

Threat Hunting Guide

1

Introduction
What is threat hunting?
Why conduct a threat hunt?
Why hunt with network data?
Corelight logs nomenclature
Identifying users and devices

Initial Access
Drive-By Compromise
External Remote Services
Spearphishing Attachment
Spearphishing Link

Execution
Command Line Interface, PowerShell

Persistence
BITS Jobs
External Remote Services
Port Knocking
Server Software Component: Web Shell

Defense Evasion

BITS Jobs
Port Knocking
Install Root Certificate

Credential Access
Brute Force
Forced Authentication
Network Sniffing

Discovery
Network Service Scanning
Network Share Discovery
Network Sniffing (X-reference)
Remote System Discovery

Lateral Movement
Remote Desktop Protocol
Remote Services
Windows Admin Shares

Collection
Archive Collected Data
Automated Collection
Data from Network Shared Drive

Command and Control
Commonly Used Ports/Non-Standard Ports
Encrypted Channel
Fallback Channels, Multi-Stage Channels
Ingress Tool Transfer
Non-Application Layer Protocol
Non-Standard Ports
Proxy
Web Service

Exfiltration
Automated Exfiltration
Data Transfer Size Limits

https://www.corelight.com

Threat Hunting Guide

Introduction
This Threat Hunting Guide was created to teach you simple and relevant ways to discover attacks before
they happen using Corelight network data. This document — organized around the MITRE ATT&CK®
framework — is designed to help you develop a theory for threat hunting and establish prioritization.

MITRE ATT&CK is a globally-accessible knowledge base of adversary tactics and techniques based on
real-world observations. It’s used as a foundation for specific threat models and methodologies in the
private sector, government, and the cybersecurity industry. With the creation of ATT&CK, MITRE is
fulfilling its mission to solve problems for a safer world — by bringing communities together to develop
more effective cybersecurity. ATT&CK is open and available to any person or organization for use at no
charge.1

What is threat hunting?
At a high level, threat hunting is actively looking for adversaries in your network when you don’t know if
they’re inside. This is different from indicator matching, which is only watching for well-known signs of
attackers, for example, IP address(es) or file hash. Usually conducting a threat hunt involves researching
a theory, or hunch, and then analyzing data looking for something interesting. Items that are interesting
can take many shapes, for example in The Cuckoo’s Egg, by Clifford Stoll an accounting error initiated the
hunt.

This 75-cent difference was the indicator that led to the discovery of multiple corporations and
government systems that were compromised. The term “interesting” is used throughout this guide and
it is only limited by your imagination.

Why conduct a threat hunt?
Most host-or network-based detection systems rely on matching, otherwise known as signatures, to
generate alerts to signal defenders that there is something unwanted in the network. However,
attackers are continually evolving to evade detection, and signatures are developed only after the
artifact was discovered in another network. So, if you’re not hunting for artifacts in your environment,
how will you discover that attackers are evading your current defenses?

2

Threat Hunting Guide

Hunting has several positive outcomes. The first is you might find artifacts of an active intruder that your
current defenses missed. While some may think this is a tragedy, it can be a huge win, especially if the
intruder hasn’t completed their objective(s). In every hunt, there’s always something to find.

You may discover network or software misconfigurations that pose a threat, either because they
degrade network performance or introduce a vulnerability. Next, the hunt could yield run-of-the-mill
infections such as adware, or other dormant malware that aren’t directly targeting your organization but
are still a threat. Lastly, resource abuse and Shadow IT, services that are not officially supported, can
introduce risk through degraded network performance or new adversary attack vectors. Every hunt
teaches you something new about the network which will aid in your next investigation.

Why hunt with network data?
Packets. Don’t. Lie.

It’s really as simple as that. If a network-resident intruder is active in your network, there will be network
artifacts. In artifacts, there are clues to what is happening, or better yet, an exact moment-for-moment
story of what happened. For example, if a command and control channel uses DNS as a transport
mechanism, there will be DNS queries and replies. Additionally, the IP address(es) that are on the ends
of a TCP connection must be accurate, they cannot be spoofed if data is exchanged. All attacks traverse
the network, unless they are isolated to one host, so there will be packets.

Corelight logs nomenclature
Corelight provides data-centric solutions that analyze network traffic and enhance automation tools by
transforming network traffic into linked logs and extracting files. The central log is the conn log, which
documents general information about all network sessions.

The conn log records information about each network endpoint and the service (application) and also
assigns a uid (unique identifier). The uid links the conn log to related protocol logs, where specific
session information is available. For example, the conn log can list http as the service, and using the uid
you can pivot to the http log to get specific protocol information about the session. The uid separates
Corelight solutions from other security tools. This field links otherwise disparate information into easily
digestible logs. The uid is fundamental to conducting link analysis and a critically important field that
facilities pivoting, or joining multiple logs together.

3

Threat Hunting Guide

The information about each network endpoint is summarized by the id field, which is usually
represented as four separate fields:

• id.orig_h
• id.orig_p
• id.resp_h
• id.resp_p

This nomenclature may seem odd to use, because networking personnel traditionally refer to sessions
using client and server; however, using orig (originator) and resp (responder) allows security personnel
to accurately describe the connection. Think of the originating host (orig_h) as the source, or client, and
the responding host (resp_h) as the destination, or server. The field id.orig_p and id.resp_p will be
populated with the corresponding port numbers.

Many of the remaining fields within the conn log and other protocol logs are self-descriptive, but if you
get stuck, look at the Zeek documentation at https://docs.zeek.org/en/current/ for more detailed
information or visit the community slack channel at http://corelightcommunity.slack.com/.

Identifying users and devices
When identifying devices on a network, the IP or MAC addresses are regularly used to create the
‘identity.’ The device IP address is used more often for the remote identity of a device because it survives
router boundaries. When inside a network segment, the MAC address is preferred for identification

4

https://docs.zeek.org/en/current/
http://corelightcommunity.slack.com/

Threat Hunting Guide

because it can be a reliable identifier of a specific machine. Each identifier has pros and cons, and the
ability of Corelight to capture both aids SOC personnel as they investigate events.

While IP addresses are durable2 for internal investigations, they often are transient within a network due
to most networks implementing DHCP (Dynamic Host Configuration Protocol). Transient IPs are
problematic for defenders when the IDS alert identifies the session by IP addresses. Those IP addresses
are only related to the alert at the time that the alert was generated.

You can use open source tools when conducting an investigation (e.g., nslookup), to provide DNS
information for remote IPs. However, this is a point-in-time piece of information at the time of the
investigation, not when the event occurred. A better technique is to use logs created at the time of the alert
to capture the IP and FQDN (fully qualified domain name) for the remote device. To locate the internal
device, you can mine DHCP logs to identify it. There are multiple ways to identify a host and Corelight
provides this data in multiple logs that each tell a different aspect of the story. Exercise creativity and
follow every lead.

Where hostnames can be found:
• dhcp.log: host_name and domain fields represent the hostname and domain reported by a host

when requesting an IP address via DHCP, and the assigned_addr field is the IP address that was
assigned to that host.

• dns.log: if there’s an IP in the answers field, then the query field contains the hostname that the DNS
server recorded (at that time) for the IP address.

• ntlm.log: server_dns_computer_name and server_nb_computer_name refer to the DNS and Netbios
names of the machine with the IP address in the id.resp_h field. The hostname field is the hostname
of the machine with the IP address in the id.orig_h field.

• kerberos.log: in a Windows environment, for domain-joined devices, kerberos requests where the
client field contains a name ending in $, the client field is the hostname, and the id.orig_h field is the
IP address of that host. The client field is often structured like HOSTNAME$/EXAMPLEDOMAIN.COM
where HOSTNAME is the hostname and EXAMPLEDOMAIN.COM is the Windows domain name and
Kerberos realm name.

• http.log: the host field contains the hostname, domain name, or IP address of the client that
requested data from the HTTP server. Sometimes this field is an indication of the identity of the
server, the device with the IP address in the id.resp_h field.

