
DY L A N E T K I N

Co-founder and CEO, Sleuth

TO GOING FROM
ZERO TO ONE
HUNDRED
DEPLOYS A DAY

T H E U LT I M AT E G U I D E

2

Ta
bl

e
of

 c
on

te
nt

s

Table of contents

—	 How high-performing teams approach		

	 software delivery				 	 4

	 The value of adopting frequent deploys				 5

	 What it looks and feels like to deploy many times a day		 6

	 Getting started on the journey				 7

01	 Measuring where you are today			 9

	 Story from the trenches: Flying blind and a Sleuth is born		 10

	 You can’t improve what you don’t measure 			 11

	 Measuring DORA / Accelerate metrics				 12

	 Measuring your technical tooling				 14

	 Measuring your communication lines and tools			 14

	 Measuring cultural attitude toward frequent deploys		 16

	 Generating your baseline					 18

02	 Deploy once a week					 19

	 Story from the trenches: Reciprocity’s journey to a deploy a week	 20

	 Measurements for one deploy a week				 21

	 Development practices for one deploy a week			 23

	 Communications for one deploy a week			 24

	 Culture for one deploy a week				 26

	 Who owns your one deploy a week?				 29

3

Ta
bl

e
of

 c
on

te
nt

s

03	 Deploy once a day	 31

	 Story from the trenches: Statuspage’s journey to a deploy a day	 32

	 Measurements for one deploy a day	 33

	 Development practices for one deploy a day	 36

	 Communications for one deploy a day	 38

	 Culture for one deploy a day	 41

	 Who owns your one deploy a day?	 46

04	 Deploy one hundred times a day	 48

	 Story from the trenches: A need so bad we had to build	 49

	 Measurements for one hundred deploys a day	 51

	 Development practices for one hundred deploys a day	 52

	 Communications for one hundred deploys a day 	 55

	 Culture for one hundred deploys a day 	 58

	 Who owns your one hundred deploys a day?	 61

05	 A continuous journey toward improvements	 63

	 References	 65

4

H
ow

 h
ig

h-
pe

rf
or

m
in

g
te

am
s

ap
pr

oa
ch

 s
of

tw
ar

e
de

liv
er

y

How high-performing teams
approach software delivery

The best software teams at top companies like Amazon, Google, Netflix,

and Atlassian today are deploying to production hundreds of times a

day. Why? They’ve learned that to deliver world class value to users, they

need to be able to iterate on products quickly, ship bug fixes in hours, not

weeks, and do so while reducing the risk of unintended downtime.

But it isn’t just the software giants who have changed how they work.

Software development and delivery is undergoing a radical transforma-

tion driven by widespread adoption of DevOps.1 The backbone of this

shift is Continuous Delivery2, or the ability to deploy frequently. This

change began well over a decade ago and has moved into the main-

stream. And teams that use Continuous Delivery are more likely to have

better software delivery performance.3

If you’re in an organization that’s still struggling to deploy once every six

months, you might be thinking, “this kind of thing isn’t for me.” Often,

teams that haven’t embraced Continuous Delivery worry that frequent

deploys will rob them of control over their release process, cause a

dramatic decline in software quality, and take years to adopt. Research

shows3 — and we’ll explain how — the reality is exactly opposite.

It can be hard to change what you’ve always been doing and understand

what kind of investment it would take to make the change. I assure you

Continuous Delivery is for your team. In this book we will show you why

it will help you, how to make your way along this journey, and point out

common pitfalls and how to avoid them.

5

The value of adopting frequent
deploys

You may be asking yourself: Why would I want to make the effort to

change how we’ve always worked in the past? The answer is simple: the

benefits of Continuous Delivery and frequent deploys are too enormous

to ignore.

The biggest benefit is the increased speed, quality, and reliability of your

software delivery. Studies have shown that high performers of DevOps

practices deploy 46x more frequently, are 440x faster at getting commit-

ted code to deploy, are 170x faster to recover from downtime, and have

a failure rate 5x lower than lesser performers.4

Studies have also found that DevOps practices correlate strongly with

job satisfaction. Not only will your teams deliver higher quality and more

reliable software quicker, but they’ll be happier doing so.

From the speed, quality, and reliability improvements comes increased

business value. Your organization will be able to fix bugs and security

issues in hours instead of weeks, deliver new customer-facing value at a

fast pace, and respond to customer feedback in near real-time.

These capabilities also come with more autonomous teams. Autonomy

means you can more easily scale your organization, empowering smaller

teams to focus and ship their area of focus independently of other teams

inside your organization.

Finally, because your team will be working and measuring in close to

H
ow

 h
ig

h-
pe

rf
or

m
in

g
te

am
s

ap
pr

oa
ch

 s
of

tw
ar

e
de

liv
er

y

6

H
ow

 h
ig

h-
pe

rf
or

m
in

g
te

am
s

ap
pr

oa
ch

 s
of

tw
ar

e
de

liv
er

y

real-time, your organization will become nimbler. You’ll be able to detect

and react to mistakes in direction or execution quickly.

Another benefit that can’t be overstated is the overall impact on your

organization’s culture. To fully adopt Continuous Delivery and frequent

deploys, you’ll have to have a culture of continuous learning. This implies

a blameless culture of software development.5

A culture of learning, continuous improvement, and of personal and

team responsibility is a strong culture, and organizations with such cul-

ture do a better job attracting and retaining the best talent.

What it looks and feels like to
deploy many times a day

Every team will look somewhat different, but when you’re at the start of a

journey it’s exciting to have an idea of what your destination can look like.

Here are some of the exciting things you’ll be capable of:

	✓�	 PM and Design work right alongside developers, iterating as you go,

often conceiving of and shipping work within a day or less!

	✓�	 A customer suggests a small improvement or points out a small bug

and you’re able to respond hours later to let them know it’s fixed. It’s

a conversation instead of a one-way interaction.

	✓�	 Your test suites and deployment pipeline mean you deploy with

safety and confidence. Your deployments are a non-event.

	✓�	 You can instantly turn on and off features in production through

feature flags.

7

	✓�	 You have multiple environments in place as safety gates so that you

rarely negatively impact production. And, if you do, you’re able to

roll back in minutes, not hours!

	✓�	 Code “working in production” is a natural part of a developer’s

definition of done

	✓�	 Your developers truly own their changes and are alerted in Slack

when they’ve made a change that had unintended consequences

	✓�	 You have the flexibility to differentiate a simple, fast-tracked change

from a riskier change that requires approval from the right people in

your organization

	✓�	 Everyone in your organization knows, via automation, what’s

released when they need to know it

	✓�	 You have accountability, visibility, and confidence to make changes

multiple times a day!

Getting started on the journey

If you’re on a team that’s already on your DevOps journey, deploying

once a week or even daily, we will show you why you want to keep

improving and what hurdles await you in the next step of your journey.

We’ll explain what high-performing teams, at scale, are doing today to

overcome the challenges you’ll soon face.

We’ve identified three phases of Continuous Delivery adoption:

1.	 Deploy once a week

2.	 Deploy once a day

3.	 Deploy a hundred times a day H
ow

 h
ig

h-
pe

rf
or

m
in

g
te

am
s

ap
pr

oa
ch

 s
of

tw
ar

e
de

liv
er

y

8

H
ow

 h
ig

h-
pe

rf
or

m
in

g
te

am
s

ap
pr

oa
ch

 s
of

tw
ar

e
de

liv
er

y

Each phase comes with four categories of milestones:

•	•	 Measurements – Tracking metrics and setting goals. By metrics

I’m specifically referring to Accelerate metrics (also known as DORA)

•	•	 Development practices – Implementing practices and tooling to

support frequent delivery efforts, including CI/CD6

•	•	 Communications – Creating communication lines

•	•	 Culture – Developing mindsets, rituals, and accountability

In this book we will walk you through each phase in detail. For each

phase, we’ll identify the key milestones and the tooling to support your

team’s progress in its Continuous Delivery journey.

Measuring
where you
are today

O1

9

Th
e

ul
tim

at
e

gu
id

e
to

 g
oi

ng
 fr

om
 z

er
o

to
 o

ne
 h

un
dr

ed
 d

ep
lo

ys
 a

 d
ay

STORY FROM THE TRENCHES

Flying blind and a Sleuth is born

When I started running the Bitbucket
team in 2010 we were early adopters
of DevOps and frequent deploys,
deploying about two or three times a
week. We were a small team, growing
fast, and maturing our process along
the way.

A couple of years later we had a
staging environment in place, 500,000
users, a team of about 15 developers,
and we were deploying between
10 - 20 times a week. I started to get
questions from management about
how our software delivery was going.
At the same time, we started to see
more incidents and instances of
developers stepping on each other’s
toes. It became clear we were going to
struggle to improve with the visibility
we had in place.

That’s when I realized we were
practicing DevOps but that we were
flying completely blind! Even though
we were building a premiere source
code hosting and code review tool
and we worked at the Jira company,
we couldn’t tell what was actually
changing in each deploy. We had
almost no insight into how long it took
us to take things from code to pro-
duction. We had very little insight to
how our changes affected production
performance over time. Worst of all,

every incident was a fire drill where
we struggled to link up eight different
systems to quickly figure out what was
going wrong.

