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Abstract- Investors seek competitive advantage through 

order creation, based on timely market information, and 
submission into an ultra-low latency matching engine. 
Historically, these environments were built with proprietary 
technology deployed on dedicated infrastructure to 
minimize latency and control jitter.  However, as outlined in 
this paper, we believe that innovations in cloud 
infrastructure allow configuration and implementation of 
an acceptably low-latency trading platform in a cloud 
environment. We have demonstrated this by implementing 
a simple foreign exchange (FX) trading system and 
deployed it to a cloud environment, recording network 
latency and overall system latency. Additionally, we provide 
analysis of clock skew between systems in a cloud 
environment to assess whether the deployment can satisfy 
stringent clock precision required by MiFID2 regulations. 

Keywords- trading, low latency, high performance 
computing, cloud, Amazon Web Services(AWS), Microsoft 
Azure, Oracle Cloud Infrastructure (OCI) 

I.  INTRODUCTION 
High frequency/low latency trading systems [1, 2] symbolize 
today’s intensive focus on eliminating technical barriers to 
ever faster communication, processing and decision 
making. To stay ahead in the high-speed race, trading systems 
need to be designed to maximize throughput, minimize 
latency, and accommodate rapid development of additional 
functionality. It is unlikely that modern electronic markets’ 
relentless drive towards faster decision making will abate in 
the near future [3, 4]. Traditionally, to achieve low latency, 
high-frequency trading has required powerful server hardware 
in a data center, scaled to accommodate worst-case network 
traffic scenarios on the busiest trading days. These trading 
systems must be resilient in the face of network or power 
failures, requiring expensive redundant hardware as well as 
offsite data retention. Cloud-based software solutions are 
architected to be distributed, resilient, and easily scalable, 
meeting many of the needs of a high-frequency trading 
system. However, industry trends toward deploying 
applications into cloud environments, while effective and 

beneficial for meeting capacity, availability, and resiliency 
requirements, introduce additional challenges to achieving 
low latency. The greatest barrier to building a high-frequency 
trading system in a cloud environment has been the limited 
ability to provision hardware which is co-located within a data 
center, essential for meeting the low latency requirements of 
such systems. Other challenges include decreased 
performance due to virtualization of cloud instances and the 
difficulty of synchronizing clocks across instances to meet 
regulatory requirements. That said, a system running in the 
cloud with reduced latency is an ideal objective for a financial 
institution to keep up with competition and ensure that its 
users have the best possible chance to make informed 
decisions while having real-time data available. 

Recent developments by cloud providers such as Azure and 
Oracle Cloud Instructure (OCI), including the introduction of 
availability sets, access to bare-metal instances, and high 
performance networking are enabling support for a high-
frequency trading use case. Such developments increase the 
authors belief that it is now possible to implement a high-
frequency trading system fully hosted in a public cloud 
environment. Such a system would provide traders with all the 
advantages of a fast, efficient trading platform, as well as the 
robust, easily maintainable infrastructure provided by a 
distributed cloud architecture. 

The authors note that traditional low-latency trading systems 
built on dedicated servers with co-located trading platforms 
provides the lowest latency.  However, they don’t offer the 
advantages of public clouds, including cost-effective dynamic 
scaling. 

In this paper, we examine a simple trading system deployed to 
a cloud environment and tuned for low latency, to establish 
the feasibility and performance of a low-latency trading 
system hosted on cloud-based servers. We executed 
performance tests on an automated deployment hosted on 
Amazon Web Services (AWS), Microsoft Azure and Oracle 
Cloud Infrastructure (OCI). This paper will demonstrate the 
effectiveness of our system to deliver round trip trades on 
cloud-based servers at production message rates with 
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competitive latency. Additionally, we perform a measurement 
and analysis of clock skew between two servers when running 
performance tests, in order to determine whether it is currently 
possible to implement a MiFID II [5] compliant trading 
system in a cloud environment. 