• ssl.log: server_name field is extracted from the Server Name Indication (SNI) field in the TLS/SSL
negotiation, and is used similarly to the host field of the http log. Also, the subject field is extracted
from the subject of the server certificate, and the canonical name CN portion of the subject can
provide clues to identify a server.

5

Threat Hunting Guide

When identifying users, there are several logs that provide valuable information:
• rdp.log: depending on the version of the RDP protocol, the value of the cookie field is the username

asserted by the client, and the client IP is in the id.orig_h field.3

• ftp.log: the user field contains the username asserted by the client, and the client IP address will be
in the id.orig_h field.

• irc.log: the user field contains the username asserted by the client, and the client IP address will be in
the id.orig_h field.

• socks log: the user field contains the username asserted by the client, and the client IP address will
be in the id.orig_h field.

• http.log: the username field contains the username asserted by the client, and the client IP address
will be in the id.orig_h field, or may be indicated in the proxied field if the connection was proxied. If
proxied the id.orig_h field will contain the IP address of the proxy.

• ntlm.log: the username field contains the username asserted by the client, and the client IP address
will be in the id.orig_h field.

• kerberos.log: in a Windows environment, kerberos requests contain the username in the client field
(except for requests where the client field contains a name ending in $, which means that the
asserting identity is a device, and the id.orig_h field is the IP address of the source device. The client
field will often be structured like USERNAME/EXAMPLEDOMAIN.COM where USERNAME is the
username and EXAMPLEDOMAIN.COM is the Windows domain name and kerberos realm name.

A few words of warning about drawing conclusions about the identity of a machine or the user of a
device: know your limits (and the limits of the data). Just because a username was recorded in network
traffic does not mean that the actual person with that name is responsible — it is just a clue. You should
check to see if the user authenticated successfully, as state-sponsored cyberspies and saboteurs have
increasingly experimented with planting false flags.4 The username could have been asserted, but if the
authentication failed, then it is not a clear indicator that the user was involved. Don’t forget that devices
and software may cache credentials, so the user account may be active, but the actual person could still
be innocent. You must continue to collect information before you can confirm nefarious behavior.

For example:
• A user goes to lunch and leaves their device unlocked
• A device is compromised with a Remote Access Trojan (RAT) and a user halfway around the world is

surreptitiously assuming the identity of our victim, while the original user is also using the device
simultaneously to conduct regular business

• A malicious user within the organization has overheard a coworker saying their password out loud in
conversation, and he or she is now trying to use those credentials to log in to other systems

Also, make sure you understand what pieces of information are controlled and asserted by the clients or
servers, and consider who controls each. If an adversary is inside your network, determining what
information is trustworthy is paramount when preparing the response plan. For example, an intruder
could disable DHCP and statically assign an IP address and use it to navigate the network, making

6

Threat Hunting Guide

identification difficult, as the DHCP server records would provide conflicting information. Additionally,
when a client requests a DHCP address, an intruder could provide a false MAC address. Thus the
importance of capturing passive point-in-time logs when the event occurred.

How to hunt for specific TTPs

Initial Access
Initial access is when intruders establish their initial foothold.

Drive-By Compromise
A drive-by compromise usually results when a file is surreptitiously downloaded from a website that is
compromised. When you hunt for signs of drive-by compromise in Corelight data, your main focus is
downloads from external websites.

Begin the hunt with the http log and look for signs of downloaded executables:
1. Start with http logs where resp_fuids is not empty. This means there was a file returned from the

responder.
2. If the data volume is too large, filter out local (in-network) responders. You can filter by joining the

results to the conn log on the uid, then filtering out any records in which local_resp is “true” in the conn
log.

3. Review the resp_mime_types from the http log, and filter uninteresting results (e.g., images, text, OCSP
responses, and certificates). Often the most interesting results are executables, dlls, and
archives/containers

4. Group the results by the host and resp_mime_types fields for easy analysis.

Scan through the results and look for anything interesting or odd, such as downloads of executable files,
or file extension and mime-type mismatch.

As more attackers move to using TLS to encrypt exchanges between compromised clients and websites
they control, there will be less visibility via the http log. To regain this visibility, consider using an
enterprise SSL decryption solution and passing the decrypted HTTP traffic to your Corelight Sensor.

External Remote Services
External remote services are used by adversaries to connect to internal network resources, and hunting
for misuse of remote services usually involves two steps: discovery, and analysis. First, you must
discover what remote services are in use. Asset and service inventory information should be collected
first, but usually it’s insufficient. Often, there is natural “drift” as IT teams make changes to infrastructure
and struggle to keep asset documentation current. Empowered users make this more difficult by setting
up assets and services without involving or informing IT, a process known as “shadow IT.”

Traditional remote services, for example: RDP, VNC (remote framebuffer), and SSH (secure shell) contain
a server component and a client component. If you have a remote service hosted in your environment,

7

Threat Hunting Guide

attackers can exploit it externally to compromise machines inside the network. To identify these
services, look for conn log entries in which the service field contains rfb, rdp, or ssh, and where
local_orig is false and local_resp is true, or where the originator IP (id.orig_h) is external and the
responder IP (id.resp_h) is on the organization network. Make note of any RFP/VNC, RDP, or SSH servers
that are accepting connections from the internet.

Some remote services work in reverse, where an agent is installed on the local device, and it reaches
outward from inside the network to a set of external servers, for example, GoToMyPC and TeamViewer.
This configuration is designed to assist users (primarily home users) who don’t control the NAT or the
firewall or aren’t sophisticated enough to be able to manage port forwarding or firewall rule
management.

To discover if these remote services are in use in your environment, look for signs of outbound
connections to the services. For example, TeamViewer uses TCP port 5938 to communicate with
TeamViewer servers, so simply review the conn logs for connections where the id.resp_p is 5938 and
local_orig is true and local_resp is false. TeamViewer also uses SSL, and the domain name of the
connections should be *.teamviewer.com, so additionally you can look for entries in the ssl log in which
the server_name contains, or better yet ends with, “teamviewer.com.” (Note: because this session works
in reverse, the id.orig_h is the device in your network that has the TeamViewer client installed.) Our
second example, GoToMyPC, attempts to contact poll.gotomypc.com. Examine the http log host field for
poll.gotomypc.com, or entries in the ssl log in which the server_name is poll.gotomypc.com. For each
client software package, the list of ports and domain names varies.

Now that we’ve discussed discovery of remote services, you should compare Corelight data to a list of all
remote services that the IT department offers, such as:
• RDP Gateways
• VDI (Virtual Desktop Infrastructure) Gateways
• VPN (Virtual Private Network) Gateways
• SSH Servers

For each service exposed to the internet, aggregate a list of connections to that service from the conn
log, and include the following fields:
• id.orig_h: Origin IP address (client)
• id.resp_h: Responder IP address (server)
• id.resp_p: Responder port
• service: the application protocol that Zeek detected
• history: the history of the connection, e.g. what types of TCP flags were seen
• orig_cc: The originator’s country code

When filtering logs, ensure the history field starts with “Sh.” For TCP connections this means that the
originator sent a SYN, and the responder replied with a SYNACK (handshake). This check eliminates
connections where the server is not listening, or there is a firewall blocking the connection.

8

Threat Hunting Guide

After you have gathered all the data, begin sifting through the logs for anything interesting, such as a
connection from a country that is not expected. Use the UID from the conn log to follow-up with the
application-specific Zeek logs (rdp, rfb, ssh). For example, the rdp log contains more details about the
connection, such as the cookie field that can contain the username of the authenticating user. The last
step is to check with the user to determine whether they were actively using the system at that time.

