
1

First: measure

Once you have traffic hitting your monitoring ports,
you can check out the expected log volumes—you don’t
even need to be exporting them anywhere. This is easiest
to see in the web interface. To check it out, first enable
the web interface under Access in the UI, then go to
the sensor in your web browser, log in, and click on the
stats link (the link says “click here”). The top graph
on the new page will show you expected log volume
(see figure below).

As you hover over the graph, a popup will give you the
rates for the sampling period for each log type. The
shape of the graph for a 24 hour period will also help
you estimate how many hours are active vs. idle. You
can enable/disable specific log types by clicking on
them in the footer of the graph.

Split logging

One fundamental technique our customers use is split
logging. In split logging, you send some of your logs
streaming in real time to your analysis platform

(e.g., Splunk, Elastic Search) but store the bulk of them
as files on inexpensive storage. You then do the majority
of your incident response on the SIEM, but have the full
logs to go back to as needed on the server. Over time,
you rotate the logs off to backup. Some organizations
have years of logs stored this way to check retroactively
for incident analysis.

The advantage of using split logging is you do not lose
information fidelity. If an incident turns up the need
for log info that is on the server, you either search for it
there, or ingest those logs into the SIEM when you need
them. The logs you select for real-time incident analysis
have the data you typically use.

Disabling specific logs

Either as part of creating split logging, or on its own, you
may want to disable specific logs. Beyond splitting, other
reasons typically include logs you simply do not find
of interest (weird.log for example) or that you already
collect another way (e.g., DHCP.log or syslog.log). You
can control the logs you omit by listing them in the UI in
the Export section under “Zeek logs to exclude” for the
exporter where you want to omit them (Splunk, Kafka,
syslog, JSON over TCP, SFTP).You can also change these
on the fly with the corelight-client, e.g.:

corelight-client	configuration	update	--zeek.	
export.splunk.exclude	“weird,syslog,dhcp”

Note you are setting the whole list each time and not
adding/removing specific ones. You can use this facility to
automate actions or as part of the investigation recipes in
your orchestration system.

Tuning your log volume.
The Corelight Sensor produces an astonishing amount of useful network telemetry. However,
it can become a victim of its own success, unintentionally filling up disks or driving up SIEM
costs. You can tune your sensor in various ways to reduce sensitivity, while avoiding accidentally
blinding yourself to an active adversary in your network. This paper will review in detail some
techniques you can use to tune your log volume.

The different colors represent different logs.
The y-axis shows log volume rate over 5 minute
intervals and the popup (grey) the actual values
for logs during that interval.

https://www.corelight.com

Tuning your log volume.

Wholesale traffic exclusion

Due to the placement of the Corelight Sensor within
the network, it may receive traffic that you do not want
to analyze at all. You can use the input filter, set via
Localize->Traffic exclusion filter or zeek.site.ignore_bpf
in the client to remove that traffic.

Supposing for example that the whole 192.168 subnet is
uninteresting for your analysis, you can use the filter
“net 192.168.0.0/16” to drop it from all logs. Or drop
all UDP or all GRE, and so on. Since this will completely
remove visibility of the traffic, construct your filters
with care! You may want to refer to the Manual (section
Traffic Exclusion Filters) and the Knowledge Base (article
Additional Filter Examples) for syntax and examples.

Another example of traffic you might want to ignore
is broadcast or multicast traffic, as it is not a good
mechanism for attackers, e.g.:

net	224.0.0.0/4	OR	net	FF00::/8

Additionally, where you have internal hosts whose
task it is to scan your network, you probably don’t want
to record the logs for their traffic. You may also have
specific hosts like online backup systems or patch
servers with frequent connections internally. You
can remove them by ip:port combinations. If your
vantage point shows both client->DNS server and DNS
server->external resolver traffic, you may want to
deduplicate by removing the latter.

Enable data reduction package

Corelight’s Data Reduction Package is included in the
collection of pre-installed packages and reduces the data
volume of common log types by suppressing typically
low-value and duplicate log entries. This can be very
easily enabled, and frequently reduces the volume of

data by about 30% with minimal impact on network
visibility. It is important to review the reduced log
descriptions below, however, so you understand
what event records are being removed.

For each supported log type the package introduces
an alternative version, named after the original log and
suffixed with “_red”, that contains the reduced log stream.
The idea here is that for some amount of time you may
want to consume both the original and the reduced
log streams, to build up familiarity. You can suppress
the original log streams as usual, via the log exclusion
configuration on your exporters.