We built a few home-grown tools to
mitigate the worst of these impacts.
However, I was struck by how deploys
— the core of what we do and the real
moment when the rubber hits the
road and your code ships to custom-
ers — was treated as an afterthought
with very little instrumentation.

When I left Atlassian in 2014, I started
to fiddle with the beginnings of what
would become Sleuth. The idea was
simple: deploys are the most impor-
tant thing, so let’s track them and
make it dead simple to see exactly
what changed and how to get to those
eight different systems for each
deploy. Link up observability tools so
we can see when a deploy has made
something worse and how long it
takes to get better. Finally, build a ro-
bust version of the homegrown tools
to bring order to the world of frequent
deploys.

My big takeaway from the experience
was you can’t improve what you don’t
measure. And you can’t improve with
a large team, at scale, without world-
class software tools to help you.

10

Th
e

ul
tim

at
e

gu
id

e
to

 g
oi

ng
 fr

om
 z

er
o

to
 o

ne
 h

un
dr

ed
 d

ep
lo

ys
 a

 d
ay

11

You can’t improve what you
don’t measure

Whether you’ve yet to begin your journey to weekly deploys or you’re al-

ready deploying many times a day, your first step is to understand where

you’re at today.

It’s important to remember that DevOps, like Agile, is a philosophy. There

is no one right way to achieve the goal of more frequent deploys. There

are some things, like automated builds and CD pipelines, that all teams

will adopt.

But remember, the right strategy for your team will be specific to your

team. If there’s a tool, process or cultural hurdle your team can’t over-

come, that doesn’t mean you’re stuck. You can always find the unique

mix that will work for your team.

ESTABLISHING YOUR TEAM’S BASELINE IS

A FOUR-STEP PROCESS:

1.	 Baseline your team’s Accelerate metrics4

2.	 Baseline the technical tooling your team has in place

3.	 Baseline how your team communicates about changes

4.	 Baseline your team’s cultural attitude toward risk, frequent changes,

and what’s most important when delivering software

In each section below, you can run through our checklists and score your

team as: Don’t have (0 points), Novice usage (1 point), Intermediate usage

(2), or Advanced usage (3).

M
ea

su
rin

g
w

he
re

 y
ou

 a
re

 to
da

y

12

If you’re not sure what constitutes a level of usage, simply use your best

guess, as this is just a rough baseline.

Measuring DORA /
Accelerate metrics

One of the most popular topics to come out of the book “Accelerate,” are

the “four measures of software delivery performance,” sometimes called

“Accelerate metrics” or “DORA metrics.”

These metrics are:

	✓�	 Deploy Frequency — how often your team deploys to

production

	✓�	 Change Lead Time — how long it takes for a change to go

from first code commit to deployed

	✓�	 Change Failure Rate — the percentage of deploys deemed a

“failure”7

	✓�	 MTTR or Mean Time to Recovery — the amount of time it

takes to recover from a “failure”

Extensive research has shown that these measures correlate and have

a direct impact on how often a team is able to deploy and with what

level of confidence. Measurements allow us to divide teams into three

groups: High, Medium, and Low performers.

M
ea

su
rin

g
w

he
re

 y
ou

 a
re

 to
da

y

13

M
ea

su
rin

g
w

he
re

 y
ou

 a
re

 to
da

y

There are a number of open source and commercially available tools that

help you measure your Accelerate metrics. Most of these tools take the

approach of inspecting your Git repositories metadata to make inferenc-

es about the metrics.

A better approach would be to gather data from not just version control

systems, but also build, monitoring, and alerting or incident management

tools, so you can get a very clear and accurate picture of these metrics.

The extra accuracy you get is worth the extra effort.

The best tools will also call out outliers within these metrics and provide

actionable suggestions on how your team could improve.

No matter how you decide to measure, you’ll want to understand where

you are at and have an ongoing way of seeing these values as you try

to move your teams forward. In later chapters we’ll go into more detail

about how you can improve in each metric.

The table below shows how these different groups stack up for each metric:3

HIGH MEDIUM LOW

Deploy
Frequency

On-demand
(multiple deploys per
day)

Between once per
week and once per
month

Between once per
month and once
every 6 months

Change
Lead Time

Between 1 day and
1 week

Between 1 week and
1 month

Between 1 month
and 6 months

Change
Failure Rate

0 to 15% 16 to 30% 46 to 60%

MTTR < 1 day Between 1 day and
1 week

Between 1 week and
1 month

14

Measuring your technical tooling

There are innumerable tools in the development ecosystem, but we can

group many of them into broad categories, each of which can be key to

the adoption of Continuous Delivery. Having the tooling in place is your

first step.

HOW IS YOUR TEAM USING THE FOLLOWING TOOLS?

•	•	 Source control (e.g., Github, Gitlab, Bitbucket)

•	•	 Code reviews (e.g., pull requests, merge requests, code

walkthroughs)

•	•	 Automated testing – CI (e.g., Jenkins, CircleCI, GitHub Actions)

•	•	 Deployments – CD (e.g., AWS CodeDeploy, Harness, Jenkins)

•	•	 Observability (e.g., Datadog, New Relic, CloudWatch)

•	•	 Error tracking (e.g., Sentry, Rollbar, Bugsnag)

•	•	 Feature flagging (e.g., LaunchDarkly, Split, Cloudbees)

•	•	 Deployment environments (e.g., Production, Staging, QA)

•	•	 Configuration as code (e.g., Terraform, Chef, Puppet)

Measuring your communication
lines and tools

The key to moving fast is having open and well-defined lines of communi-

cation, both within and between your teams. M
ea

su
rin

g
w

he
re

 y
ou

 a
re

 to
da

y

15

M
ea

su
rin

g
w

he
re

 y
ou

 a
re

 to
da

y

This can be as broad as an executive knowing if a high-level feature

has shipped, or as narrow as a developer knowing when to merge

code to be included in a deploy. As you increase the number of de-

ploys your team performs, your lines of communication become more

and more important.

Here we are measuring both the tools that help you communicate (and

the maturity of your use) and the lines of communication that exist.

HOW IS YOUR TEAM USING THESE COMMUNICATION TOOLS?

•	•	 Issue tracking (e.g. Jira, Pivotal tracker, Linear)

•	•	 Chat tools (e.g. Slack, Teams, Discord)

•	•	 Visibility – deployment tracking (e.g. Sleuth, Harness)

•	•	 Knowledge sharing (e.g. Google Docs, Confluence, Notion)

DEVELOPER COMMUNICATION

•	•	 How often do your developers work together? Through what means?

Slack? Issue tickets? Pair programming? Code reviews?

•	•	 How do you communicate processes, like deploys, to your team?

•	•	 How does your team improve? What processes exist for this?

OPERATIONAL COMMUNICATION

•	•	 How do you understand the health of your deployment

environments? Is this available to all or just an anointed team? How

hard is it to find the right information?

INTRA-TEAM COMMUNICATION

•	•	 How do your developers communicate with external stakeholders

such as product managers and designers? How often and how

directly? Hourly, daily, weekly, monthly? Only through a proxy?

16

EXTRA-TEAM COMMUNICATION

•	•	 How does the rest of the company know what your team has

accomplished?

•	•	 How do others know what your goals are and if you’re hitting them?

•	•	 How do other functions that rely on your work know when it’s done?

Measuring cultural attitude
toward frequent deploys

One of the biggest challenges to adopting frequent deployments isn’t

the technical or communications challenges, but the cultural shifts every

team in the organization needs to make and buy into.

Culture is the hardest thing to shift, but there are tried and true rituals

that can shift even the most dug-in of teams. However, it does require

an open mind, and the willingness to learn and, at times, fail to eventu-

ally succeed.

The cultural hurdles you’ll face can be grouped into four broad catego-

ries. Where does your team stand with:

CULTURE OF SAFETY

•	•	 How does your team verify production is in a healthy state?

•	•	 How blameless is your team when you encounter incidents?

•	•	 Are your developers supported in creating the tests and

environments that allow for them to safely make changes?

M
ea

su
rin

g
w

he
re

 y
ou

 a
re

 to
da

y

17

CULTURE OF CONFIDENCE

•	•	 How do you gain confidence in the changes you release?

•	•	 Do product managers, engineering managers, and design and

engineering teams feel like they’re on the same team? Do they trust

each other’s work? How do they verify this?

•	•	 Does your team know how to ship and verify incrementally and

“incomplete” changes or does it only know how to do this at the

feature level?

CULTURE OF OPENNESS

•	•	 How does your team communicate about what’s changing?

•	•	 How does your team define success? Is this measure open to the

team, the execs, and the entire company?

•	•	 Is it ok for your team to fail and learn? How does your team support

this?

CULTURE OF RESPONSIBILITY

•	•	 Do individuals own their work?

•	•	 Do your developers own their code? At what point are they no

longer able to see a change through? (dev, testing, review, merge,

staging, prod)

•	•	 Do individuals feel empowered to improve the processes they work

within?

•	•	 When things break is it our problem or someone else’s problem?

•	•	 Who owns reliability?

M
ea

su
rin

g
w

he
re

 y
ou

 a
re

 to
da

y

18

Generating your baseline

Once you’ve started tracking your Accelerate metrics, you can bucket

yourself into one of the three categories: low, medium, or high. This pro-

vides a clearer picture of what your next goal should be.