Corelight customers have access to the Encrypted Traffic Collection (ETC) that generates inferences, or
insights, about encrypted traffic. The ssh log contains interesting information inferred about the SSH
connection, such as:
• KS for connections that appear to contain client keystrokes
• FU and FD for connections which appear to contain a file upload or download, respectively
• ABP for connections which appear not to contain any authentication, but still are successful

(“authentication bypass”)
• SV or SC for clients that appear to be version or capability scanning, respectively

If you’d like to learn more about the Corelight ETC, please contact our sales team at (510) 281-0760

Spearphishing Attachment
As a method of entry into an organization, an adversary may send a well crafted malicious attachment
to an individual or a small group in a spearphishing campaign. The attachment could be a document
that instructs the user to take some action, such as clicking a link and/or logging in to a portal; or it could
be a file crafted to exploit a vulnerability in the software used to open it, such as Adobe Acrobat or
Microsoft Word.

The Corelight smtp log contains records in the fuids field if there were any files attached to a message
delivered over SMTP. This field can be used to pivot to the files log which contains detailed information
about the file including filename, hashes, and the source. For example:

path: smtp
from: Your Friend <Jeremy.Rigeur@gmail.com>
fuids: [Fh5GBc1wdVp3x9MKxc]
mailfrom: attacker@fake-mail.com
rcptto: [victim@corp-mail.com]
subject: Definitely not a spear-phish
to: [victim@corp-mail.com]
uid: CzKseq1Y3zo2qsTYH5
user_agent: Apple Mail (2.3608.80.23.2.2)

path: files
conn_uids: [CzKseq1Y3zo2qsTYH5]
filename: WIRE_FRAUD.pdf

9

Threat Hunting Guide

fuid: Fh5GBc1wdVp3x9MKxc
md5: e71c36cddd2aa42670d89d63e653d1da
mime_type: application/pdf
sha1: bb24829550c0ca17db73d80a1d2f969e3b06ff5f
source: SMTP

To hunt for potential spearphish attempts, you can search in the files log:
1. The value in the source field is SMTP.
2. Filter out any uninteresting mime_type and/or filename values, as previously mentioned.
3. Use the hash (MD5, SHA1, or SHA256) with a file reputation service (such as Virustotal) to look for

known malicious files.

Additionally, you may start from the smtp log:
1. To reduce the data look for entries where the fuids field is non-empty.
2. Filter out known good combinations of mailfrom and from values.
3. Filter out uninteresting subject values.
4. Consider using the fuid value from the remaining records to pivot to the files log to get more

information about the file.

Corelight can perform high-speed file extraction and can filter based on MIME type, so any interesting
files, such as executables, Office documents, and PDFs are available for more scrutiny if desired.

Much of the mail that crosses the internet today is encrypted via STARTTLS over the SMTP protocol, and
this hinders visibility. To achieve better visibility without sacrificing privacy and security for your users, it
is a best practice to accept inbound SMTP at a system that supports STARTTLS, then proxy the mail to
the internal mail system, so that Corelight can generate the corresponding logs.

Spearphishing Link
Instead of sending files into an organization where they can be scrutinized by a corporate mail filter,
some adversaries send emails that only contain links. These links lead to websites that are controlled by
the attacker, and attempt to dupe the user into:
• Entering credentials that the attackers harvest
• Exploiting a vulnerability in the user’s browser
• Downloading a file to exploit another application on the user’s device

Corelight Sensors have a package5 that can log links from SMTP messages into a separate log, the
smtp_links log. This log contains a fuid field, which links the smtp_links log to the smtp log. You can
quickly pivot to the smtp log with the details about the message that delivered the malicious link.
For example:

path: smtp_links
fuid: FhahXA1eJ32gHvNP27

10

Threat Hunting Guide

id.orig_h: 172.16.0.10
id.orig_p: 62345
id.resp_h: 10.0.1.10
id.resp_p: 25,
link: http://www.hamsterwaffle.com/dl.php?id=jimmydean37
uid: C62txO1FHoJFJpsgP1

path: smtp
from: Your Friend <Jeremy.Rigeur@gmail.com>
fuids: [FhahXA1eJ32gHvNP27]
mailfrom: attacker@fake-mail.com
rcptto: [victim@corp-mail.com]
subject: Click this link, please
to: [victim@corp-mail.com]
uid: C62txO1FHoJFJpsgP1
user_agent: Apple Mail (2.3608.80.23.2.2)

To hunt for spearphishing links, start with the smtp_links log and review the link field, filtering out
benign domains until you find interesting results. Another option is to join the smtp_links log to the
smtp log via the fuids or uid field, and filter out benign combinations of mailfrom and from fields to look
for messages from unique senders.

While much of the mail that crosses the internet today is encrypted via STARTTLS over SMTP. To achieve
better visibility without sacrificing privacy and security for your users, it is a best practice to accept
inbound SMTP at a system that supports STARTTLS, then proxy the mail to the internal mail system, so
that a Corelight solution can generate the corresponding logs.

Execution
The adversary is trying to run malicious code.

Command Line Interface, PowerShell
Command line interface scripting has long been used to manage *nix-based systems, and the ability to
build and execute scripts is often exploited by attackers. For years there was no equivalent available on
Windows, and in the early 2000s Microsoft began development of a new approach to command line
management. Soon thereafter, PowerShell (PS) 1.0 was created. PS, in its various iterations, is a built-in
tool based on the .NET framework that's used to automate system administration tasks. It provides an
interface for users to access services of the Windows operating system.

Although certain PS commands are restricted by default, many commands are available to obtain
system information without an executable file. You can use LNK extensions to bypass safeguards and
execute a PS script. LNK files are usually seen as shortcuts, generally found on users’ Desktop and Start
Menu.

11

Threat Hunting Guide

Malicious LNK files are often embedded within what appears to be legitimate documents or pictures.
Once opened, the LNK executes a legitimate windows application CMD.exe or MSHTA.exe to bypass
security settings.

Corelight’s file extraction capabilities and integration with various intel platforms provide insight to
malware obfuscated by file type. By utilizing Corelight’s built-in filtering, you can tune the file extraction
parameters to target specific mime-types that are commonly used for malware delivery, including:
• Compressed files
• Microsoft Office (Word, PowerPoint, etc)
• PDF files
• TXT files (powershell, vbs)

Persistence
Persistence is the adversary trying to maintain their foothold.

BITS Jobs
Microsoft Background Intelligent Transfer Service (BITS) was created in 2001 as a mechanism for
managing file transfers that minimize disruption to the end user. BITS is commonly used to download
Windows updates and other software updates from major vendors.

Attackers have two methods of abusing BITS:
• The most common is to create a BITS transfer job directly on a host, allowing a download of secondary

payloads through a built-in Windows service that typically bypasses firewalls and other security
controls.

• Another alternative is to exfiltrate data through a BITS upload job. Uploads must connect to an IIS
server for BITS to function properly, but this requirement is trivial for malware authors to subvert.

Data transfers using the BITS service can take place over HTTP, SSL, and SMB. When BITS uses HTTP
traffic, there is a distinctive User-Agent string of “Microsoft BITS/7.5” (or 7.8 in later versions).
Unfortunately, there are no distinguishing characteristics of BITS SSL and SMB network traffic.
Therefore, the presence of BITS network traffic is not necessarily suspicious, because it is present
anywhere Windows machines are connected to the internet. Analysts still can use Corelight data to
assess if the BITS traffic is legitimate by analyzing remote systems being used for BITS data transfers. If
they are outside of CDNs or major software providers' networks, all BITS uploads should be investigated
until proven benign, as this use case is especially rare among legitimate software vendors.