Our research aims to prove that we can provide a low-latency 
trading platform hosted on cloud-based servers which can 
achieve performance goals with an average latency of 500μs  
(microsecond) and 99% less than a ms (millisecond) at a 
transaction rate of 10,000 orders/second/single currency pair. 
We achieved an average latency of 240μs with 99% of 
latencies less than 345μs.  These metrics were selected for 
analysis because markets are measured by speed and fairness 
of order handling. Speed in terms of quick order request 
response time, i.e. low latency, and fairness in terms of 
deterministic response time, i.e. minimal jitter. 

This provides a quick summary of paper.  Section II defines 
latency and the goal of this study.  Section III will explore the 
challenges posed in building an optimal low-latency, high-
throughput trading system. It will also present past opinions 
and identify potential research areas. In section IV, the paper 
describes the architecture of the system under test.  Section V 
describes the metrics captured and Section VI presents results 
measured on three different cloud platforms.  Section VII 
recommends extentions to this studay and Section VIII 
summarizes our findgs.  

II. BACKGROUND 
This section defines latency and outlines the goal of our 
study. 

Latency is defined as being any delay or lapse of time between 
a request and a response. Jitter is defined as variation in the 
latency. As it pertains to trading, latency directly influences 
the amount of time it takes for a trader to interact with the 
market. The timely and deterministic reception of pertinent 
market information and the ability to act upon its receipt are 
often greatly impacted by latency issues [6]. Obtaining low 
latency and jitter is critical as data must travel round trip to 
make a single transaction. Investors are constantly looking for 
ways to improve their chances of success. Hence, it is 
important for traders to have access to the lowest latency and 
jitter possible on trading platforms. Every microsecond counts 
when making trading decisions and each microsecond lost to 
latency can result in lost opportunities for the trader. 

This research is important to demonstrate the effectiveness of 
our system to deliver round trip trades with reduced latency. 
We are committed to building a trading platform in the cloud 

                                                             

1. Limit order is a trade request entered at a trader specified 
price. Market order is a trade that enters the market at the 

to meet the needs of traders seeking ultra-low deterministic 
latencies. The goal is to provide a true and real-time trading 
experience as we demonstrate in studies that we can reduce 
latency in the cloud to a minimum. 

III.  LITERATURE REVIEW 
This section explores the research areas and past work to 
reduce latency while improving message throughput in 
trading systems. 

Many companies have published their opinions on the 
importance of low latency systems especially when it comes 
to High Frequency Trading (HFT) which has gained a strong 
foothold in financial markets. This has been driven by several 
factors, including advances in information technology that 
have been conducive to its growth. Unlike traditional traders 
who hold their positions long term, high-frequency traders 
hold their positions for shorter durations, which can be as little 
as a few seconds. IBM and Mellanox [4] outline hardware 
requirements to achieve desired latency and throughput. 

Tackling latency and reducing costs has always been a 
challenge when developing applications. Moallemi et al [4], 
explain why trading with low latency is valuable to investors 
as they need to be able to update orders in a timely fashion in 
response to new information. The cost of latency in trade 
execution is illustrated in an example showing how the median 
latency cost more than tripled while the median implied 
latency decreased when examining NYSE common stocks 
from 1995 to 2005. The study that was performed 
mathematically quantifies the cost of latency when traders are 
deciding between limit and market orders1. As latency impacts 
all market participants, their analysis suggests that the ability 
to trade with low latency results in quantifiably lower 
transaction costs. The method outlined in this study provides 
clear qualitative insight into the importance of latency. To 
quantitatively assess the cost of latency, the study contrasts the 
results in both the presence and absence of latency. Overall 
their results suggest that the difference in payoff between 
trading with a human time scale (500 milliseconds) and an 
automated trading platform with ultra-low latency (1 
millisecond) is approximately of the same order of magnitude 
as other trading costs faced by institutional investors. This 
observation certainly underlines the significance of latency for 
such investors. 

