillator stability measurements. In particular we will consider the 
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Standard Variance, for a population of samples (the data), is the mean (arithmetic average) of the squares of 

the differences between the respective samples and their mean. It attempts to put a single value to the extent 

the population of samples (the data) varies from the ‘average’ value. If the Variance σ

the population of samples (the data)

data) is widely spread out. This makes Variance dimensionless.

Mathematically it is expressed as (Fig. 1).

Figure 1 

Where:- 

m is the number of samples 

yi is the value of sample i 

 is the mean (arithmetic average) of the samples

σy 
2 

is the Variance 

 

Note:- The square root of the Variance is the Standard Deviation.

 

Consider these three sets of data (Fig. 2).

Figure 2 

 

Set A    9, 10, 11 

Set B    5, 10, 15 

Set C    1, 10, 19  

 

The mean (arithmetic average) y of the sa

 

Set A   y   = (9+10+11)/3 = 10 

Set B   y   = (5+10+15)/3 = 10 

Set C   y   = (1+10+19)/3 = 10 

 

 

 

y
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, for a population of samples (the data), is the mean (arithmetic average) of the squares of 

differences between the respective samples and their mean. It attempts to put a single value to the extent 

the population of samples (the data) varies from the ‘average’ value. If the Variance σy

the population of samples (the data) is closely packed. A large Variance σy
2
 says the population of samples (the 

data) is widely spread out. This makes Variance dimensionless. 

ly it is expressed as (Fig. 1). 

 

 

is the mean (arithmetic average) of the samples 

The square root of the Variance is the Standard Deviation. 

se three sets of data (Fig. 2). 

 

of the samples is 10 for all three sets. 

Geoff Trudgen, Rakon UK Ltd, July 2009 

 

, for a population of samples (the data), is the mean (arithmetic average) of the squares of 

differences between the respective samples and their mean. It attempts to put a single value to the extent 

y
2
 is close to zero then 

says the population of samples (the 
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But the Variance σy
2
 is significantly different.

 

Set A   σy
2
   = [(9-10)

2
 + (10-10)

2
 + (11

Set B   σy
2
   = [(5-10)

2
 + (10-10)

2
 + (15

Set C   σy
2
   = [(1-10)

2
 + (10-10)

2
 + (19

 

Showing the spread of data Set A ,with a low value of Standard Variance, is significantly tighter than the spread 

of data Set C ,with a high value of Standard Variance. Remember Variance is only useful if it converges. 

Standard Variance will only converge for a sample set that has a Gaussian type distribution, (the actual length 

of a sample of 50mm M6 screws for example). A sample set with a systematic drift or discontinuities (jumps in 

the data) will not converge. 

When applied to a crystal oscillator we need to consider the different 

the oscillator. Fig.3 is a Spectral Density Plot (Idealised Phase Noise Plot) showing the various noise types

an oscillator. Standard Variance will only 

(1/f
1
) and White Frequency Modulation (1/f

converge for higher orders of noise, F

Variance is not suitable for measuring a 

NOISE IN CRYSTAL OSCILLATORS explains the concept of Spectral Density. 

Figure 3 

 

Note:- This plot is a log / log plot (dBW are logarithmic)

For a precision TCXO (as a very approximate guide

Noise Source   

White Phase Modulation  

Flicker Phase Modulation  

White Frequency Modulation 

Flicker Frequency Modulation 

Random Walk of Frequency 

Flicker Walk of Frequency  

Random Run of Frequency  
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is significantly different. 

+ (11-10)
2
 ] / (3-1) = 1 

+ (15-10)
2
 ] / (3-1) = 25 

+ (19-10)
2
 ] / (3-1) = 81 

,with a low value of Standard Variance, is significantly tighter than the spread 

a high value of Standard Variance. Remember Variance is only useful if it converges. 

Variance will only converge for a sample set that has a Gaussian type distribution, (the actual length 

of a sample of 50mm M6 screws for example). A sample set with a systematic drift or discontinuities (jumps in 

o a crystal oscillator we need to consider the different types of inherent noise

Fig.3 is a Spectral Density Plot (Idealised Phase Noise Plot) showing the various noise types

Standard Variance will only converge for White Phase Modulation (f), Flicker Phase Modulation 

) and White Frequency Modulation (1/f
2
), the noise sources with a Gaussian type distribution. It will not 

converge for higher orders of noise, Flicker Frequency Modulation (1/f
3
) and higher. This is why Standard 

Variance is not suitable for measuring a crystal oscillators frequency stability over time.