12

Threat Hunting Guide

The code sample below is an http log showing what the BITS data looks like if it is over HTTP.

path: http,
uid: Ca9LrF3xl5kVCxe2K4,
id.orig_h: 10.10.199.31,
id.orig_p: 49987,
id.resp_h: 151.205.0.135,
id.resp_p: 80,
trans_depth: 1,
method: GET,host:151.205.0.135,
uri:/pdata/0731497c8fa1dce5/download.windowsupdate.com/d/msdownload/update/software/secu/20
18/05/windows10.0-kb4103723-x64_0722ab30824410046f954417ada8556d2ac308a6.cab,
version: 1.1,
user_agent: Microsoft BITS/7.8,
request_body_len: 0,
response_body_len: 1333068983,
status_code: 200,
status_msg: OK,
resp_fuids: FD283F3hrZH8yzYmb8,
resp_filenames: windows10.0-kb4103723-x64_0722ab30824410046f954417ada8556d2ac308a6.cab,
resp_mime_types: [application/vnd.ms-cab-compressed],
accept_encoding: identity,
accept: */*

External Remote Services
• See Initial Access: External Remote Services

Port Knocking
Port knocking is a technique to get a remote system to enable access to an otherwise closed port. It
typically consists of a pre-defined sequence of connections to other (often closed) ports, sometimes with
special protocol-level flags, Layer 7 banner strings, etc.

Zeek summarizes each TCP, UDP, and ICMP connection in the conn log. This detailed log provides useful
statistics about connections. The history, conn_state, and network tuple (src/dest ip/port) fields provide
the information necessary to sight port knocking. It is important to note that sighting port knocking
without an additional hint can be a daunting task, as it is easy to hide intentional sequences of
connections among the noise of a typical network.

Server Software Component: Web Shell
A web shell is a web-based implementation of a command shell. A web shell is generally a malicious web
page or code snippet introduced into an existing web server or application to provide unauthorized
access. This access can be an actual CLI shell, file management or database access tool. This is a

13

Threat Hunting Guide

common tactic because malicious traffic blends in with benign traffic to/from the web server, and it can
be difficult to identify via IDS signatures because the specifics of the web shell are easily changed.

When a web shell executes, it runs with web server software user permissions, which should be limited.
Attackers use web shells to attempt privilege escalation attacks by exploiting local vulnerabilities on the
system to assume root privileges.

Detecting web shells on the network using signature-based detections is relatively straightforward —
web shells have specific file paths, communications methods, or other behaviors that can trigger an
alert. Like most ‘atomic’ IOCs, they are easy to evade because they identify specific behaviors that can
easily be changed. Where possible, you should supplement signature detection with a threat hunting
program to find more general behaviors of anomalous activity.

Web shells attempt to hide malicious activity in normal HTTP traffic, so the http.log is an excellent data
source for investigation of web shell activity. Examples of hunt hypotheses supported by Corelight HTTP
data are:

• Unusual HTTP POST activity. This may be as simple as unexpected HTTP POSTs in the ‘method’ field of

the http.log where GETs are expected (if the affected site is primarily serving content).

‘Normal’ web traffic travels to a shortlist of common pages, with navigation via an internal hyperlink. A
web shell goes directly to the hidden page and appears as an HTTP request with no referring page.
Additionally, web traffic shows a variety of requesting IPs, user-agent strings, JA3s, etc. A web shell can
have a more homogenous group of users.

• Ferreting out suspicious logins originating from internal subnets to DMZ servers and vice versa.

This type of hunt analysis and anomaly detection is an effective way to identify malicious (or suspicious)
activity, but modern networks are noisy, chaotic places. As with most hunts, you must know what
‘normal’ data looks like so that you can successfully filter it out.
(https://github.com/nsacyber/Mitigating-Web-Shells)

Defense Evasion
Defense evasion consists of techniques that adversaries use to avoid detection throughout their
compromise.

BITS Jobs
• See Persistence: BITS Jobs
Port Knocking
• See Persistence: Port Knocking

14

https://github.com/nsacyber/Mitigating-Web-Shells

Threat Hunting Guide

Install root certificate
Public certificates are used to establish secure TLS/SSL communications. Root certificates are used to
identify the root certificate authority (CA). Root certificates are self-signed and form an anchor of trust
for public key cryptography. For example, when a root certificate is installed, the system or application
will trust certificates in the root's chain of trust. While no network-level device (e.g., routers and
switches) can show the certificate chain installed on a client system, the point of installing a malicious
root certificate is to bypass trust validation.

Using Corelight data, you can observe all aspects of the TLS/SSL session using the ssl and x509 logs.
These two logs allow analysts to identify certificates that seem suspicious by:

1. Searching the ssl log for any entries where the validation_status field doesn’t have a value of ok.
2. Reviewing records where the validation_status field either has a self-signed certificate or contains a

self-signed certificate in the certificate chain.
3. Reviewing the subject and server_name fields to determine the likely organization or website that

controls the server.
4. Filtering results where there are legitimate self-signed certificates in use, such as in communications

between IOT devices and the supporting cloud infrastructure.
5. Investigating the id.resp_h IP address to see what Autonomous System the session belongs to and

whether it’s a reasonable AS organization (such as the organization that matches the information on
the server, or a commonly-used cloud hosting provider).

6. For remaining connections, use the values in the cert_chain_fuids to pivot to the certificates in the x509
log and review the certificate details.

Focus your investigations by inspecting the local root certificate authority on the endpoint.

Credential Access
Credential access is when the adversary tries to steal account names and passwords.

Brute Force
An adversary attempts to gain unauthorized access by systematically guessing a user’s password using a
repetitive or iterative mechanism. Sometimes a brute force attack originates from a list of known
information, increasing the likelihood of success.

For example, an attacker attempting to guess the password of an Active Directory account likely results
in many connections to a Domain Controller on the LDAP port (389 or 636). An attacker attempting to
discover API URLs in an e-commerce system generates many more connections to the web server than
other clients in a similar time period and creates more HTTP status codes in the 400 and 500 range
(errors) compared to other clients.

To look for a brute force attack:
1. In the conn log, aggregate by id.orig_h, id.resp_h, id.resp_p, proto, and (optionally) service.

15

Threat Hunting Guide

2. Add a count for the number of operations and sort by the highest counts.
3. Choose a time period that makes sense, based on the size of the network/data set, starting small and

gradually increasing.
4. Filter records that are obviously permissible, such as repeated contacts from network or application

performance monitoring systems, vulnerability management systems, or business applications.
5. For unknown or suspicious records, perform a deeper investigation on that behavior. For example, look

for other connections originating from the remote IP address.
6. For protocols that can maintain connections over multiple transactions or attempts, look for

long-standing connections. These long-standing connections can also indicate repetitive behavior.

Corelight Sensors include a script that logs connections that are maintained for longer than a set of
thresholds, starting at ten minutes and continuing up to three days. If you are not a Corelight customer,
but use open source Zeek, this script is available through the Corelight GitHub page.

To hunt for long connections with the Long Connections package installed:
1. Examine the notice log.
2. Review the entries where the note is “LongConnection::found,”
3. Review each set of id.orig_h, id.resp_h, id.resp_p to understand whether these devices should have long

connections.

To hunt for long connections without the Long Connections package installed:
1. Examine the conn log.
2. Gather a list of all connections with the following fields for each: id.orig_h, id.resp_h, id.resp_p, proto,

service, and duration fields. This only includes connections that completed, either properly or via
timeout. Currently-open connections are not represented in the results.

3. Sort the results by duration, bringing the longest connections to the top.
4. Investigate each result to determine whether it’s legitimate or expected behavior.
5. Filter out expected behaviors and thoroughly investigate anything that seems suspicious.

Corelight also gives you the Encrypted Traffic Collection (ETC), which automatically looks for brute force
password guessing attempts against SSH servers within a single connection.

Forced Authentication
Some protocols automatically authenticate when a user accesses a resource without first checking to
see if the resource being accessed is trusted. For example, an attacker can embed a reference in a
Microsoft Office document to a file that’s hosted on an attacker-controlled UNC path
(\\servername\sharename\path\to\file). When the user opens the file, the machine attempts to access
the resource. The attacker-controlled server then challenges the machine for authentication, and under
most circumstances, the victim machine automatically provides cached credentials, usually in the form
of an NTLM hash. The attacker can then attempt to use the credentials for unauthorized access, usually
through reversing the hash to get the password, or re-using the hash in a pass-the-hash attack.