Achieving lowest latency without moderating jitter does not 
address all trader needs. As stated in [7], algorithmic trade 
flow requires deterministic response time in order to work 
consistently and profitably. 

best price (lowest offer price to sell and highest bid price to 
buy). 
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The Tabb Group [8] is an international research and consulting 
firm exclusively focused on capital markets. Research areas 
include evaluating industry adoption of new technologies, 
such as cloud, as well as, evaluating industry solutions, such 
as low-latency trading systems. On cloud adoption, The Tabb 
Group states that 48% of industry participants are using public 
cloud for Infrastructure-as-a-Service (IaaS), Platform-as-a-
Service (PaaS), Software-as-a-Service (SaaS) and/or “multi-
cloud” [9]. Their report on cloud adoption [10] states that 
“adoption within capital markets shows an industry that has 
moved beyond pondering cloud’s suitability, to one that is 
actively architecting the enterprise deployment of hybrid 
and/or multi-cloud environments.”. Adopters include 
BlackRock, Credit Suisse, Goldman Sachs, HSBC, 
JPMorgan, MUFG, UBS, DTCC and FINRA. 

Securities Technology Analyst Center (STAC) [11] 
coordinates a community called the STAC Benchmark 
Council chartered to create specifications for performance 
testing capital market solutions [12]. They have created a 
number of testing specification across multiple domains. Their 
STAC-A2 (derivatives risk), STAC-A3 (strategy backtesting), 
and STAC-M3 (enterprise tick analytics) specifications have 
been tested in public cloud environments. But the trade 
execution specification, STAC-E, remains in draft form with 
no published benchmark results. We are not aware of any 
benchmark specifications, such as TPC-C [13], for comparing 
and evaluating trade execution systems. Due to the lack of an 
industrywide sponsored testing specification, trade execution 
system test specifications are unique/test, which is what we’ve 
done here. However, we’ve endeavored to clearly explain our 
system. 

There is a plethora of approaches to reduce latency while 
increasing message rate in trade flows which includes 
integration of hardware-based solutions. Zoican and Vochin 
[14]  propose a solution that embeds Graphic Processing Units 
(GPUs) to reduce latency. A. Boutros et al. [15] embed 
FPGA’s into their solution and focus on building a 
development tool chain to effectively manage the code pushed 
to the FPGA. Haohuan FU et al. [16] deployed an FPGA-

based trading solution for the China Financial Futures 
Exchange (CFFEX). They claim that their FPGA-based 
solution reduced latency from 100+ microseconds to 2 
microseconds. H. Subramoni et al. [17] built a feed handler on 
an industry standard server by using best-in-class commodity 
hardware and an innovative software design and 
implementation that optimizes performance. The authors’ 
view and approach are to build low-latency trading systems 
with industry standard technology. We believe that the 
advantages are manifold: availability of industry standard 
development tools and languages, fast/confident deployment, 
portability, vendor choice, seamless upgrade, cost and 
availability. Our experience corroborates H. Subrmoni, et al. 
[17] team’s finding. 

One industry standard technology used for reducing latency is 
the Disruptor pattern. The Disruptor ring buffer was 
developed by LMAX as an alternative messaging pattern to 
the use of bounded queues. According to studies performed by 
LMAX, after profiling various implementations, it became 
evident that the queuing of events between stages in the 
pipeline was dominating the costs. It was found that queues 
also introduced latency and high levels of jitter. The LMAX 
disruptor was designed to attempt to maximize the efficiency 
of memory allocation, and operate in a cache-friendly manner 
so that it will perform optimally on modern hardware. At the 
heart of the disruptor mechanism sits a pre-allocated bounded 
data structure in the form of a ring-buffer. Data is added to the 
ring buffer through one or more producers and processed by 
one or more consumers. By making these performance 
improvements, they suggest that the mean latency is much 
lower than an equivalent queue-based approach and have seen 
over 25 million messages per second and latencies lower than 
50 nanoseconds [18]. 

IV. TEST ENVIRONMENT 
This section details the test environment and describes the 
components of the FX matching engine. 

Our test system implements an order book and FX matching 
engine in an “immediate-or-cancel” trading scenario (see 
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Figure 1: The Archictecture of the FX Matching Engine that we tested in the cloud. 
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Figure 1). The order book is supplied with orders by an 
upstream generator, which publishes order messages to a 
message router, to which the order book is subscribed. The 
order book forwards these messages to the matching engine 
via a second message router. 

The Order Generator constantly creates new open Order 
objects (status = "O") for its configured currency pair, then 
creates a new Order Message and publishes it via its Producer 
disruptor to the order topic on the Solace Order VMR.  