NOISE IN CRYSTAL OSCILLATORS explains the concept of Spectral Density.  

 

t (dBW are logarithmic). 

a very approximate guide) these noise sources cover. 

 Slope  Offset Frequency 

   (f)   >10kHz 

 (1/f
1
)  1kHz to 10kHz 

 (1/f
2
)  10Hz to 1kHz 

 (1/f
3
)  100mHz to 10Hz 

 (1/f
4
)  1mHz to 100mHz 

 (1/f
5
)  10uHz to 1mHz 

 (1/f
6
)  <10uHz 
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,with a low value of Standard Variance, is significantly tighter than the spread 

a high value of Standard Variance. Remember Variance is only useful if it converges. 

Variance will only converge for a sample set that has a Gaussian type distribution, (the actual length 

of a sample of 50mm M6 screws for example). A sample set with a systematic drift or discontinuities (jumps in 

of inherent noise sources within 

Fig.3 is a Spectral Density Plot (Idealised Phase Noise Plot) showing the various noise types for 

converge for White Phase Modulation (f), Flicker Phase Modulation 

), the noise sources with a Gaussian type distribution. It will not 

gher. This is why Standard 

scillators frequency stability over time. The article PHASE 
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Allan Variance (also known as Two

one half the mean (arithmetic average) of the squares of the differences between successive frequency

readings sampled over a chosen measurement period. The samples must be taken 

them. (Dead time between the readings will skew the result). Using the difference between successive 

frequency readings effectively applies a one pole high pass filter function to the measurements.

 

 

Mathematically it is expressed as (Fig. 4)

Figure 4 

 

 

Where:- 

 

m    is the number of samples 

yi    is the value of sample i 

yi+1    is the value of sample i+1

τ     is Tau, the sample time 

σy
2
(τ)   is the Allan Variance 

 

Note:- The divide by two causes Allan Variance to be equal 

and uncorrelated set, i.e. white (Gaussian) noise.

 

The advantage of Allan Variance, when applied to Crystal Oscillators, over the Standard Variance is it will also 

converge for Flicker Frequency Modulation (

for Flicker Walk of Frequency (1/f
5
) and Random Run of Frequency (1/f

 

The Allan Variance for a crystal oscillator is usually quoted as the Root Allan Variance (RAV), i.e. the square 

root of σy
2
(τ). For a precision crystal 

the RAV is quoted in Hz which is simply generated by multiplying the RAV by the Oscillator frequency. I.e. a 

10MHz oscillator with a RAV quoted as

 

To measure RAV requires a frequency counter with the ability to take continuous frequency readings with no 

dead time between the measurements. One such counter is the Pendulum CNT

must be locked to an ultra stable frequency standard with excellent RAV. A good reference oscillator for the 

frequency standard is the RAKON CFPODO 

frequencies to sub 0.1 parts per billion 

synthesiser used for Heterodyning must also be low phase noise and locked to the same frequency standard as 

the counter. 

 

A gate time needs to be selected for the frequency counter, and the numbe

decided before a RAV measurement can be made. The combination of gate time and number of readings (the 

total sample time) must not be so large as to include the Flicker Walk of Frequency noise (1/f

 

A 1 second gate and 100 readings (100 seconds equates to an Offset Frequency of 10mHz) covers the White 

Phase Modulation (f) to Random Walk of Frequency(1/f

for a precision crystal oscillator. 
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Two-Sample Variance) was designed to overcome this non convergence. It is 

one half the mean (arithmetic average) of the squares of the differences between successive frequency

readings sampled over a chosen measurement period. The samples must be taken with no dead

them. (Dead time between the readings will skew the result). Using the difference between successive 

frequency readings effectively applies a one pole high pass filter function to the measurements.

as (Fig. 4) 

 

 

+1 

The divide by two causes Allan Variance to be equal to the Standard Variance if yi

and uncorrelated set, i.e. white (Gaussian) noise. 