16

https://github.com/corelight

Threat Hunting Guide

This method requires the attacker to control server infrastructure. As a result, the most likely attack
vector is spearphishing. The attacker phishes a user on the network, and the victim machine then
reaches out to the attacker-controlled server across the internet. To hunt for this behavior, look for
authentication across the internet:
1. Look in the ntlm log for any signs of NTLM authentication in which the destination IP is on the external

network.
2. Look for entries in the conn log in which the service field contains smb (and/or ntlm), and local_resp is

false.

In LLMNR or NBT-NS poisoning, an attacker listens to local LLMNR or NBT-NS broadcasts asking for a
particular resource by name. The attacker then responds to the querying client spoofing the actual
resource. If the resource is one that usually requires authentication, then the attacker can challenge the
client for authentication. When the client authenticates, usually with a password hash, the attacker uses
the credentials to impersonate the client and access resources.

You can effectively hunt for these attacks with Corelight data, but the sensor needs to be inside of the
broadcast domain because broadcast traffic doesn’t typically traverse routers. Typically you need to
span or mirror entire VLANs, or forward LLMNR or NBT-NS traffic from client subnets and VLANs, to
places on the network that Corelight is monitoring.

Look for dns logs where id.resp_p=5355 (LLMNR) or id.resp_p=137 (NBT-NS), and filter for records where
the answers field is non-empty. Then count the number of distinct query fields per id.resp_h. This search
yields IPs that respond to more than one name.

Network Sniffing
You can’t detect an intruder who is sniffing traffic on your network using network logs because the
action is invisible; however, you can detect an intruder by sniffing on your own network because your
adversary can’t see it.

Corelight Sensors enable you to deploy an out-of-band sensor grid that generates linked logs. These logs
speed reliable observation and detection, and assist in avoiding the pitfall of prevention dependence,
while providing context for a deeper and more accurate historical analysis. As Rob Joyce, Chief of the
NSA Tailored Access Operations division, put it in his 2016 USENIX talk, “We are doing nation-state
exploitation...what can you do to defend yourself to make my life hard?”

17

Threat Hunting Guide

Discovery
The adversary is trying to learn about your environment.

Network Service Scanning
To determine which devices on a network are exploitable, and the services available on those devices,
an intruder can employ active scanning. Active scanning methods include:
• Horizontal scanning: Sending connection requests to a specific port across many IPs to see which IPs

respond. For example, scanning across many devices on port TCP/22 typically reveals devices running
an SSH server. Scanning across many devices on port TCP/445 can effectively enumerate Windows
infrastructure.

• Vertical scanning: Sending connection requests to a single IP address across many ports to see which
ports respond. This method lets attackers infer services available from that IP address.

Each of these methods can be performed using a free or commercially-available vulnerability scanner.
These products often add other logic to check service availability, version information, and if services are
vulnerable to known exploitation techniques.

If an intruder uses one or more of the above methods to attempt service discovery, the byproduct is a
failed or rejected connection. In Corelight data, these are recorded in the conn log as connections with a
conn_state of S0 (initiated, and ignored) or REJ (initiated, and rejected), and typically have a history field
where there is no ‘D’ (post-syn data from the initiator). To look for network service scanning internal to
the network:
1. Search for entries in the conn log where conn_state is S0 REJ.
2. Filter for records where local_orig=true and local_resp=true.
3. Group and count the results by the id.orig_h, and the number of unique id.resp_p, to assess the

horizontal/verticalness of the scan.
4. Inspect the list, starting with the records that have the highest count of id.resp_h or id.resp_p.
5. Identify the originator (id.orig_h) and review the list of responders (id.resp_h) and ports (id.resp_p).
6. Determine whether the behavior is acceptable based on the identity of the source, the ports involved,

and the destinations.

Not all items on the list are malicious. DHCP servers, for example, are commonly configured to ping an
IP address to confirm if the address is in use before assigning it from the pool. Print servers with a large
number of print queues attempt SNMP and/or network printing services to printers, even if those
printers are offline. For this reason, print servers can cause large numbers of S0 connections. Of course,
software that scans legitimately, such as a corporate-sanctioned vulnerability scanner or an inventory
management system, might appear in the list. Finally, network engineers conduct ad-hoc network
scanning for troubleshooting purposes. If you run across network scanning, modify the original query to
omit the records that are known to be benign, then resume hunting.

18

Threat Hunting Guide

Network Share Discovery
The most common network sharing protocol abused by attackers is SMB, the standard for Windows file
sharing. SMB is supported by every modern operating system. High-value documents that store PII,
trade secrets, network diagrams, and other sensitive data, typically live on SMB shares in enterprises of
all sizes.

Scanning for and discovering shares on an SMB server is typically done using a DCE/RPC command on
TCP port 445. Specifically, a connection to the “srvsvc” pipe — which shows up in the dce_rpc logs as an
endpoint by the same name — is followed by a call to the NetShareEnumAll or NetShareEnum functions
(called “operations” in the Zeek log). These function calls are used for legitimate file-sharing purposes,
and taken alone they are insufficient indicators of malicious intent. However, in combination with other
indicators of lateral movement, they illustrate how an attacker moved laterally within a network. Prime
targets for further investigation are ones that generate a large number of DCE_RPC function calls across
a large number of hosts in a short period.

Network Sniffing (X-reference)
• See Credential Access: Network Sniffing

Remote System Discovery
The same principles for detecting Network Service Scanning apply to detecting Remote System
Discovery. See this section for more information.

Lateral Movement
Lateral movement is what adversaries use to enter and control remote systems on a network.

Remote Desktop Protocol
The Microsoft Remote Desktop Protocol (RDP) is used to remotely control a Windows endpoint. This
protocol can be abused by an attacker to gain unauthorized access to your network (see Initial Access:
External Remote Services). Once an intruder is inside, they can use RDP to move laterally among devices.

RDP is one of the many protocols parsed by Corelight. For some environments, the presence of RDP, or
its presence on specific systems, is sufficient to trigger an investigation. For networks where RDP is
permitted, the Zeek RDP log is rich in information that helps establish whether a connection is
legitimate, for example, recording data like keyboard layout, encryption levels, or client name for a
connection.

When hunting with the rdp log:
1. Focus on the id.orig_h, id.resp_h, id.resp_p, and cookie fields. The cookie field can contain any arbitrary

value sent by the RDP client to the server, but it often contains the username sent by the RDP client.
2. Aggregate the records based on these four fields and show a count for each unique set.
3. Iterate through the set and identify the origin and destination of each connection (e.g., you can use the

records from the DNS and DHCP logs).

19

Threat Hunting Guide

4. Some RDP connections will use a non-standard keyboard layout. To look for this, examine the
keyboard_layout field. Count the number of instances of each value and apply data stacking to look for
outlying or rarely occurring values.

5. Identify the origin and destination and determine whether the non-standard keyboard layout is
expected, for instance, if the origin user is known to have a non-English language as their primary
language, and that language is the requested language in the RDP connection.

After you have this information ask several questions:
• Does the cookie value match the expected user at the source or destination machine?
• Is there a legitimate reason for the originator to be using RDP?
• Are there any users using RDP where you wouldn’t expect that for their job function?

Remote Services
Exploitation of a software vulnerability occurs when an adversary takes advantage of a programming
error to execute adversary-controlled code. This exploitation can happen in a program, service, or within
the operating system software or kernel itself. A common goal for post-compromise exploitation of
remote services is for lateral movement.

Given the complexity of today's enterprise networks, a variety of third-party and external services are
often in use. These services allow attackers to gain initial access or to move laterally. All connections are
logged within conn.log, however, more details may be available within protocol-specific logs depending
on the nature of the remote service under attack. For example, you can monitor the http.log file for
suspicious and unexpected HTTP requests (such as OPTIONS requests).