Once you’ve gone through the other sections and scored your processes,

you can average your scores across each section. This will result in a

score between 0 and 3 for technical tooling, communications, and cultur-

al attitudes.

Understanding where your team is strong or weak will give you a good

idea of where to focus first to start making progress.

In the next chapters we’ll talk about how development practices, com-

munications, and culture can be changed to help drive improvements

on your Accelerate metrics. In this way — measuring, identifying a small

improvement, implementing, and re-measuring — your team can learn

to deploy a hundred times a day.
M

ea
su

rin
g

w
he

re
 y

ou
 a

re
 to

da
y

Deploy
once a
week

O2

19

Th
e

ul
tim

at
e

gu
id

e
to

 g
oi

ng
 fr

om
 z

er
o

to
 o

ne
 h

un
dr

ed
 d

ep
lo

ys
 a

 d
ay

STORY FROM THE TRENCHES

Reciprocity’s journey to a
deploy a week

When I joined Reciprocity as a Chief
Architect, the small company of
about 40 developers was deploying
new releases every three months.
Releases were high-risk affairs as the
development team was surprisingly
productive, and so releases contained
a huge amount of changes.

For example, during one of my
interviews, I sat on the sidelines and
watched as a release seemed to intro-
duce a security issue, causing them to
shut down the service completely. It
turned out there was no issue but a
poorly understood access mode that
an employee stumbled upon, but the
reaction to the incident was interesting.

Rather than review these high-risk,
big-bang deployments, the inclination
was to slow down and add more man-
ual testing in a futile attempt to “get
it right.” I’ve seen this reaction again
and again from small to big teams,
not realizing that by slowing down,
the risk actually increases due to the
larger number of changes.

In the first six months, I put them on
a path to deploy code to production
once a week, with an occasional
daily deployment of a small, isolated
change. Automating the release was

the first step, but I quickly discovered
the real challenges weren’t technical.

The entire company was built on
infrequent releases. Marketing was
set up to only promote new features
quarterly. Sales, while loving that
we could respond to requests much
quicker, was so frustrated with the
frequent changes that we had to
build a separate cluster that was
updated separately.

Quality Assurance had the biggest
adjustment, but surprisingly, turned
out to be our biggest advocates. Recog-
nizing we had to rethink how we tested
changes so that releases wouldn’t
be blocked, we set aside engineering
resources to help them automate and
modernize their testing automation
stack. This was something they’d been
wanting for months, so they were
thrilled to get it now.

My big takeaway from this experience
was to remember it affected people
across the whole company and not just
a code base. People’s workflows, tools,
and even quarterly goals were affected,
so you need to identify friction points
ahead of time and devote energy to
bringing them along and ensuring their
lives are clearly better for it.

20

Th
e

ul
tim

at
e

gu
id

e
to

 g
oi

ng
 fr

om
 z

er
o

to
 o

ne
 h

un
dr

ed
 d

ep
lo

ys
 a

 d
ay

21

D
ep

lo
y

on
ce

 a
 w

ee
k

When you get to Phase 1 where you can easily deploy once a week,

you’ve officially crossed the threshold into the world of DevOps and

continuous delivery. The muscles your team develops to get here are the

foundation upon which further strides will be made.

The keys to your team being able to deploy once a week are:

•	•	 Tracking of Deploy Frequency and Change Lead Time

•	•	 Well-defined source control, code review and reproducible CI builds

•	•	 A mechanism for intra-team communication so they know what and

when changes will be deployed

•	•	 The cultural rituals and support that give the team confidence that

it’s OK to deploy and to handle things if a deploy goes poorly

•	•	 A clear “owner” for deploys. Everyone on the team needs to know

how they fit within the process and who to look to if they have

questions or concerns.

Measurements for one
deploy a week

Measurements are critical for knowing your starting point and current

progress. You’ll want to have at least the tracking in place for two Acceler-

ate metrics: Deploy Frequency and Change Lead Time.

Note that Change Failure Rate and MTTR, the other two of the big four

Accelerate metrics, are certainly helpful at this stage but become much

more important when you start moving to daily deploys.

22

To achieve a Deploy Frequency of once per week, your goal is to drive

Change Lead Time to at or below five days.

You can achieve this by reducing your batch size. Smaller batch sizes

means you are making smaller changes, which implies less risk. It also

means that you can develop a “fix” between deploys if need be.

You’ll need tooling that provides at least the following capabilities:

•	•	 Track and compare Deploy Frequency and Change Lead Time trends

over customizable periods.

•	•	 Drill down on Deploy Frequency and Change Lead Time by codebases

and flags.

•	•	 Drill into Change Lead Time to see where time is being spent, such

as time spent on coding, code reviews, and deploys.

•	•	 Identify outliers in deploys.

The ideal, next-level capabilities you should look for include:

•	•	 Slack-based team deploy notifications to provide visibility when

changes are shipped.

•	•	 Slack-based personal deploy notifications to authors of changes so

they can instantly know when things ship and own their changes.

•	•	 Automated checks against batch size, triggering either a notification

or an approval process when it finds the batch size is too large.

D
ep

lo
y

on
ce

 a
 w

ee
k

23

D
ep

lo
y

on
ce

 a
 w

ee
k

Development practices for one
deploy a week

In terms of development practices, your goal is to have a mostly repeat-

able deployment process that doesn’t take longer than four hours for

an individual to perform. You’ll also want to have some mechanism in

place to evaluate the success of deployments. Finally, you’ll need the

ability to revert your changes in a timely manner if the need arises.

Adopting the following practices will help you achieve them.

SOURCE CONTROL

	✓�	 You’re using developer branches for new changes

	✓�	 You maintain a “release” branch that is always in a deployable state.

Developer branches are merged into this branch.

CODE REVIEWS

	✓�	 You have a mechanism for accepting or rejecting changes into your

release branch

	✓�	 Ideally, you are using pull requests8 to review new changes, and you

have a well-defined process for merging these changes

TESTING

	✓�	 You have at least 50% unit test coverage

	✓�	 Your unit tests are at most 20% flakey9

	✓�	 Your unit tests run on every code commit

24

DEPLOYMENTS

	✓�	 You have a mostly automated continuous delivery pipeline in place

that can build a “release” from your “release” branch

	✓�	 You have a well-defined production environment and a strong

understanding of how changes affect this environment

OBSERVABILITY

	✓�	 You have basic observability in place, such that you can judge the

success of your changes to production

Communications for one
deploy a week

In terms of communications, the goal is to have the lines of communi-

cation and tooling in place such that developers and PMs know what’s

going into a deploy and, more important, the process by which the

deploy happens.

Developers need to know how to get their changes included in a deploy,

and how to communicate the risk of those changes to the team. PMs

need to understand when changes will deploy so they can verify work

and communicate changes to customers.

The following practices will help you achieve the goal.

DEVELOPER COMMUNICATION

	✓�	 You have a well-defined day/time for when changes need to be

D
ep

lo
y

on
ce

 a
 w

ee
k

25

D
ep

lo
y

on
ce

 a
 w

ee
k

integrated into your release branch such that they will ship with the

weekly deploy.

	✓�	 You have a well-defined window of when the changes will be live in

production.

	✓�	 You have a well-defined understanding of who is responsible for

determining if a deploy is successful. This can be a build engineer,

automated alerts, or the developers who made the changes. The

important thing is to know who makes the call to rollback or keep

your changes live.

INTRA-TEAM COMMUNICATION

	✓�	 You have a way for product managers, engineering managers, and

developers to know when a deploy has completed and what was

included.

ISSUE TRACKING

	✓�	 You are using an issue tracker to, at a minimum, track the

high-level work that’s going into a deploy. This provides the

basic language for communicating development work between

developers and to other team members such as product managers

and designers.

REAL-TIME CHAT

	✓�	 You have a mechanism for developers and those who own the

deploy to have real-time communication (e.g., via Slack).

VISIBILITY

	✓�	 You have a way to know, even if it’s cumbersome, what code and

high-level tasks have been deployed.

26

KNOWLEDGE SHARING

	✓�	 You have some form of documentation that describes how your

deployment process works, who owns it, and who is a point of

contact to find out more. Ideally your process is self-documenting,

but that’s often unrealistic, even when you deploy many times a day.

Culture for one deploy a week

The goal here is to provide the entire team with the confidence required

to make and support rapid change. If you are moving from a monthly

or quarterly deployment cycle, this will likely be the largest challenge in

getting to one deploy a week. A motivated engineer or leader can put in

place the required technical tools and communication lines. However, it

requires your full team’s buy-in to commit to a weekly deploy cadence.

Let’s understand the cultural buy-ins and some of the means to achieve

them so each role on your team can make this shift a success.

DEVELOPERS

Developers need to understand and buy into the team’s dev loop. They

need to be trying to make smaller changes and target their changes to

deploy windows. They need to agree that a break in the release branch

trumps other concerns and will be fixed immediately.