The advantage of Allan Variance, when applied to Crystal Oscillators, over the Standard Variance is it will also 

converge for Flicker Frequency Modulation (1/f
3
) and Random Walk of Frequency(1/f

4
). It 

) and Random Run of Frequency (1/f
6
). 

The Allan Variance for a crystal oscillator is usually quoted as the Root Allan Variance (RAV), i.e. the square 

rystal oscillator it is typically a number around 70x10
-12

 

the RAV is quoted in Hz which is simply generated by multiplying the RAV by the Oscillator frequency. I.e. a 

quoted as 0.68mHz actually has a RAV of 68 pico (0.68mHz/10MHz).

To measure RAV requires a frequency counter with the ability to take continuous frequency readings with no 

dead time between the measurements. One such counter is the Pendulum CNT-90. This frequency c

must be locked to an ultra stable frequency standard with excellent RAV. A good reference oscillator for the 

RAKON CFPODO 10MHz OCXO. The frequency counter has to accurately measure 

frequencies to sub 0.1 parts per billion (0.1x10
-9

) so it is usual to employ a Heterodyne 

synthesiser used for Heterodyning must also be low phase noise and locked to the same frequency standard as 

A gate time needs to be selected for the frequency counter, and the number of readings to use needs to be 

decided before a RAV measurement can be made. The combination of gate time and number of readings (the 

total sample time) must not be so large as to include the Flicker Walk of Frequency noise (1/f

00 readings (100 seconds equates to an Offset Frequency of 10mHz) covers the White 

Phase Modulation (f) to Random Walk of Frequency(1/f
4
) noise sources and gives a good indication of the RAV 
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was designed to overcome this non convergence. It is 

one half the mean (arithmetic average) of the squares of the differences between successive frequency 

with no dead-time between 

them. (Dead time between the readings will skew the result). Using the difference between successive 

frequency readings effectively applies a one pole high pass filter function to the measurements. 

i comes from a random 

The advantage of Allan Variance, when applied to Crystal Oscillators, over the Standard Variance is it will also 

). It does not converge 

The Allan Variance for a crystal oscillator is usually quoted as the Root Allan Variance (RAV), i.e. the square 

 (70 pico). Occasionally 

the RAV is quoted in Hz which is simply generated by multiplying the RAV by the Oscillator frequency. I.e. a 

/10MHz). 

To measure RAV requires a frequency counter with the ability to take continuous frequency readings with no 

90. This frequency counter 

must be locked to an ultra stable frequency standard with excellent RAV. A good reference oscillator for the 

10MHz OCXO. The frequency counter has to accurately measure 

) so it is usual to employ a Heterodyne method. The 

synthesiser used for Heterodyning must also be low phase noise and locked to the same frequency standard as 

r of readings to use needs to be 

decided before a RAV measurement can be made. The combination of gate time and number of readings (the 

total sample time) must not be so large as to include the Flicker Walk of Frequency noise (1/f
5
). 

00 readings (100 seconds equates to an Offset Frequency of 10mHz) covers the White 

) noise sources and gives a good indication of the RAV 
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Fig.5 is the same Spectral Density Plot (Idealised Phase Noise Plot) but shown in the Time Domain as a Variance 

Tau Plot. 

Figure 5 

 

 

Note:- This plot is a log / log plot (Noise source

Plot ). 

 

Using the same approximate frequencies as the Spectral Density Plot, these noise sources cover

 

Noise Source   

White Phase Modulation  

Flicker Phase Modulation  

White Frequency Modulation 

Flicker Frequency Modulation 

Random Walk of Frequency 

Flicker Walk of Frequency  

Random Run of Frequency  

 

Note:- 1ks (kilo second) is ~17 mins.

 

Allan Variance does not distinguish between White Phase Modulation (f) and Flicker Phase Modulation (1/f

hence the slope for both types of noise sources is 

 

Allan Variance will not converge for Flicker Walk of Frequency (1/f
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Spectral Density Plot (Idealised Phase Noise Plot) but shown in the Time Domain as a Variance 

 

This plot is a log / log plot (Noise source legends are shown reversed compared to the Spectral Density 

oximate frequencies as the Spectral Density Plot, these noise sources cover

 Slope  Sample Time (Tau) 

  (τ 
-1

)   <10μs 

  (τ 
-1

)  10μs to 1ms 

 (τ 
-1/2

)  1ms to 100ms 

  (τ 
0
)  100ms to 10s 

 (τ 
1/2

)  10s 1ks 

  (τ 
1
)  1ks to 100ks  

 (τ 
3/2

)  <100ks 

s ~17 mins. 100ks is ~28 hours. 