Path: http,
uid: CEeVS92Ljnr9jbW2J5,
id.orig_h: 54.235.163.229,
id.orig_p: 41855,
id.resp_h: 192.168.0.2,
id.resp_p: 80,
trans_depth: 1,
method: OPTIONS,
host: host-90-236-3-35.mobileonline.telia.com,
uri: *,
version: 1.1,

Additionally, Corelight extracts information about software observed on the network into the
software.log. This file provides defenders valuable data to monitor for unexpected or unauthorized
servers, vulnerable or out-of-date services, and unpatched client software.

path: software,

20

Threat Hunting Guide

host: 192.168.0.53,
software_type: SMTP::MAIL_CLIENT,
name: Microsoft Outlook Express,
version.major: 6,
version.minor: 0,
version.minor2: 2900,
version.minor3: 5512,
unparsed_version: Microsoft Outlook Express 6.00.2900.5512

Windows Admin Shares
Windows systems have hidden network shares that are accessible only to administrators and provide
the ability for remote file copy and other administrative functions. Example network shares include C$,
ADMIN$, and IPC$.

Attackers often use SMB to connect to administrative shares on Microsoft Windows workstations and
servers. They may want to learn more about the target, extract sensitive files, upload malicious
payloads, or authenticate so that further tools and attacks can proceed. Corelight monitors SMB traffic,
including authentication attempts, allowing defenders to log and notice patterns of administrative
authentication attempts as well as monitor SMB traffic to extract transferred files. The following
example demonstrates the action FILE_OPEN being performed using the hidden admin share, and
includes MAC information. Corelight logs the action performed including Open/Rename/Delete/Write.

path: smb_files,
uid: CB3Ezw2X3tYKtxunq,
id.orig_h: 10.10.199.101,
id.orig_p: 49710,
id.resp_h: 10.10.199.31,
id.resp_p: 445,
action: SMB::FILE_OPEN,
path: \\\\10.10.199.31\\admin$,
name: <share_root>,
size: 24576,
times.modified: 2020-04-07T21:17:30.244159Z,
times.accessed: 2020-04-07T21:17:30.244159Z,
times.created: 2016-07-16T06:04:24.770745Z,
times.changed: 2020-04-07T21:17:30.244159Z

Collection
The adversary is trying to gather data to achieve their goal.

21

Threat Hunting Guide

Archive Collected Data
To conceal data, attackers may consolidate data into compressed archive files, such as Zip, RAR, TAR, or
CAB files. To hunt for this obfuscation technique, use the files log.

To search for compressed files:
1. Search all files logs, retrieving the tx_hosts, rx_hosts, mime_type, total_bytes, and source fields.
2. Remove records with uninteresting mime_types from the results, for example:

a. application/x-x509-*
b. application/ocsp*
c. image/*
d. audio/*
e. video/*
f. text/*
g. application/xml
h. application/chrome-ext

Automated Collection
Attackers can deploy automated tools on a compromised host to monitor intranet services for sensitive
data and corporate secrets. These tools can include scripts to search for (and copy) information such as
file type, location, or name at specific time intervals. Intruders may use remote access tools to conduct
automated collection.

For example, a custom tool may query an intranet web server or an internal email server, polling
regularly for new content. Corelight monitors multiple protocols including HTTP, email, MySQL, FTP, and
SMB traffic to provide insight into these queries.

When hunting for automated collection use, defenders can identify automated tools by watching for
repetitive queries or regularly scheduled connections. For example, if an intruder is web scraping, there
will be a large number of connections from a finite number of IP addresses. Additionally, you can use
the SMB logs (smb_files or smb_mapping) to identify anomalous traffic patterns.

Data From Network Shared Drive
Network shared drives are a treasure trove of sensitive corporate documents. Most enterprise networks
host shared network drives using SMB, but some may rely on FTP, HTTP, or even RDP. Zeek can monitor
access to shared network drives when protocols like SMB, FTP, or HTTP are used. Remote control
protocols, like RDP, are also parsed in protocol-specific logs. Anywhere Corelight sees this traffic, it is
monitored and logged in the protocol-specific log.

The following example demonstrates the ftp log. Corelight logs the command and arguments.

path: ftp,
uid: C0EeI73um1Aw3rrOib,

22

Threat Hunting Guide

id.orig_h: 10.0.0.11,
id.orig_p: 45831,
id.resp_h: 119.74.138.214,
id.resp_p: 21,
user: 1,
password: <hidden>,
command: RETR,
arg: ftp://119.74.138.214/doc.exe,
reply_msg: Transfer OK

Command and Control
The adversary is trying to communicate with compromised systems to control them.

Commonly Used Ports/Non-Standard Ports
Adversaries may use a commonly used port to avoid more detailed inspection.

Hunting for C2 channels over commonly used ports is difficult, but not impossible. To look for C2
channels, search for well-known ports that are being used with an uncommon service.

When hunting for C2 using commonly used ports:
1. Initially focus on the service field, and search the conn log for entries where the service field isn’t what

you would expect for the standard port (the service field could be either a ‘-’ or another service).
a. Start with the most common protocols.

○ TCP:80 (HTTP) TCP:443 (HTTPS)
○ TCP:25 (SMTP)
○ TCP/UDP:53 (DNS)

2. Corelight’s Encrypted Traffic Collection contains a package titled Encryption Detection. Encryption
Detection generates a notice when cleartext traffic is observed on usually encrypted ports. Observing
notices for Viz::UnencryptedService highlights this behavior and helps you identify potentially malicious
connections using common ports.

The Corelight Encrypted Traffic Collection package also has a feature that notifies you when a session
uses instant encryption. The package looks for pre-shared keys or encrypted connections that begin
without a traditional key negotiation. Observing notices for Viz::CustomCrypto highlights this behavior
and helps you identify potentially malicious connections using common ports.

Additionally, you can use the Corelight dpd and weird logs to identify unexpected protocol behavior.
These logs show debugging and parsing errors and identify out-of-specification usage of common ports
and protocols — which might indicate malicious activity or covert use of known ports and protocols.

23

Threat Hunting Guide

path: dpd,
uid: C5LNtk1n9NkT8m300j,
id.orig_h: 192.168.0.54,
id.orig_p: 52841,
id.resp_h: 54.89.42.30,
id.resp_p: 80,
proto: tcp,
analyzer: HTTP,
failure_reason: not a http request line

Encrypted Channel
See the Commonly Used Ports section for a description of Corelight’s Encryption Detection package, the
dpd log, and the weird log. These help you identify potential custom cryptographic protocols.

Fallback Channels, Multi-Stage Channels
Adversaries have been known to split communications between different protocols, using one for
inbound C2 and another for outbound data. This allows for the communication to bypass firewall
restrictions.

Malware that splits communication between two hosts for instructions and for exfiltration introduces a
new challenge for defenders. Recognizing the linkage between suspicious control traffic and large data
transfers is challenging, but Zeek provides packages and frameworks that synthesize data. For example,
there is a package for determining the producer-consumer ratio for connections that identifies
imbalanced, and possibly suspicious, data transfers. Additionally, the Intelligence Framework enables
coordination with other defenders by identifying possible indicators of compromise (IP addresses, email
addresses, and domain names) in Corelight data.

It’s difficult to correlate attackers using different communication methods and channels but Corelight
content, along with Zeek frameworks and packages can help. They allow defenders to identify the
hidden channels discreetly, providing multiple opportunities for detection.

Beyond watching for the previously mentioned C2 communication mechanisms, here are some other
signs available in Corelight data:
• Use conn.log to identify communication patterns that indicate additional channels (e.g., using orig_h

and resp_h to narrow connections to a time window and observe connections between the hosts that
include odd ports, failed or refused connections, or interesting/suspicious elements).

• Use Corelight (ETC), or self-developed content, in conjunction with connection log discovery to find
potential relationships between overlapping, adjacent, or interesting connections.