The package also introduces datared.log, a statistics
log that compares the number of log entries in the
unreduced to that of the reduced streams, regardless
of whether the original logs currently get exported.

Depending on the log type at hand, the reduced version
has exactly the same column types as the unreduced
version, or minor variations. However, there is some
loss in information contained in the logs. When you first
enable Data reduction there is a slight delay to apply
the change of approximately 90 seconds. After that,
you should immediately start receiving conn_red, http_red
and ssl_red. It will be about 10 minutes before you start
seeing dns_red and files_red.

In the following we walk through the supported logs,
each of which you can enable/disable in the package’s
configuration section, and describe the reductions
applied. All reductions are enabled by default when
you enable the package.

conn.log

When enabled, the package omits “unproductive” flows in
which payload travels only in one direction, and omits
DNS and NetBIOS flows (queries to UDP ports 53 or
137, respectively). conn_red.log looks identical to conn.log.

dns.log

When enabled, the package omits duplicate entries in a
10-millisecond sliding window (a timeframe sufficient to
catch duplicates in the traffic we studied for this feature),
omits NetBIOS wildcard queries (“*”), and broken entries
containing neither queries nor answers (usually a result
of tapping problems).

Network traffic can be dropped with a Traffic Exclusion
rule at input. Logs can be split and all go to storage
(over SFTP or S3) with a reduced stream sent
in real-time into a SIEM.

https://www.corelight.com

Tuning your log volume.

dns_red

Field Description

ts The earliest time at which a DNS protocol message over the associated connection is observed.

uid A unique identifier of the connection over which DNS messages are being transferred.

id The connection’s 4-tuple of endpoint addresses/ports.

query The domain name that is the subject of the DNS query.

qtype_
name

A descriptive name for the type of the query.

answers The set of resource descriptions in the query answer.

num How often we’ve seen this query in this coalescence interval.

files.log

When enabled, the package omits duplicate files in a 10-minute sliding window. Note that the actual extraction of files,
if configured, continues to operate independently of this log-reduction feature.

files_red

Field Description

ts The time(s) when the file was seen.

fuid An identifier associated with one of the highly similar entries. We use the first fuid seen within the
window for this.

tx_hosts The originating hosts involved in the transfers.

rx_hosts The responding hosts involved in the transfers.

conn_uids Connection UIDs over which the file was transferred.

source An identification of the source of the file data. E.g., it may be the network protocol over which it was
transferred, or a local file path which was read, or some other input source.

depth A value to represent the depth of this file in relation to its source. In SMTP, it is the depth of the MIME
attachment on the message. In HTTP, it is the depth of the request within the TCP connection.

analyzers A set of analysis types done during the file analysis.

mime_type A mime type provided by the strongest file magic signature match against the bof_buffer field of
fa_file, or in the cases where no buffering of the beginning of file occurs, an initial guess of the mime
type based on the first data seen.

filename A filename for the file if one is available from the source for the file. These will frequently come from
“Content-Disposition” headers in network protocols.

https://www.corelight.com

Tuning your log volume.

Field Description

local_orig If the source of this file is a network connection, this field indicates if the data originated from the
local network or not as determined by the configured Site::local_nets.

is_orig If the source of this file is a network connection, this field indicates if the file is being sent by the
originator of the connection or the responder.

seen_bytes Number of bytes provided to the file analysis engine for the file.

total_bytes Total number of bytes that are supposed to comprise the full file.

missing_
bytes

The number of bytes in the file stream that were completely missed during the process of analysis
e.g. due to dropped packets.

overflow_
bytes

The number of bytes in the file stream that were not delivered to stream file analyzers. This could be
overlapping bytes or bytes that couldn’t be reassembled.

timedout Whether the file analysis timed out at least once for the file.

parent_fuid Identifier associated with a container file from which this one was extracted as part of the file analysis.

extracted Local filename of extracted file.

extracted_
cutoff

Set to true if the file being extracted was cut off so the whole file was not logged.

extracted_
size

The number of bytes extracted to disk.

md5 An MD5 digest of the file contents.

sha1 A SHA1 digest of the file contents.

sha256 A SHA256 digest of the file contents.

num Number of times we’ve seen this file.

http.log

When enabled, the package omits proxied connections.
http_red.log looks identical to http.log.

ssl.log

When enabled, the package omits duplicate certificates in
a 10-minute sliding window, and omits valid certificates.
ssl_red.log looks identical to ssl.log.