Mechanisms to achieve:

	✓�	 Weekly or bi-weekly sprint planning can help set the size of tasks

and create a team agreement on how tasks will fit into this window

D
ep

lo
y

on
ce

 a
 w

ee
k

27

D
ep

lo
y

on
ce

 a
 w

ee
k

	✓�	 Automated CI against the release branch and team-wide visibility

into those results to help the team keep the release buildable

	✓�	 Maintaining a “disturbed” role on a team where it’s clear whose job it

is to keep the release branch buildable

PRODUCT MANAGERS AND DESIGNERS

PMs and designers need to change their idea of what it means to ship

functionality to customers. They need to work closely with Dev to set

expectations of when something customer facing can be exposed

and be flexible about how incremental changes make its way to

production.

Design can still design the end goal of how a thing should operate;

however, they may need to spend more time and effort on intermediate

designs that can be shipped incrementally along the way.

Mechanisms to achieve:

	✓�	 Include a PM in the planning process to give them an opportunity to

express the needs of the customer in incremental deploys.

	✓�	 Implement feature flags, as it allows for code to be rolled out but not

yet exposed to customers. This helps PMs retain the flexibility they

need while allowing developers to charge ahead.

ENGINEERING MANAGERS

Engineering managers need to shift from putting in processes that help

the team play defense (e.g., “How can we add processes to slow down

and make sure our 3-month release has no bugs and is ‘safe’ to ship?”),

to putting in processes that help the team play offense (e.g., “How do

we keep the code flowing? What can we do to ship smaller changes and

quick fixes if we make a mistake?”).

28

Mechanisms to achieve:

	✓�	 Put in place processes that facilitate communication such as recurring

planning meetings, code review, and weekly demos.

	✓�	 Commit to dedicating engineering time to keep the release branch

builds passing. Keeping the code flowing also means paying into this

new system. When the team identifies a bottleneck, the manager

should be able to allow the team to remove it (e.g., fix CI tests that have

a flakeyness higher than 20%).

UPPER MANAGEMENT

Before frequent deploys, upper management could evaluate the team on

the release boundaries: “If releasing quarterly, how did it go? Did they hit

objectives?”

With one deploy a week, these high-level measures can remain in place, but

things like MTTR and overall application quality come to the forefront as

leading indicators of success or failure.

Management should expect a team’s overall performance to increase by adopt-

ing continuous delivery, but the measures and timeframes need to change.

Mechanisms to achieve:

	✓�	 Surface the Accelerate metrics for your projects and make them availa-

ble, with context, to your execs.

	✓�	 Surface your uptime or equivalent for your applications.

	✓�	 Make sure to provide your exec team with the same high-level informa-

tion about large chunks of functionality that are shipping.

	✓�	 If you are an exec, understand that change takes time and be firm

about holding your teams accountable for high-level goals but flexible

about how they achieve them. Trust, but verify. D
ep

lo
y

on
ce

 a
 w

ee
k

29

D
ep

lo
y

on
ce

 a
 w

ee
k

Who owns your one deploy
a week?

Any successful process requires you to clearly define who owns it.

This allows your team to understand where to look for leadership and

guidance and makes it clear who, or which team, is your main point of

contact for issues or questions that arise.

When your team is deploying multiple times a day, you’ll find that

developers should own their own process for deploying their changes.

However, when deploying once a week, you have more options.

OPTION 1:

SRE OR INFRASTRUCTURE-MINDED DEVELOPER

OWNS THE DEPLOY (RECOMMENDED)

If your team is lucky enough to have one or more team members that

understand the code and the operational environment it lives in, these

folks can be a great choice to own your weekly deploy.

The upside to this is that you’re moving dev and deploy closer together.

Most issues that arise from frequent deploys are code-related, so

having someone that understands this and has a close relationship with

your developers can really help to break down the boundaries between

Dev and Ops.

OPTION 2:

BUILD TEAM OWNS THE DEPLOY

Many organizations transitioning to frequent deploys have a whole team

30

in place whose responsibility is to release the application. This team can

play a role in transitioning to frequent deploys.

The upside to having this team own the deploy is that they likely are

most familiar with your build and deployment pipeline and they already

are used to evaluating the health of your production environment. The

downside is that this team may not be fully open to the transformations

required to really make frequent deploys a success.

OPTION 3:

DEVELOPERS OWN THE DEPLOY

This might seem like your best option since you’ll want this to be the case

when you’re deploying daily. However, you may be jumping the gun here.

Developers don’t always have the zoomed-out context to understand

all the changes that are going into a deploy. Because you are bulking up

a week’s worth of change into one deploy, you will want someone who

really understands the system as a whole to be at the helm. If this is your

dev team, awesome!

However, if you are transitioning, be mindful about putting too much

responsibility onto your developers’ shoulders without providing them

the support and tools needed to be successful.

D
ep

lo
y

on
ce

 a
 w

ee
k

Deploy
once a day

O3

31

Th
e

ul
tim

at
e

gu
id

e
to

 g
oi

ng
 fr

om
 z

er
o

to
 o

ne
 h

un
dr

ed
 d

ep
lo

ys
 a

 d
ay

STORY FROM THE TRENCHES

Statuspage’s journey to
a deploy a day

When I joined the Statuspage team as
Head of Engineering, the team was still
a founder-led engineering team. The
CEO was the only one able to deploy
even though there was a team of five
contributing to the codebase. Within
three months, we were deploying one to
five times a day and all engineers were
empowered to deploy their own changes.

The founder who was holding onto
deploys had already done the work
required to get to one deploy a week.
The biggest barrier to moving faster was
the founder’s worry that we wouldn’t be
able to mitigate the risk that comes with
frequent deploys.

There were also some basic tooling and
practices missing that hindered us:
•	 The team wasn’t using a well-defined

mechanism for merging code changes
into our release branch.

•	 Our batch sizes were very large, in-
creasing the risk of each deploy.

•	 The team wasn’t doing planning, so we
had no idea when work would ship.

•	 We had manual steps in the deploy that
weren’t documented or well defined.

I knew we couldn’t grow this way and de-
cided this would be my first large organiza-
tional transformation with my new team.
The first step was building awareness and
some buy-in for the idea of change.

We started by introducing pull requests
and light-weight code review. This
provided a way for every developer
to consistently signal intent to make
a deploy. Next we introduced a short
planning meeting, giving us our first bit
of developer cadence. We could start to
think in terms of batches.

The founder was happy with our initial
strides, but he was still quite skeptical
that we could parlay that into everyone
being able to safely deploy. The next step
was to convince him that others could
handle emergency situations if they
arose. We added myself and another
to our ops rotation. At the same time,
we worked to make our deploy process
repeatable and not something one did
from a laptop.

The journey to a fully automated process
and a CD pipeline gave the founder time
to see that change was possible without
compromising safety. He also began to
feel the relief of not being the only one
who could deploy and of being the bot-
tleneck for his growing dev team.

With these changes in place, the final
change of letting everyone deploy
their own changes showed up with a
whimper, not a bang. In the end, this
transformation was 75% cultural and
only 25% technical.

32

Th
e

ul
tim

at
e

gu
id

e
to

 g
oi

ng
 fr

om
 z

er
o

to
 o

ne
 h

un
dr

ed
 d

ep
lo

ys
 a

 d
ay

33

D
ep

lo
y

on
ce

 a
 d

ay

When you can easily deploy once a day, you’ve unlocked a whole new way

of working. You’re now able to fix bugs within hours, not days. Your devel-

opers can deploy large changes one small piece at a time, reducing risk by

verifying changes as you go, instead of in one big bang. You can be truly

agile and iterate as you build. Most important, your team’s velocity will no

longer be held back by their ability to get changes into your systems.

The keys to your team being able to deploy once a day are:

•	•	 Measuring all four Accelerate metrics: Deployment Frequency,

Change Lead Time, Change Failure Rate and MTTR.

•	•	 A fully automated CI/CD pipeline that can reliably deploy changes to

your multiple environments and the ability to quickly revert.

•	•	 Observability and alerting capabilities that allow you to quickly

detect when changes have caused negative impact.

•	•	 Cultural rituals and support that provide the team with the ability to

self-serve their deploys, the confidence to understand what to do if

things go wrong and, for non-technical team members, how to know

what’s changing.

•	•	 A strong buy-in from the whole team around working in small batch

sizes and shipping features in a continuous fashion.

Measurements for one
deploy a day

To support one deploy a day, you will want to have measurements

in place for all four Accelerate metrics. For a deploy a week, you’ve

34

focused on frequency, batch size and its related lead time. Moving to a

deploy a day, your focus shifts to reliability and the safety net in place

to move at speed.

Your primary goal to achieve a Deploy Frequency of one deploy a day

is to have a trustworthy measurement of your team’s Change Failure

Rate and its associated MTTR.

Because you’re moving at a faster pace, your team’s Change Lead Time

should be at or below two days. This means you are reducing your

batch size such that each change is somewhat self-contained and can

easily be reverted.

Teams that are classified as High performers (those who deploy once to

multiple times a day) find that they need to keep their Change Failure

Rate under 15%. Anything above this failure rate means you’re spending

all your time rolling back changes and not actually delivering value to

your customers.