The Order Book subscribes to the order topic on the Solace 
Order VMR via a Consumer disruptor. Upon receiving a new 
Order Message, the Order Book decodes the message and 
stores it in the Order Book. The Order Book then sends 
another Order Message with a new timestamp via its Producer 
disruptor to the order topic on the Solace Matching VMR. The 
Order Book also subscribes to the cancel topic on the Solace 
Matching VMR via a Consumer disruptor. Upon receiving a 
cancel Order Message, the Order Book removes the Order 
with the matching order ID from the Order Book. 

A standard Matching Engine traditionally matches buy and 
sell orders within a given market. The implemented test 
engine simply receives an order and immediately responds 
with a cancel message. This simulates the most common 
action on an FX exchange. The Matching Engine subscribes 
to the order topic on the Solace Matching VMR via a 
Consumer disruptor. Upon receiving a new order message, the 
Matching Engine creates a copy of the order message but sets 
its status to "C" (for "Cancel"), sets a new timestamp, then 
sends this cancel order message to the cancel topic on the 
Solace Matching VMR via a Producer disruptor. 

The test system is deployed to provisioned instances on a 
cloud platform within an affinity group to guarantee that 
allocated resources are in the same data center and physically 
collocated. All instances are provisioned with identical 
specifications, as made available by the cloud vendors. 
Enhanced networking is configured as available by the cloud 
vendors. Each instance is provisioned running Red Hat 
Enterprise Linux 7.5. Clocks in the data centers used by the 
cloud providers were confirmed to be synchronized to a GPS 
clock. We install Chrony locally on the instances, which 
typically synchronizes system clocks at an accuracy within 
tens of microseconds on a LAN. 

Each message routers hosts a Docker container running the 
Solace Virtual Message Router [19]. The Solace VMR is a 
version of the SolOS messaging middleware platform which 
runs on commodity hardware, rather than the company’s 
purpose-built appliances. The Solace VMR allows message 
routing capabilities to be deployed to a cloud environment, 
where they can be scaled horizontally to provide improved 
throughput and redundancy. The test application sends 
messages to the router in direct message mode, that is, 

subscribers to a message topic, does not send an 
acknowledgment after receipt of a message, and the Solace 
VMR does not persist the messages. This was a design 
decision to prioritize achieving and measuring the lowest 
possible latency rather than guaranteed delivery. The 
application uses the Solace Java API (also known as JCSMP) 
to send and consume messages from the Solace VMR. Solace 
also provides a Java Real-Time Optimized (RTO) API, which 
is a Java Native Interface (JNI) wrapper for Solace’s C API. 
As the message objects are statically allocated in our 
application, by reusing the objects in a ring buffer, the 
invocation of the garbage collector is eliminated in our 
application.  This reduces the benefit of using Solaces’ Java 
RTO API. Instead, to achieve lowest latency, the application 
establishes the session by setting Solace’s 
MESSAGE_CALLBACK_ON_REACTOR property, which 
configures Solace to directly deliver messages to the 
application’s listening thread from an I/O thread, bypassing a 
consumer notification thread. 

The test system is deployed to cloud instances using 
Terraform [20] to automate configuration and provisioning of 
instances, including executing an Ansible playbook locally on 
each host. The Ansible playbook retrieves the test application 
from a remote repository and applies various modifications to 
the host OS and kernel to tune the system to optimize latency.  

The test application is written in Java and runs on the JVM 
with the configuration shown in Table 1. JVM Configuration.  

The test application uses the LMAX implementation of the 
Disruptor pattern [18] to provide high-performance inter-
thread messaging in a thread-safe environment. Solace 
message objects are read into the statically allocated Disruptor 
ring buffer, reusing the message object to read, modify, and 
send a response message.  