weird.log

When enabled, the package omits the following
common but low-value weird types:

• dns_unmatched_msg
• dns_unmatched_msg_quantity
• dns_unmatched_reply

https://www.corelight.com

Tuning your log volume.

datared

Field Description

ts The time at which Zeek reported this set of statistics.

conn_red The reduced number of conn.log entries.

conn_total The original number of conn.log entries.

dns_red The reduced number of DNS.log entries.

dns_total The original number of DNS.log entries.

dns_coal_
miss

The number of times we wanted to store additional DNS log entries for coalescence, but exceeded
the storage budget.

files_red The reduced number of files.log entries.

files_total The original number of files.log entries.

extracted Local filename of extracted file.

files_coal_
miss

The number of times we wanted to store additional files log entries for coalescence, but exceeded
the storage budget.

http_red The reduced number of HTTP.log entries.

http_total The original number of HTTP.log entries.

ssl_red The reduced number of SSL.log entries.

ssl_total The original number of SSL.log entries.

ssl_coal_
miss

The number of times we wanted to store additional SSL log entries for coalescence, but exceeded the
storage budget.

weird_red The reduced number of weird.log entries.

weird_total The original number of weird.log entries.

datared.log

This log provides the number of log entries that would
end up getting reported to the original log, compared
to the number of entries in the reduced logs. This allows
you to compute data-reduction ratios at line granularity
for your network.

https://www.corelight.com

Tuning your log volume.

Custom log line exclusion

You can leverage the analyzed data for your filters with
output filters. These are set in Export->Export Zeek
Streaming Logs->Log filter or in the client zeek.export.
logs.filter. Note that at present they only apply to the
streaming logs. Having the fully analyzed information
grants powerful ability to choose what to drop. Some
of these implement ideas also present in the log
reduction package.

Scans

Users, security infrastructure, and attackers can create
a lot of logs while performing network scans. The conn
log provides a log field useful for dropping them, the
connection state (conn_state). For predominantly one-
sided traffic, like scans, you expect either an unanswered
SYN packet, or a rejected one, so you can look for states
of S0, RST0, REJ or RST0S0 in the conn log:

	$log	=	“conn”	and	((conn_state	=	“S0”	or	conn_	
state	=	“RSTO”	or	conn_state	=	“RSTOS0”	or	
conn_state	=	“REJ”))	

This will remove all scans (including internal security
devices, some software misconfigurations and other
recon activity). Maybe you prefer to locate local hosts who
are scanning, and using a more concise notion, you could
refine your filter to:

$log	=	“conn”	and	(history	in	[“S”,	“Sr”]	
and	local_orig=false)	

You could further refine to exclude local security devices
that scan (though that might be more appropriate in an
input filter).

Reducing DNS logging

The DNS log is powerful, providing a way to link DNS
requests with responses at enterprise scale. However,
in large environments it will see a lot of traffic. One
trivial change is to not track local resolution, so the
site example.com might add a filter:

$log	=	“dns”	and	(qtype_name	=	“A”	AND	
“.example.com”	in	query)

Some devices also can frequently issue blank DNS
requests, so if you have them, you might extend the
filter to:

$log	=	“dns”	AND	qtype_name=”A”	AND		
(“.example.com”	in	query	OR	query	=	“”)

We can refine the filter to handle IPv6 and tighten it up
to require .com to be at the end of the string (so, for
example, we don’t exclude a name like www.example.
com.hackershome.com from being logged):

$log	=	“dns”	AND	(qtype_name	in	[“A”,”AAAA”]		
AND	(query	~	/\.example\.com$/i	OR	query	=	“”))

Another option is to keep logging local lookups that fail
with NXDOMAIN, so you can catch reconnaissance:

$log	=	“dns”	AND	(qtype_name	in	[“A”,”AAAA”]		
AND	(query	~	/\.example\.com$/i	OR	query	=	“”)	
AND	rcode!=3)

Pointer DNS records

Pointer records are for reverse lookups. Locally answered
requests for RFC 1918 addresses (or for locally answered
public address space, for those organizations with it) are
common in the logs, but might not have much utility for
security analysis:

$log	=	“dns”	AND	qtype=12	AND	query	~	/	
(\.10|168\.192|((1[6789]|2\d|30|31)\.172))\.in-	

	 addr\.arpa$/i

If you were sufficiently concerned, you could further
restrict the filter to only exclude answers provided
by your own DNS servers; otherwise a compromised
machine could set its DNS to an external server
(for exfiltration via covert communication) and you
would be blind to its PTR lookups in this space.