That said, there’s a lot of interpretation and nuance involved in defining

what “change failure” means for your team. On one end of the spectrum,

failure can be defined as an incident where your service or product is

hard-down. One the other end, it could be as sophisticated as your prod-

uct violating an internally set service level objective (SLO).10

Examples of a sophisticated definition of change failure are:

•	•	 Error rates breaching your team’s norms

•	•	 Response times exceeding a threshold

•	•	 Emails not arriving in customers’ inboxes within a set timeframe

D
ep

lo
y

on
ce

 a
 d

ay

35

D
ep

lo
y

on
ce

 a
 d

ay

It’s important for your team to think about how to define change failure

and to use tools that allow you to accurately measure this. Teams that

are deploying daily want to keep their MTTR to less than one day and

ideally to less than one hour.

Your tooling should be able to report, at a minimum:

•	•	 Change failure, broken down by different code bases and flags you are

changing

•	•	 Quick access to outliers related to your failure rate and deploys

•	•	 A system that tracks what’s normal for your team and calls out when

you’re outside that norm

•	•	 The ability to quickly drill into the original source of measure (e.g.,

Datadog)

The best tooling your teams can employ to improve toward your goal of

one deploy a day are:

•	•	 Slack-based notifications at the team and individual level that

identify when you’ve encountered change failure, which can drive

your mean time to detect (MTTD)11 to zero

•	•	 Slack-based approvals when promoting from a non-production

environment to your production environment

•	•	 Deployment locking, allowing your team to throw on the brakes

when change failure has occurred, so you don’t pile changes on top

of a broken system

•	•	 Enforced and automated soak time for pre-production environments

•	•	 An automated system that allows smoke tests to stop production

promotions

36

Development practices for one
deploy a day

The goal for technical tooling to support one deploy a week is to have

a fully automated process that 1) doesn’t take longer than two hours

to complete, and 2) is triggered and executed in a CD pipeline.12

You also want to have at least one alternative pre-production environ-

ment, so you can try out riskier changes there first.

Finally, moving at this pace means you need more automated observ-

ability into how your systems are performing. When you’re deploying

daily, it would become a full-time job for an individual to verify every

change, so this must be passed off to automation.

The following practices will help you achieve this.

SOURCE CONTROL

	✓�	 You’re using pull requests for your changes and able to create revert

pull requests if needed.

CODE REVIEWS

	✓�	 You have a process that your team has committed to, such as PRGB

(pull request review, green build). Most popular code review tools

allow you to enforce a minimum number of reviewers before a

change can be merged.

TESTING

	✓�	 You have at least 75% unit test coverage D
ep

lo
y

on
ce

 a
 d

ay

37

D
ep

lo
y

on
ce

 a
 d

ay

	✓�	 Your unit tests are at most 10% flakey

	✓�	 Your unit tests gate your deploys

	✓�	 You have end-to-end tests covering your application’s critical paths

	✓�	 Your end-to-end tests run against an environment that is a close

approximation to your production environment

DEPLOYMENT ENVIRONMENTS

	✓�	 You have at least one well defined pre-production environment that

closely mimics your production environment

OBSERVABILITY

	✓�	 You have advanced observability in place with automated alerts

	✓�	 You have a well defined on-call roster with a clear escalation chain

defined

	✓�	 Your deployers have access to observability metrics and can

diagnose production systems

ERROR TRACKING

	✓�	 You have a way, either through log analysis or an error tracking

tool, to understand the errors your system produces. You should

be able to quickly discover if a change has increased the number

of errors.

FEATURE FLAGGING

	✓�	 You should be able to, at a minimum, hide certain features and

code paths from your customers so you can deploy your changes

incrementally, without having to expose your incomplete work to

your customers.

38

CONFIGURATION AS CODE

	✓�	 Once you’re maintaining multiple environments you need to have

a way to make sure that infrastructure changes flow to all of them.

Keeping these systems in parity can be difficult without some form

of configuration as code.

Communications for one
deploy a day

The goal here is to have the lines of communication and tooling in

place, such that the team has a strong understanding of the cadence of

activities, knows how to communicate to others about deploy related

issues, and understands what to communicate when things go wrong

and how to get them back to normal.

Adopting the following practices will help you achieve this goal.

DEVELOPER COMMUNICATION

	✓�	 All developers know how to trigger your deployment process and

are comfortable with executing it. Because they happen frequently,

you’ll need some shared channel to disseminate to the team when a

deploy is happening and what’s included.

	✓�	 You have a way for everyone to see, understand, and communicate

the important health metrics for your system. This can be a shared

metrics dashboard, a shared Slack channel for alerts, or impact

tracking in Sleuth.

	✓�	 You have a well-defined and automated escalation policy for when

D
ep

lo
y

on
ce

 a
 d

ay

39

D
ep

lo
y

on
ce

 a
 d

ay

deploys go wrong. Even in the best teams, unexpected things go

wrong. To move with confidence, individuals need to know they’re

not alone, and they need to know they can easily call in the cavalry.

Tools like PagerDuty are great for this.

	✓�	 Your team has a well-defined cadence for how they produce and

ship their work. Your team needs some planning mechanism that

allows them to define work in batches small enough to fit into a daily

deploy cadence.

INTRA-TEAM COMMUNICATION

	✓�	 You have a way for PMs and EMs to understand the current overall

progress toward a larger goal (e.g., an epic).

When you start deploying in very small batches, this can become one of

your biggest challenges. What used to be a binary answer (it shipped,

or it didn’t) has now become much more complicated (how far along

is it and when will it be ready to be visible to customers). Project man-

agement tools or tools that associate deploys with epics along with

notifications can help teams stay in sync.

OPERATIONAL COMMUNICATION

	✓�	 You have a clear channel of communication between developers

and those responsible for your systems infrastructure (if these are

the same people in your team, you still want well-defined roles and

communication channels).

Deploying daily requires confidence and safety. Ops needs to know how

to interact with authors of change, and change authors need to know

how to escalate to Ops. Examples of communication include clear es-

calations to on-call, only deploying changes within an author’s working

hours, and tools that make finding the “right” person simple.

40

EXTRA-TEAM COMMUNICATION

	✓�	 You have a mechanism in place to communicate your larger goals to

external stakeholders.

Similar to the challenges in intra-team communication, when you are

deploying daily you need a new way of keeping the company at large

informed about what you’re up to and how you’re performing.

This can be an exec’s need to understand progress on a high-level

goal. Often, when moving quickly, there’s a need to understand how

much work is “keeping the lights on” vs new initiatives. The information

shared hasn’t changed, but your ability to understand where you are in

these larger goals is less binary. If you want to keep things humming,

invest in your high-level information radiators.

	✓�	 You have a mechanism in place to inform customer support when

bug fixes or support issues have been deployed

	✓�	 You have a mechanism in place to bring in documentation and

marketing at the appropriate time as a larger goal reaches

completion.

ISSUE TRACKING / PLANNING

	✓�	 You are able to break your issue work into small batch sizes that

roughly equate to one deploy. This is so your team can be on the

same page about cadence and identify blockers. It also helps with

your roll-ups to understand progress on longer-running goals.

	✓�	 You have a mechanism in place that correlates your issues to when

they were deployed.

D
ep

lo
y

on
ce

 a
 d

ay

41

D
ep

lo
y

on
ce

 a
 d

ay

REAL-TIME CHAT

	✓�	 You have shared team channels with notifications about deploys to

your different environments

	✓�	 You have shared team channels where alerts or health information

about your systems are easily consumed

	✓�	 You have the ability to quickly spin up new rooms with relevant team

members when responding to an incident

VISIBILITY

	✓�	 You have a system in place that ties all of your tools together to

provide a unified, deploy-based view of all your systems

KNOWLEDGE SHARING

	✓�	 You have centralized documentation on how to troubleshoot

common scenarios

	✓�	 You have documented what conditions should cause an individual to

roll back or forward a negative change to avoid making developers

decide in the moment

Culture for one deploy a day

The cultural goal to support one deploy a day is to provide the entire

team with the planning, freedom and safety needed to deploy daily.

This is less of a shift than the shift to one deploy a week. However, you

may find that your team still sees deploys as “risky” and you’ll need to

put in place the practices to dispel these ideas.

42

Another large cultural shift here is around batch size and getting com-

fortable shipping incomplete work. At one deploy a week you could still

get away with shipping the whole thing in a big bang. However, deploy-

ing daily means shipping increments. This is where safety comes from,

but it requires a change in mindset.

DEVELOPERS

Developers need to change two primary mindsets.

The first is how developers think about shipping incomplete work.

Instead of exposing their changes to users and releasing it all in one

big bang, they will need to think in terms of the smallest shippable

unit. Also, when changes are risky or not yet ready for primetime, they

need to think about how to ship darkly, i.e., ship the code but limit the

amount of execution or exposure that code gets.

The second is changing the developers’ definition of done.13 No longer

can work be considered done when a pull request has been opened

and reviewed. Developers need to include deployments to multiple

environments and deployment verification, plus any rework into their

definition. They need to embrace being “done, done,” the time when

everything is exposed to users, verified, documented, shared, and you

can truly move onto the next thing.

Mechanisms to achieve:

	✓�	 One of the best mechanisms for being able to ship incomplete work

is adopting some form of feature flagging.14

	✓�	 It can also be highly effective to deploy every pull request one at a

time. Adopting this pattern allows you to include reviewing the batch

size of a change along with your pull request code review. If a batch

is too large, other team members can ask a developer to break their D
ep

lo
y

on
ce

 a
 d

ay

43

D
ep

lo
y

on
ce

 a
 d

ay

change into multiple pull requests.