Variance does not distinguish between White Phase Modulation (f) and Flicker Phase Modulation (1/f

both types of noise sources is τ
-1

. 

not converge for Flicker Walk of Frequency (1/f
5
) and Random Run of Frequency
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Spectral Density Plot (Idealised Phase Noise Plot) but shown in the Time Domain as a Variance 

compared to the Spectral Density 

oximate frequencies as the Spectral Density Plot, these noise sources cover. 

Variance does not distinguish between White Phase Modulation (f) and Flicker Phase Modulation (1/f
1
), 

) and Random Run of Frequency (1/f
6
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Hadamard Variance (also known as 

of Allan Variance. It is one sixth the mean (arithmetic average) of the squares of the differences between three 

successive frequency readings sampled over a chosen measurement period. The samples must be taken with 

no dead-time between them. Using the difference between three successive frequency readings effectively 

applies a 2 pole high pass filter function to the measurements.

 

Mathematically it is expressed as (Fig. 6).

Figure 6 

 

 

Where:- 

 

m    is the number of samples 

yi    is the value of sample i 

yi+1    is the value of sample i+1

yi+2    is the value of sample i+2

τ     is Tau, the sample time 

σy
2
(τ)   is the Hadamard Variance

 

 

When applied to crystal oscillators the advantage of the Hadamard Variance over the Allan Variance is for 

longer sample times as the Hadamard Variance will also converge for Flicker Walk of Frequency (1/f

Random Run of Frequency (1/f
6
). The 

removing the Oscillator ageing effect from the

 

For the noise sources White Phase Modulation (f) to Flicker Frequency Modulation (1/f

and Hadamard Variance are comparable (

Variance is ~half the Allan Variance.

 

Figure 7 

 

Noise Source   

White Phase Modulation  

Flicker Phase Modulation  

White Frequency Modulation 

Flicker Frequency Modulation 

Random Walk of Frequency 

  

 

Next step:  

For more information email: info@rakon.co.uk
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(also known as Three-Sample Variance) was designed to overcome the non convergence 

of Allan Variance. It is one sixth the mean (arithmetic average) of the squares of the differences between three 

readings sampled over a chosen measurement period. The samples must be taken with 

time between them. Using the difference between three successive frequency readings effectively 

applies a 2 pole high pass filter function to the measurements. 

ly it is expressed as (Fig. 6). 

 

 

+1 

+2 

is the Hadamard Variance 

scillators the advantage of the Hadamard Variance over the Allan Variance is for 

longer sample times as the Hadamard Variance will also converge for Flicker Walk of Frequency (1/f

). The Hadamard Variance is unaffected by linear frequency drift, effectively 

removing the Oscillator ageing effect from the Variance measurement for long sample times.

For the noise sources White Phase Modulation (f) to Flicker Frequency Modulation (1/f

and Hadamard Variance are comparable (Fig. 7) but for Random Walk of Frequency (1/f

Variance is ~half the Allan Variance. 

 Slope  Allan Variance :   Hadamard Variance

   (f)    1 : 

 (1/f
1
)   1 : 

 (1/f
2
)   1 : 

 (1/f
3
)   1 : 

 (1/f
4
)   1 : 
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designed to overcome the non convergence 

of Allan Variance. It is one sixth the mean (arithmetic average) of the squares of the differences between three 

readings sampled over a chosen measurement period. The samples must be taken with 

time between them. Using the difference between three successive frequency readings effectively 

scillators the advantage of the Hadamard Variance over the Allan Variance is for 

longer sample times as the Hadamard Variance will also converge for Flicker Walk of Frequency (1/f
5
) and 

Hadamard Variance is unaffected by linear frequency drift, effectively 

Variance measurement for long sample times. 

For the noise sources White Phase Modulation (f) to Flicker Frequency Modulation (1/f
3
) the Allan Variance 

) but for Random Walk of Frequency (1/f
4
) the Hadamard 

:   Hadamard Variance 

   0.9 
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   1.0 

   1.2 

   0.5 