Often DNS logs have a lot of .local (multicast DNS) and
WORKGROUP queries you might wish to remove:

$log=”DNS”	AND	query=”WORKGROUP”

$log=”DNS”	AND	query	~	/\.local$/

In the latter example above, you might instead have
removed this traffic by excluding multicast DNS with an
input filter, but if handling here, you might exclude these
from the conn log as well:

https://www.corelight.com

Tuning your log volume.

$log=”conn”	AND	id.orig_p=5353	AND	id.resp_	
p=5353	AND	id.resp_h	in	[224.0.0.251,ff02::fb]

Conn logs for DNS traffic

Since the DNS log has all the information you need about
connections that are DNS requests, their conn log entries
don’t add any particular value, so that’s an opportunity to
tune them out:

$log=”conn”	AND	service=”dns”

You wouldn’t want to filter just on UDP+port as then
attackers could tunnel non-DNS that way, but since
the connection is detected as DNS, you can rely on the
DNS log.

Certificate files

The Corelight Sensor treats certificates as “files” in
addition to their SSL log record. This enables the powerful
file extraction capabilities on certificates. However, most
cert information is in the ssl log, so the files log entry is
not useful. You remove it with:

$log	=	“files”	AND	mime_type=
”application/pkix-cert”

High volume sites

There may be some high traffic volume sites that
you’re willing to trust. Exactly which will depend on
your environment:

$log=”dns”	AND	(query	~	/monitoring\.	
amazonaws\.com$/i	or

	query	~	/\.google(apis)?\.com/i	or

query	~	(facebook|hipchat|meraki|mozilla|

apple|gmail)\.com$/i	or

	query	~	/(ntp|fedoraproject)\.org$/i)

You can generate your own list by doing a frequency
analysis on your own DNS logs.

Changing your Corelight Sensor configuration

When using multiple filters, be careful to combine
them properly. The filter option on the Corelight Sensor
identifies what to exclude. If you have multiple filters,
you should combine them with OR, because you want
traffic that matches any of them to be excluded. You
should show grouping by putting parenthesis around
each, e.g.,:

($log=”dns”	and	query=”WORKGROUP”)	
or	($log	=	“files”	AND	mime_type=”application/	
pkix-cert”)

While strictly speaking the parentheses are not needed
for proper parsing, they can aid in human understanding
of intent or when editing in the UI. If you are putting
the filters into the UI directly, we recommend recording
the individual filters outside the Corelight Sensor in a
document, so you can make sense of the filter the next
time you change it. A better solution is to set the filter via
a script that uses the corelight-client—that way you can
use features of the shell to document the why’s of
the rules:

#!/bin/bash
#	skip	workgroup	messages	in	DNS	log
export	dns=’$log=”dns”	AND	

query=”WORKGROUP”’

#	do	not	record	files	for	certs
export	files=’$log	=	“files”	AND	mime_

type=”application/pkix-cert”’

corelight-client	configuration	update	--zeek.	
export.logs.filter	“($dns)	or	($files)”

Checking with Corelight

Here at Corelight we’re focused on your success as
a customer, and are happy to help you craft these
filters if you would like to bounce ideas off of us. Your
Sales Engineer, Technical Account Manager, or the
Support TAC can help. Your tips may contribute to a
later edition of this paper, or feature in the Knowledge
Base. Several of the current examples came from
discussions with customers.

Conclusion

Filtering can provide a big win for reducing your log
volume. Split logging is a solid backstop in case you
accidentally remove more logs than desired or in cases
where an adversary finds a blind spot in your filters.
Log volume can be safely reduced by 50% by using
the techniques described here.

https://www.corelight.com

All rights reserved. © Copyright 2019 Corelight, Inc.
CORELIGHT, INC. | INFO@CORELIGHT.COM | CSD001-TLV-V2.0-US

Contact us
For more information or
to schedule an evaluation:

info@corelight.com

888-547-9497

510-281-0760

corelight.com

We make the world’s networks safer.

Corelight delivers the most powerful network security monitoring
(NSM) solutions that help large organizations defend themselves by
transforming network traffic into rich logs, extracted files, and security
insights. Corelight makes a family of virtual, cloud and physical sensors
that take the pain out of deploying open-source Zeek and make it
faster and enterprise-ready. Corelight’s customers include Fortune
500 companies, government agencies, and research universities.

https://www.corelight.com
https://www.corelight.com
https://www.corelight.com