To help developers get to “done, done” you want to make sure they:

	✓�	 Are empowered to deploy their own changes to all the environments

you maintain and can do so quickly and without failure

	✓�	 Have enough metrics and an understanding of their norms to be

able to verify a deploy

	✓�	 Understand how to escalate and roll back if need be

PRODUCT MANAGERS AND DESIGNERS

At this phase, PM and Design have an amazing opportunity if they are

willing to embrace it. They can truly be agile, iterating in what is basical-

ly real-time with their developers. When this works, it can turbo charge

the amount of value you ship to customers. Imagine being able to ship

a change, test it against 50% of your users, gather in-product feedback

and ship interactions to that work, all within a day or two!

PMs and designers also need to have strong trust with their dev

partners so they can really understand how a project is progressing its

way through to completion. Because there will be so much incomplete

work shipped at any given time, PMs and designers need processes

in place that they and devs have agreed to follow so everyone can get

their jobs done.

Mechanisms to achieve:

	✓�	 Have a deployment tracker that allows a developer to tag a pull

request for PM or Design’s attention in a specific environment. A tool

like this will then notify, in Slack or via email, the individuals when

the work has shipped. This allows real-time communication between

the involved parties. Think of this as continuous demos.

44

	✓�	 Have an agreed upon mechanism for feedback and rework, such

as an issue assigned directly to a developer. One strategy for

solving the incomplete work issue is for a team to adopt six-week

cycles.15 A cycle has a primary and secondary goal, and because it’s

short, causes not only Dev, but PM and Design to think in smaller,

shippable units.

	✓�	 At this phase it can also be helpful to expose user-facing feature

flags to PMs so they can control the rollout.

ENGINEERING MANAGERS

Engineering managers need to become the champion of frequent

deploys. They should have an understanding of where their team is by

continuously measuring their team’s Accelerate (DORA) metrics. Then,

they can identify bottlenecks and prioritize removing them.

Providing the team with the tools for continuous improvement is a

virtuous cycle. Engineering managers have the zoomed-out view that

allows them to make sure the team has the process, tools and safety

nets to deploy once or more a day.

Mechanisms to achieve:

	✓�	 Implement tools that help you continuously measure Accelerate

metrics: Deploy Frequency (to each environment), Change Lead Time

(even better if you can see where this time is being spent), Change

Failure Rate (first define what failure means) and Mean Time to

Recovery (MTTR).

Some of these are harder to measure than others. Tools like Sleuth

make measuring these values easy and they work with the best of

breed tools you’re already using.

D
ep

lo
y

on
ce

 a
 d

ay

45

D
ep

lo
y

on
ce

 a
 d

ay

Once you have measures in place, see where your team is weakest

and invest in that area. For example, if your Change Failure Rate to

production is high, think about adding an approval step between your

staging and production deploys. Or, if you run into many rollbacks, try

locking your deploys to allow for single file deploys. If your MTTR is too

high, add in an impact tracking tool so your developers can drive MTTD

(mean time to discovery) down to zero.

UPPER MANAGEMENT

Upper management needs to understand that to stay competitive in

our current software world, they will need to take advantage of the

speed, reliability, and agility of teams practicing frequent deploys and

DevOps. Without this, their organizations run the risk of disruption.

Also, as the industry moves this way and talent has experienced this

way of working, it’s harder and harder to convince the best people to

work any other way.

The importance here is in helping your entire organization to shift, not

just your Dev teams. If your sales and marketing teams aren’t aligned

with the change, you’ll have internal friction that can do irreparable

damage to the organization.

Mechanisms to achieve:

	✓�	 Take the time to explain to your organization how you are delivering

value to your customers. Explain how incremental delivery works,

what things will be released in a big bang, and how this way of

working can allow you to deliver value to customers faster.

Places where organizations struggle when practicing frequent deploys

are often:

46

•	•	 Sales and Support: they struggle to keep up with small changes

to the product, so they have difficulty keeping customers happy. This

can be combated by adopting tools that disseminate information

about product changes to your organization.

•	•	 Marketing: they can feel like their biggest lever, the new feature

launch, has been taken away from them. This can be combated with

coordinating feature flag launches with marketing launches.

Who owns your one deploy a day?

As discussed throughout this chapter, getting to a deploy a day requires

a lot of supporting tools and processes. Once you have these in place,

there really is no good reason to keep your developers from deploying

the code they’ve created.

It is possible to have a dedicated team or individual who does deploys

at this frequency. However, you will find that it slows down other parts

of your process and erodes the trust that needs to be the bedrock of

your new development process.

Can the owner of a deploy a day be someone other than the developers

who authored the change? Yes. Should it be? No.

There are some hybrid options here. And remember, there are many

ways to get to your goal.

If empowering developers to deploy to production is blocked for a good

reason, then so be it. In that case, consider empowering developers

D
ep

lo
y

on
ce

 a
 d

ay

47

D
ep

lo
y

on
ce

 a
 d

ay

to deploy to your alternate environments and then having a gated

process to deploy changes from those environments to production. You

can also add Slack-based approvals for promoting deploys from your

non-production environments to production.

Do all that you can to give your developers the end-to-end experience

so they can own their changes and verify them in production. Only once

you have this culture in place can you reap the benefits of quick MTTD

and rapid improvements.

Deploy one
hundred
times a day

O4

48

Th
e

ul
tim

at
e

gu
id

e
to

 g
oi

ng
 fr

om
 z

er
o

to
 o

ne
 h

un
dr

ed
 d

ep
lo

ys
 a

 d
ay

STORY FROM THE TRENCHES

A need so bad we had to build,
and it’s worth millions

I have never worked at a company
the size of Facebook or Google, but I
have seen first-hand how a company
like Atlassian, at 4,000 employees, has
approached deployment at scale. I’ve
also done multiple interviews with
leaders and engineers inside of the
mega-scale organizations.

Their common experience is best
summed up by a quote from the head
of engineering at Shopify, “We’ve built
all this internally by necessity: visibility
into deployments, canaries, Slack
integrations, dashboards, etc. This is
kinda a must have for a cloud native
platform and 2k engineers :).”

I’ve heard similar statements and
sentiments from leaders at Facebook,
Google, Stripe, and many others.
At a point of scale each of these
organizations has dedicated entire
platform teams and hundreds of mil-
lions of dollars into their deployment
infrastructure. As one senior manager
at Facebook said, “Deployments are
so well oiled at this point, even as an
infrastructure team we don’t even
think about deploys. What we’re doing
at Facebook is 20 years ahead of what
they’re doing at Atlassian.”

It’s so common for a large organiza-
tion to build internal tooling that some
of the most popular open source de-
ployment projects are spawned from
these. Spinnaker grew out of Netflix,
Kubernetes from Google, Backstage
from Spotify, Clutch from Lyft, and
there are many more examples.

The takeaway from this is, the larger
you grow and the faster you ship the
more you need supporting tooling to
make sense of it all. Not every organ-
ization can afford to spend hundreds
of millions of dollars on deployment
tooling. And you shouldn’t have to!
There’s a new breed of tooling out
there, like Sleuth, that is bringing tools
the big players have to all of us.

49

Th
e

ul
tim

at
e

gu
id

e
to

 g
oi

ng
 fr

om
 z

er
o

to
 o

ne
 h

un
dr

ed
 d

ep
lo

ys
 a

 d
ay

50

D
ep

lo
y

on
e

hu
nd

re
d

tim
es

 a
 d

ay

If you’ve made it this far, I have a confession to make. Deploying 100

times a day is only really something that you’ll experience if you are at

a very large organization working off a monolithic codebase or a very

large monorepo.16

The more common pattern at larger organizations is to split up code

bases by product or service and have each of the teams responsible

for that code deploy their changes up to 10 times a day. In these cases,

the organization as a whole is deploying hundreds of times a day, but

by breaking things down to smaller teams they manage to avoid the

coordination overhead of working off a gigantic codebase.

That said, some of the largest organizations out there, like Facebook,

Google, Shopify, and others, maintain huge monorepos and have an

incredibly modern deployment process.

The keys to being able to deploy a hundred times a day are:

	✓�	 Highly sophisticated, custom built or modern, deploy-first tooling

that makes deploys a non-event 99.99% of the time

	✓�	 Canary deployments that allow changes to be rolled out to small

percentages of live traffic, with highly sophisticated and automated

observability that can automatically stop and roll back deploys

	✓�	 An engineering department dedicated to deployments, deployment

tooling, and continuous improvement of deployment environments

	✓�	 Full buy-in up and down the organization that frequent deploys for

shipping functionality is an integral part of how it functions

	✓�	 Individual developers are provided with a powerful toolset that

allows full visibility into the deployment pipeline, deployment health,

and the ability to easily create new deployment pipelines based off

of the organization’s standards

51

Measurements for one hundred
deploys a day

In a large organization, many of the issues you and your teams will face

are issues of scale and the challenges that come from trying to have a

shared language and set of measures across dissimilar teams.