• Search for sequences of connections to unrelated hosts using different protocols or events in the dpd
and weird logs as described in Commonly Used Ports.

24

Threat Hunting Guide

Ingress Tool Transfer

Intruders typically move files onto compromised systems — both tools that can assist with further
lateral movement, and/or sensitive files designed for exfiltration. Those files will typically move over an
HTTP(S), SSH, or SMB connection.

For files moving over plaintext HTTP, details like the remote host name and the name and mime type of
the file being transferred can be useful indicators; users should also consult the files log for the hashes
of files being moved, as many popular attacker tools have known crypto hashes that make identifying
them easy. In the case of HTTPS, defenders can use the IP address of the remote system, as well as the
certificate details noted in the ssl log (i.e., organization name, FQDN of the remote host from the CN,
etc.) to look for anomalous connections.

Intruders copy files from one endpoint to another as they move laterally among compromised assets.
Traditionally, file copies to or from Unix/Linux systems occur over the SSH protocol using the scp
command. For Windows systems, remote file uploads or downloads typically happen over SMB, but also
may use SSH via PUTTY.

Corelight Sensors with the ETC SSH inferences package enabled extend the ssh log. The extension
includes an inferences field that adds inferred characteristics about the SSH traffic. For example, if the
session is being used to move files, or if it is interactive:

• LFU: Large File Upload
• LFD: Large File Download
• KS: Keystrokes

To begin hunting for interesting SSH sessions use the inferences field in the ETC SSH package:
1. Identify sessions where the inferences field contains LFU, SFU, LFD, or SFD
2. Determine whether file activity via SSH is legitimate and expected

Corelight Sensors are preloaded with the MITRE BZAR (Bro/Zeek ATT&CK-Based Analytics and Reporting)
package. MITRE BZAR identifies MITRE ATT&CK techniques for remote file copy, namely files being
copied to C$ or ADMIN$ shares. This package generates entries in the notice log, as depicted below:

Path: notice,
uid: CiAtaM363GcEbU63zk,
id.orig_h: 192.168.38.104,
id.orig_p: 65431,
id.resp_h: 192.168.38.102,
id.resp_p: 445,
fuid: FSeaVF4qnjl8cT3HF8,
file_mime_type: text/plain,

25

Threat Hunting Guide

file_desc: Windows\\Temp\\hbaVJpzdnG,
proto: tcp,
note: ATTACK::Lateral_Movement_Extracted_File,
msg: Saved a copy of the file written to SMB admin file share,
sub: 2020-10-23/6f24ac6ce591baf02acd64684f596d2db0ec97c0,
src: 192.168.38.104,
dst: 192.168.38.102,
p: 445,
actions: [Notice::ACTION_LOG],suppress_for:3600.0

Even if you do not enable the MITRE BZAR package on your Corelight Sensor, Corelight still logs SMB
share access in the smb_mapping log and file access and modification in the smb_files log. The following
logs illustrate the data contained in the Corelight family of SMB logs:

path: smb_mapping,
uid: CiAtaM363GcEbU63zk,
id.orig_h: 192.168.38.104,
id.orig_p: 65431,
id.resp_h: 192.168.38.102,
id.resp_p: 445,
path: \\\\192.168.38.102\\C$,
share_type: DISK

path: smb_files,
uid: CiAtaM363GcEbU63zk,
id.orig_h: 192.168.38.104,
id.orig_p: 65431,
id.resp_h: 192.168.38.102,
id.resp_p: 445,
action: SMB::FILE_OPEN,
path: \\\\192.168.38.102\\C$,
name: Windows\\Temp\\hbaVJpzdnG,
size: 1894,
times.modified: 2019-12-31T10:28:02.800834Z,
times.accessed: 2019-12-31T10:28:02.753959Z,
times.created: 2019-12-31T10:28:02.566496Z,
times.changed: 2019-12-31T10:28:02.800834Z

To hunt for lateral movement:
1. Start by searching the smb_files logs, and focus on the id.orig_h, id.resp_h, path, and name fields
2. Filter records where id.resp_h is a known file server, which reduces the results to potentially interesting

connections

26

Threat Hunting Guide

3. Review the path and name fields to identify which share the file was accessed from or written to, and
determine if the behavior is suspicious.

4. For additional context about the remaining interesting records, you can pivot to the files log, using the
UID to collect specific information about the file(s). For example, the MD5/SHA1/SHA256 hash(es) are
automatically calculated and can be used to identify known malware in external systems, such as
VirusTotal.
a. There are also other fields and possibly logs available (e.g., pe log) that can be used to rule out

uninteresting records.

Non-Application Layer Protocol

Attackers often make use of a pair of techniques for hiding inside of legitimate traffic: sending their
communications over a custom protocol on a commonly allowed port like 80, 443, or 53, and
embedding their messaging inside of the structure of legitimate but typically less-monitored protocols
like ICMP.

For the use of custom protocols on standard ports, see the Commonly Used Ports/Non-Standard Ports
section for a description of Corelight’s Encryption Detection package, the dpd log, and the weird log.
These help you identify custom C2 communications that use non-standard encryption or violate
traditional protocol specifications.

Malware sometimes employs standardized lower-level protocols like ICMP, UDP, and SOCKS to avoid
detection as these protocols are rarely monitored. For example, malware authors might embed C2
instructions in an ICMP Echo Request ("ping") packet.

Corelight monitors all connections regardless of protocol, and stores connection data within the conn
log. C2 channels that employ custom UDP protocols or TCP-based SOCKS protocols (but no standard
application layer protocols) have conn log entries with no identifiable service field. These fields and logs
provide visibility into traffic flows across the network — even ICMP, UDP, and SOCKS. For ICMP sessions,
Corelight data contains more than just the source and destination, for example; packet counts, bytes
transferred, and size of ICMP data for both the sender and recipient.

With this data, you have the information needed to discover abnormally large or frequent ICMP
communications that can be indicative of C2. The following log is a sample of the socks log.

Path: socks,
uid: C5u9ig4ACZvweN5my6,
id.orig_h: 192.168.0.2,
id.orig_p: 55951,
id.resp_h: 192.168.0.1,
id.resp_p: 1080,
version: 5,

27

Threat Hunting Guide

user: bob,
status: succeeded,
request.host: 192.168.0.2,
request_p: 22,
bound.host: 192.168.0.1,
bound_p: 55951

To hunt for an intruder using a standard non-application layer protocol to tunnel information:
1. Search the conn log for entries where the service field is blank, local_orig is true, and local_resp is

false
2. Aggregate those results by id.orig_h, id.resp_h, id.resp_p and summarize by count
3. Filter ‘normal’ entries
4. Investigate any remaining items, focusing on the line items with the greatest count first

28

Threat Hunting Guide

Non-Standard Ports
Every connection made in an environment monitored by Corelight is recorded in the conn log. After
building a list of regularly used ports (e.g., 22/SSH, 25/SMTP, 80/HTTP, and 443/SSL), you can query the
Corelight data to find connections to ports that aren’t on that list.

If you encounter connections that appear on other non-standard ports, examine the Layer 7 service that
Corelight observes and records in the conn log service field. Cases without a recognized service are the
most suspicious, particularly if large volumes of data are being transferred or connection lengths are
long.

When you encounter well-known services on irregular ports, examine the details in the corresponding
protocol log for additional clues. For example, in the HTTP log, make note of the name of the remote
host, the client’s User-Agent string, and the URI. Together, they might all contain clues as to the software
that’s generating the request on the uncommon port.