Measuring Accelerate metrics in these environments is very important

as they can be the drivers for spotting where, organizationally, you

need to allocate resources to improve.

It’s often the case at these large organizations that custom tooling has

been built to provide this data. However, what’s more common is that

you find five to 10 different ways of measuring, each with a slightly var-

ied definition for each metric. The challenges we’ve seen are in aligning

internal teams on a single definition for a measure. For example, it can

be a challenge to support the sheer variety of Change Failure definitions

you find in a large organization.

Adopting a modern, deploy-first tool for these measures has the benefit

of a common definition and a way to apply them uniformly to dissimilar

teams. Your tooling should be able to report, at a minimum:

	✓�	 How teams are performing in relation to each other, slice and dice

those teams by programming language, reporting lines and more

	✓�	 Quick access to organization-wide anomalies

	✓�	 Ability to pull high-level aggregated reports about overall

organization trends and performance

D
ep

lo
y

on
e

hu
nd

re
d

tim
es

 a
 d

ay

52

D
ep

lo
y

on
e

hu
nd

re
d

tim
es

 a
 d

ay

The tooling your teams can employ to improve here can be very custom

to the organization. However, some common tools include:

	✓�	 Deploy workflow automation: an automation engine that allows

custom deploy workflows that can automate integrations with other

important systems in the organization

	✓�	 Automated high-level deploy notifications tailored for units of your

organization: Support, Product Management, Sales, Marketing,

Executive Management, etc.

Development practices for one
hundred deploys a day

For organizations to support 2,000 or more engineers continuously

working on and shipping code, they need to have become masters

of all the practices we’ve discussed thus far. Because each of these

organizations has unique needs that evolved over years, there are no

hard and fast limits they need to make sure they hit. However, there

are some common practices organizations of this size rely on to keep

the code flowing.

RELEASE TRAINS AND FEATURE FLAGS

As discussed earlier, if your team can accommodate it, deploying each

small batch of change by itself is an ideal way to reduce risk and keep

the code flowing. However, if your deploy process takes 30 minutes,

a very respectable deploy time, and your team is working eight-hour

days, that’s a maximum of 16 deployments in a day.

53

Now imagine your team consists of 500 developers, all shipping small

batched changes. You won’t be able to deploy each change by itself. The

way many teams get around this are release trains.

Release trains are scheduled deploys that “leave the station” at reg-

ular and frequent intervals. In this type of deployment environment,

developers know that they can merge their changes and that it will be

deployed via the next train. This kind of structure is best supported

when used in conjunction with feature flags. Feature flags allow code

to ship darkly and be enabled separate from the deployment of the

supporting code.

Release trains do have the disadvantage of deploying a larger amount

of changes all in one go. That’s why they are often coupled with canar-

ies, multiple pre-production environments with approvals, smoke tests,

and automated rollbacks, each of which we discuss next.

CANARY DEPLOYS

When deploying hundreds of times a day to systems at scale, the reliabil-

ity of your changes are paramount. Canary deploys are when you deploy

your changes to a subset of your infrastructure. Once happy with the

health of those changes you start to flow a small percentage of your user

traffic through that infrastructure. If, through automated observability,

that canary traffic is deemed healthy you increase the percentage of

traffic flowing through your new changes. If, at any point, an anomaly or

unintended error is detected you revert that user traffic to your older ver-

sion. In this way you can reduce the blast area of any negative changes.

Canary deploys are exceptionally powerful; however, they do come with

a price. It can require a much larger investment in infrastructure and

support for that infrastructure to maintain a canary setup (although

D
ep

lo
y

on
e

hu
nd

re
d

tim
es

 a
 d

ay

54

D
ep

lo
y

on
e

hu
nd

re
d

tim
es

 a
 d

ay

modern tools like AWS often support this with little effort if you follow

their best practices). Another main cost is time. Because you are allow-

ing your changes to soak in your canaries, you will have a longer total

time to deploy.

Another cost is that it becomes harder to understand when a change

has fully made its way into production. Teams will need to invest in some

form of tooling that makes it easy for developers to understand when

their changes have fully rolled out in production.

Finally, teams need to invest heavily in automated health detection to

create and maintain reliable and automated measures that can deter-

mine if a canary environment needs a rollback.

PRE-PRODUCTION ENVIRONMENTS WITH APPROVALS

Another way teams at scale bake in reliability are through multiple

pre-production environments. Things like a QA environment provide

external testing teams with an integrated place to run their tests. A stag-

ing environment is a great place for developers and PMs to spot check

changes before they hit customers.

Pre-production environments also allow teams to execute automated

smoke tests, tests that simulate end user behavior as if your product is

a black box. Smoke tests can be used as an automated gate to environ-

ments that are further down your deployment pipeline.

One powerful tool that larger and smaller teams employ are manual

approvals for promotion of a change from one environment to another.

As deployment workflows get more complex and changes flow through

more and more pre-production environments, it can be hard to know

when changes are about to deploy to production.

55

Putting in place an approval process where authors of change need to

“give a thumbs up” before their changes ship can provide teams the op-

portunity to take a breath, perform manual verifications and other tasks

before their changes deploy to production.

Most modern teams use a streamlined process where approvals are auto-

mated and performed in a communication tool like Slack. Tools like Sleuth

and Harness provide these deployment tools out-of-the-box for teams.

Communications for one
hundred deploys a day

At the scale of a hundred deploys a day, there are so many moving parts

and participants that any breakdown in communication lines will grind

the whole process to a halt.

Teams working at this scale have invested heavily not only in the prac-

tices and tooling described above, but also in the communication lines

associated with those tools and processes. To support 2,000 or more

engineers continuously working on and shipping code, they need to

have become masters of all the communication lines and tools we’ve

discussed thus far.

The goal at this scale is to make sure:

	✓�	 The process for how and when to deploy and roll back are fully

automated and self-explanatory. Individuals must be able to easily

and clearly see the state of systems and where their changes are in

relation to their deployment workflow. D
ep

lo
y

on
e

hu
nd

re
d

tim
es

 a
 d

ay

56

D
ep

lo
y

on
e

hu
nd

re
d

tim
es

 a
 d

ay

	✓�	 Mechanisms must be in place to ensure that none of the many

systems drift out of a uniform state; alarms and notifications should

alert teams when drift has breached a set level.

	✓�	 You need a single pane of glass to tie together all your best-in-class

tools.

ADVANCED DEPLOYMENT WORKFLOW AND PIPELINE

COMMUNICATIONS

In this phase, the sheer number of deployment environments and chang-

es flowing through your systems can be overwhelming. It’s critical that

there is an easy, accessible way to visualize the state of your deployment

pipeline and any changes moving through it.

There are any number of ways an organization can surface this in-

formation. Most organizations in this phase have invested in custom

tooling to accomplish this. The common thread is to invest enough such

that developers feel like deploys are non-events and have become so

comfortable that they don’t even question how their changes make it

out to users.

Some common ways this is accomplished are:

	✓�	 Well known and published “train schedules” so teams know how and

when to get changes out.

	✓�	 Automated systems, often via Slack, that can tell a developer where

their changes are in a deployment pipeline.

	✓�	 Automated processes for when things get stuck or deviate from

normal, so that an author of change knows when this happens and

exactly what next steps are. It’s key that this kind of situation can’t

hold up any other deployment activities.

	✓�	 Health metrics are baked into the automated deployment process

57

so that authors of change don’t need to monitor for them, they

just know that if they are breached their changes won’t flow to

production. They will be alerted and know what to do next.

DRIFT DETECTION

Multiple pre-production environments and canary deployments mean

your team needs to know when environments or subsets of production

have drifted apart, by how much and what exactly is in that difference.

Teams at the top of their game have built tooling that allows anyone

to see exactly the state of their supported environments and even the

ability to trigger a synchronization. At scale it becomes important to

have alarms and monitors around this drift, so no two systems drift

past a set threshold. Tools like Sleuth can keep track of drift across your

environments.

A SINGLE PANE OF GLASS

Throughout this book we’ve discussed many tools and how they help

your teams. However, as tools proliferate, the sheer number of things

to keep track of and places to visit for information become overwhelm-

ing and dilute the potency of the tools. Teams at this scale need an

aggregated, deploy-centric view of all relevant information.

The deploy is the unit that matters; it’s the unit that ships to customers.

As such, it’s critical to know which issue, what pull request, which met-

rics, what errors (and more) are related to a deploy. Teams operating at

this scale have often invested millions in custom solutions to link their

best-of-breed tools. Often teams will try to link everything together via

their issue tracker, but this tends to fall down when tracking multiple

deployment environments.

D
ep

lo
y

on
e

hu
nd

re
d

tim
es

 a
 d

ay

58

D
ep

lo
y

on
e

hu
nd

re
d

tim
es

 a
 d

ay

In the end, at scale, a deploy-based view of your software and com-

munications and operations is the way to make sense of the fast pace

of change.

Culture for one hundred
deploys a day

When an organization is deploying hundreds of times a day, that organi-

zation has decided to go all in on frequent deploys for the speed, power

and value it offers. It will have likely invested in a continuous engineer-

ing effort to support this culture. These organizations didn’t get here

overnight. They didn’t go from deploying once a quarter to deploying

hundreds of times a day.