Path: conn,
uid: CrlIbI1BJ8Al8ryyX6,
id.orig_h: 192.168.0.53,
id.orig_p: 4388,
id.resp_h: 46.108.156.146,
id.resp_p: 22205,
proto: tcp,
service: http,
duration: 0.0013911724090576172,
orig_bytes: 412,
resp_bytes: 377,
conn_state: RSTO,
local_orig: true,
local_resp: false,
missed_bytes: 0,
history: ShADadfR,
orig_pkts: 7,
orig_ip_bytes: 700,
resp_pkts: 5,
resp_ip_bytes: 585,
resp_cc: DE,
orig_l2_addr: 00:60:6e:00:9d:f9,
resp_l2_addr: 78:54:2e:9f:10:28,
id.orig_h_name.src: HTTP_HOST,
id.orig_h_name.vals: [192.168.0.53:2869],
id.resp_h_name.src: HTTP_HOST,
id.resp_h_name.vals:
[zzwfbedgue.yjuggczkkq.gq:39349,gxgfwamxzl.yjuggczkkq.gq:17805,uugzv.yjuggczkkq.gq:22205,uaayo.ni
pekpidbkfyjyp.ml:26749],
mss: 1400,
sack_ok: true,
pcr: 0.044359949302915088,

29

Threat Hunting Guide

enrichment_orig.device_type: Workstation,
enrichment_orig.role: Sales,
enrichment_orig.user: Chris Jones,
enrichment_orig.city_location: Austin, TX,
enrichment_orig.building: Teleworker,
community_id: 1:ZHZczAcdJVGk0WMPotThj9efcU4=

Proxy
While the use of proxies doesn’t itself prove the presence of an intruder, intruders can use proxies to
“launder” connections to obscure the communication from defenders. There are many methods to
observe this, including traditional analysis of the underlying connection (signature, anomaly, behavioral)
and statistical analysis of connection properties. Specifically identifying proxied connections is critical for
beginning hunting or investigation.

If you see a value in the proxied field of Zeek’s http log, that means an HTTP connection was proxied.
The http log captures proxy details from the http headers. Search for any records in the http log that
have a non-empty proxied field.

• host: the domain name of the website
• id.orig_h: the IP address of the proxy or reverse proxy
• id.resp_h: the IP address of the web server
• proxied: identifies the proxy and the original IP address of the client

For example, a client at IP 219.90.98.8 initiated this HTTP request. The request was proxied via
172.16.1.30 to the web server at 172.16.2.95.

host: www.totallyfakedomain.com
id.orig_h: 172.16.1.30 //the proxy
id.orig_p: 53,828
id.resp_h: 172.16.2.95 //the web server
id.resp_p: 80
method: POST
post_body: dXNlcm5hbWU9cm9vdCZwYXNzd29yZD1tb25rZXk=
proxied: X-FORWARDED-FOR -> 219.90.98.8 //the real client
status_code: 200
status_msg: OK
uri: /xmlrpc.php
user_agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.0)
log: http

Using this example, identify the proxy and determine whether it’s internal or external. If it’s external,
evaluate the session and gain context, using Corelight data to decide whether or not to block it. If the

30

Threat Hunting Guide

proxy is internal, determine whether it’s a legitimate piece of IT infrastructure, or if it is a rogue proxy set
up to circumvent policy — shadow IT.

Additionally, SOCKS is a commonly used proxy protocol that Corelight Sensors natively parse. When
SOCKS is encountered, a socks log is generated and records details on users and protocols. This
information can be used to ensure that connections aren’t malicious and comply with policy. In the
socks log, focus on these fields:

• id.orig_h: the client IP address
• id.resp_h: the proxy IP address
• request: the domain or IP the client is attempting to access
user: if it is an authenticated connection, the user using the proxy

Web Service
Web service is when attackers use a legitimate external web service to relay data to and/or from a
compromised system.

Attackers sometimes use well-known web services for C2 channels to hide in the noise. While this tactic
makes identification more difficult, Corelight data — especially the http, ssl, conn, and x509 logs — helps
you identify suspicious connections. Looking for IOCs including URI, hostname, or specific certificate
details (like SNI or CN) is a good place to start. The following provides a few examples of certificate fields
that might warrant an investigation:

path: x509,
id: FfUGTX1VqS1qR3OJm7,
certificate.version: 3,
certificate.serial: 00,
certificate.subject:emailAddress=obama@us.com,O=Obama inc.,L=Gaza City,ST=Gaza Strip,C=12,
CN=http://usrep3.reimage.com,
certificate.issuer: emailAddress=obama@us.com,O=Obama inc.,L=Gaza City,ST=Gaza
strip,C=12,CN=http://usrep3.reimage.com,
certificate.not_valid_before: 2010-04-01T13:17:48.000000Z,
certificate.not_valid_after: 2011-04-01T13:17:48.000000Z,
certificate.key_alg: rsaEncryption,
certificate.sig_alg: sha1WithRSAEncryption,
certificate.key_type: rsa,
certificate.key_length: 1024,
certificate.exponent: 65537

31

Threat Hunting Guide

Exfiltration
Automated Exfiltration
If an attacker is using an automated means of exfiltration, data artifacts are captured in the Corelight
data.

To look for exfiltration in your network, you can use the Zeek package developed to calculate
Producer/Consumer Ratio (PCR). PCR values indicate whether flows are consumptive (download) versus
productive (upload). PCR values range from -1 (consumptive) to +1 (productive). To hunt for exfiltration
using this package:
1. Install and enable the PCR package.
2. Generate a table of id.orig_h, id.resp_h, id.resp_p, and pcr from the conn log.
3. Use local_orig is false or local_resp is true to filter the results.
4. Reduce the results by filtering where pcr <= 0.
5. For each host generating flows where pcr >= 0, consider whether that host is expected to transmit data,

inside or outside the network.

Another option is to use a SIEM to calculate the PCR using the information available in the Corelight
conn log. The following query creates a table organized by host that contains the originating and
responding bytes and a PCR value.

index=corelight sourcetype=corelight_conn | stats sum(orig_bytes) as Total_orig_bytes, sum(resp_bytes)
as Total_resp_bytes by id.orig_h id.resp_h | eval
PCR=(Total_orig_bytes-Total_resp_bytes)/(Total_orig_bytes+Total_resp_bytes) | fields id.orig_h id.resp_h
Total_orig_bytes Total_resp_bytes PCR

Data Transfer Size Limits
An attacker may attempt to transfer data or files by “chunking” them into smaller pieces, to avoid
hard-coded data transfer limits or thresholds. We will present two methods to hunt for this technique.

The first method analyzes data leaving the network based on source and destination pairs and requires
a data aggregation/visualization platform(unless you enjoy AWKing and GREPing through data):
1. Generate a table from the conn log including the id.orig_h, id.resp_h, id.resp_p, and sum(orig_bytes).
2. Sort the results by the largest sum (orig_bytes).
3. Examine each host and determine if there is a legitimate reason for uploads to that destination.

The second method analyzes the frequency, and sizes, of outbound transfers from each source:
1. Generate a table from the conn log including id.orig_h, id.resp_h, id.resp_p, and count(orig_bytes).
2. Sort the results by the largest count(orig_bytes).
3. Examine the results and determine the reason for all the connections with the same amount of data

flowing from the source to the destination.

32

https://github.com/reservoirlabs/
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=90057

Threat Hunting Guide

1 https://attack.mitre.org/
2 When used as an intel indicator IP is considered brittle, due to the ease with which adversaries can move to a new host or provider.
3 Not all versions of RDP assert the username in the cookie field. Some just assert nothing, or gibberish. In those instances, you would have to infer it from the NTLM
 or Kerberos log.
4 https://www.wired.com/story/untold-story-2018-olympics-destroyer-cyberattack/
5 Please visit https://packages.zeek.org/ for additional information about Zeek packages

All rights reserved. © Copyright 2020 Corelight, Inc. 33

Defenders have always sought the high ground in order
to see farther and turn back attacks. Corelight delivers
a commanding view of your network so you can outsmart
and outlast adversaries. We capture, interpret, and
connect the data that means everything to defenders.

info@corelight.com | 888-547-9497

https://www.wired.com/story/untold-story-2018-olympics-destroyer-cyberattack/
https://packages.zeek.org/
https://www.corelight.com