If they have transformed, they did so a step at a time, moving to once a

week, then once a day and then truly flexing their deployment muscles.

If your organization is looking to transform, keep this in mind. You must

learn how to walk before you can run!

When an organization has reached this level of sophistication internally,

it feels like “things have always been done this way” and that working

any other way would be unnatural. Because it’s an ingrained part of the

culture, new hires don’t have to be convinced, they need to be included.

An organization won’t have reached this level unless there’s organiza-

tion-wide buy-in. The tooling and organizational investment required to

pull it off is expensive – if there were skepticism, the investment would

have been withheld and the effort would have floundered. Rather than

59

discuss the shift in cultural attitudes as we have in previous chapters, let’s

instead describe what the culture for each role looks and feels like.

DEVELOPERS

	✓�	 Developers understand that their work goes out in small batches

and are aware of the tools at their disposal, such as feature flags,

that allow them to ship larger functionality incrementally.

	✓�	 They have complete confidence that there’s an institutional safety

net that means bad changes are highly unlikely to make it to

production and if they do, the blast radius is small.

	✓�	 They have confidence that their team understands how things work

and there’s a sense that they’re all in it together.

	✓�	 Developers feel like deployments and safety are not the bottlenecks

to their productivity.

	✓�	 They also have the confidence that they can make a mistake and

ship a fix “in no time.”

	✓�	 They have the information they need to get the job done and

deploying feels like a non-event.

PRODUCT MANAGERS AND DESIGNERS

Product managers and designers are finally part of the agile process. Be-

cause they have integrated environments to test in and because changes

can be shipped quickly, they can run tests and ship the results of those

tests to truly satisfy the needs of their users.

They have also reduced the batch size of their work, building out

smaller increments of work because they can see them realized quick-

er. They know how to communicate to users even though things are

moving quickly. D
ep

lo
y

on
e

hu
nd

re
d

tim
es

 a
 d

ay

60

D
ep

lo
y

on
e

hu
nd

re
d

tim
es

 a
 d

ay

ENGINEERING MANAGERS

Engineering managers get to be the team’s champion for continuous

improvement. As a manager you know that working in a DevOps way

is a never-ending quest for better. This is a virtuous cycle. As you clear

large roadblocks smaller ones come into focus.

An engineering manager also no longer needs to steal time for tech

debt. Because reliability and quality are key ingredients to moving fast-

er, they must be baked into the process.

Also, at the scale of a hundred deploys a day you will have external

teams working on deployment tooling, metrics and visibility that will

allow your team to punch above its weight.

UPPER MANAGEMENT

Upper management knows that their ability to ship continuously is a

competitive advantage. They understand that it’s an enabler to scale

their engineering organization to dizzying heights. They understand that

it provides them with the tools and mechanisms to provide the reliability

customers expect, and that gives them further competitive advantage.

They’ve also learned that this isn’t cheap. That only through continued

investment can they truly achieve the goal. But they are clear on the

return they receive from that investment.

Management now gets to focus on issues of scale instead of worrying

about the organization’s ability to ship.

CUSTOMERS

Customers are almost always the largest beneficiaries of an

61

organization’s ability to ship continuously. They see tangible benefits,

such as quick product evolution, quick resolution of bugs, better relia-

bility and scalability, and quick response to feedback.

The industry in general is still struggling to figure out how to make rapid

changes without, at times, confusing the customer. If a button was in

one place one day, another a week later, and then a third place a month

after that, it can be a jarring experience for customers. Support teams

and customers are still trying to balance how best to absorb the pace of

change organizations are now capable of making.

Who owns your one hundred
deploys a day?

Whether an organization is achieving a hundred deploys a day via many

small teams deploying 10 times a day, or by utilizing release trains and

segregated deploys, they have one thing in common: they need to have

dedicated engineering resources to work on deployment pipelines,

tooling and platform.

The goal at this scale is still to empower developers to get their changes

out to production under their own steam and quickly, reliably and

safely. However, having many independent teams all building their own

unique tools poses challenges.

Organizations at scale need to worry about things like SOC2, ISO 27001

and FedRamp certification. They’ll likely have board-level security

commitments to adhere to, and commitments to auditability smaller

D
ep

lo
y

on
e

hu
nd

re
d

tim
es

 a
 d

ay

62

D
ep

lo
y

on
e

hu
nd

re
d

tim
es

 a
 d

ay

organizations don’t need to worry about.

In large organizations there are always new large and small projects

spinning up and down. There’s developer spikes, new product proof of

concepts, and many other such projects. An organization at scale needs

to be able to provide their developers with a way to provision new

deployments quickly and easily in a way that complies with the organi-

zation’s existing obligations and objectives.

Doing this via hundreds of one-off deployment pipelines just isn’t fea-

sible. Most organizations at scale have learned this along the way and

continuously invested in deployment capabilities. They have teams that

provide the raw deployment ingredients for other teams to perform

their frequent deploys. It’s often the case that teams still configure their

deployment pipelines. However, they’re often utilizing and working with

such centralized teams and tools to do so.

A continuous
journey toward
improvements

O5

63

Th
e

ul
tim

at
e

gu
id

e
to

 g
oi

ng
 fr

om
 z

er
o

to
 o

ne
 h

un
dr

ed
 d

ep
lo

ys
 a

 d
ay

64

A
 c

on
tin

uo
us

 jo
ur

ne
y

to
w

ar
d

im
pr

ov
em

en
ts

One key characteristic shared by high-performing software teams is

that they have baked continuous improvement into how they work.

They are continually measuring how they are working, identifying the

area most ripe for improvement, modifying their process and then

repeating it all over again.

These teams have learned that frequent deploys, DevOps and the cul-

ture that comes with it are a continuous journey, not a destination.

We’ve shown throughout this book that moving to frequent deploys

comes with a wealth of benefits for your customers, your developers,

your organization, your culture and your ability to innovate. It’s a jour-

ney that requires commitment and investment but one that is worth

every bit of money and effort invested.

If your team is considering starting on your journey, remember that

you are not alone. Many surveys have shown that we are witnessing a

mass adoption of DevOps practices with almost 45% of teams surveyed

saying they’ve been practicing for a year or less.17

What this means for you is that there are amazing resources for you

to ensure that your team can make a successful transition to frequent

deploys.

Start at the start, focus on the step right in front of you, always be

measuring, and rely on the tools to help you improve. Your path to

deploying a hundred times a day awaits you!

65

References

1.	 DevOps is a set of practices that combines software development and IT operations.

It aims to shorten the systems development life cycle and provide continuous delivery

with high software quality.

2.	 Continuous delivery is a software engineering approach in which teams produce soft-

ware in short cycles, ensuring that the software can be reliably released at any time and,

when releasing the software, doing so manually.

3.	 “2022 Accelerate: State of DevOps Report.” DevOps Research & Assessment, Google

Cloud. 2022.

4.	 Forsgren, Nicole, Dr., Frazelle, Humble, Jez, Kim, Gene. “Accelerate: The Science of Lean

Software and DevOps” IT Revolution Press, 2018

5.	 A blameless culture assumes that everyone involved in a mishap has good intentions

and did the right thing with the information they had.

6.	 CI/CD refers to the combined practices of continuous integration and either continuous

delivery or continuous deployment. CI/CD bridges the gaps between development and

operation activities and teams by enforcing automation in building, testing and deploy-

ment of applications.

7.	 Failure can be defined as many things, from having created an incident to causing an

important metric to degrade. It’s up to you how you want to define a failure.

8.	 Pull requests let you tell others about changes you've pushed to a branch in a git repos-

itory. Once a pull request is opened, you can discuss and review the potential changes

with collaborators and add follow-up commits before your changes are merged into the

base branch.

9.	 Flakey tests are tests that don’t pass 100% of the time. This is often because of a poorly

written test or because the test runs against an inconsistent external resource.

10.	 Service Level Objective - the objectives your team must hit to meet your SLAs - the

agreement you make with your customers or end users.

11.	 MTTD - mean time to detect or how long it takes to discover change failure.

12.	 A continuous delivery pipeline is an implementation of the continuous paradigm, where

automated builds, tests, and deployments are orchestrated as one release workflow.

Re
fe

re
nc

es

66

Re
fe

re
nc

es

13.	 The Definition of Done is an agreed-upon set of items that must be completed before a

project or user story can be considered complete.

14.	 A feature flag is used to hide, enable or disable a feature or code path during runtime.

15.	 https://m.signalvnoise.com/how-we-structure-our-work-and-teams-at-basecamp/

16.	 A monorepo (mono repository) is a single repository that stores all of your code and

assets for every project.

17.	 2020 DevOps Trends Survey by Atlassian & CITE Research

ABOUT THE AUTHOR

Dylan Etkin is CEO & Co-Founder of Sleuth, the

leading deployment-based metrics tracker.

As one of the first 20 employees at Atlassian,

Dylan was a founding engineer and the first

architect of Jira. He has led engineering for

products at scale in Bitbucket and Statuspage.

He has a Master’s in Computer Science from

ASU. He’s a bit of a space nut and has been seen

climbing around inside of a life-size replica of

the Mir space station in Star City Russia.

Questions? Feedback? Email us at hello@sleuth.io

© 2023 Sleuth Enterprises, Inc. Learn more