Table 1. JVM Configuration 
JVM Parameters 

-XX:UseG1GC 
-Xms10G 
-Xmx10G 

-XX:+ExplicitGCInvokesConcurrent 
-XX:+ParallelRefProcEnabled 

-XX:MaxGCPauseMillis=5 
-XX:InitiatingHeapOccupancyPercent=0 
-XX:+UnlockExperimentalVMOptions 

-XX:G1NewSizePercent=5 
-XX:G1MaxNewSizePercent=30 

 

The test application allocates all objects statically to avoid GC 
(garbage collection) events.  We’ve observed that GC events 
introduce increased latency and therefore spent considerable 
effort to avoid them. Many specific OS-level and kernel-level 
tunings are applied in an effort to lower system latency and 
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reduce activity interfering with the test application. For 
example, control groups are used to isolate a cpuset of cores 
for the test application process to use, and pin many OS and 
kernel services which cannot be disabled onto a different 
cpuset of cores, including IRQ interrupts. All tunings in the 
RHEL network_latency tuning profile are applied using the 
tuned-adm tool included with RHEL. 

V.PERFORMANCE METRICS 
This section describes the process for capturing metrics during 
our tests. 

The test system collects latency statistics in memory for the 
duration of the performance test and writes them to disk upon 
conclusion of the test. Metricbeat [21] is installed on the 
application instances and is used to send system metrics to an 
Elasticsearch cluster, including CPU, memory, and network 
I/O usage. Filebeat [22] is used to collect the latency statistics 
files written to disk storage and published to Elasticsearch. 

Latency is recorded by invoking Java’s system.nanoTime() 
timestamp method. For each order, latency is recorded at 5 
points along the flow of data through the test system as shown 
in Figure 2. Timing calculation starts when an order is read 
from the input ring buffer after injection by the Test Driver.  
The time delta is then calculated at each of the following five 
points: 

1. The order book publishes an order to the Router 
VMR. 

2. The Matching Engine receives the Order from the 
Router VMR. 

3. The Matching Engine publishes the Cancelled Order 
to Router VMR. 

4. The Order Book receives the Cancelled Order from 
the Router VMR. 

5. The Order Book marks the Order as completed. 

Total latency is the sum of the latencies measured at these 5 
points along the flow of data. 

For short-tests, less than one hour, latency statistics are kept 
in memory and flushed to Elasticsearch at end of test. For 
long-tests, latencies are conflated at one second intervals and 
sent to Elasticsearch in real-time. Metrics are visualized using 
a Kibana dashboard. 

In parallel with the Trading Test, a client process on the 
Matching Engine Instance bounces a message off a server 
process in the Order Book Instance to directly measure the 
roundtrip latency (bypassing the Router VMR) and estimates 
the clock skew between the two systems. Clock skew is 
calculated from the roundtrip latency, presuming that each leg 
of the roundtrip should have roughly equal latency. The client 
sends a message to the server including a timestamp T1client 
and receives a response including a timestamp on receipt by 
the server (Tserver). The client then records its own timestamp 
of the receipt of response (T2client) and computes the roundtrip 
latency LRT, then compares the expected server timestamp 
(half of the roundtrip latency plus the initial timestamp) to the 
actual server timestamp. The difference is equal to the 

difference between the clocks on the two systems. 

Equation 1: Roundtrip latency 
LRT = T2client – T1client 

 

Equation 2: Clock Skew 
Clock Skew = Tserver – (T1client + LRT/2) 

This data was collected across a number of tests and analyzed 
to estimate the Cloud Skew, the difference between two clocks 
at a point in time, and Clock Drift, change in Clock Skew over 
time. 

VI. RESULTS 
This section presents the measured results of running an FX 
Trading System on three different cloud vendors 

We performed a number of tests to assess system behaviour 
over varying conditions, including: 

• Message rate 
• Message size 

Figure 2: Each number represents a point to capture the current time in order to calculate latencies. 
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• Test duration from 5 minutes to 1-week 
• Instance types, including virtual and bare-metal 
• Public cloud vendors (AWS, Azure and OCI) 

We also tested various cloud, network and system 
configurations to determine the optimal configuration in 
order to minimize latency and jitter. We conducted our tests 
by changing one parameter at a time and measuring the 
impact. This required executing a number of tests, which we 
managed by building a fully integrated dev/test/deploy/run 
performance test/measure pipeline. 

Results included are from tests conducted in June and July of 
2018. We noted that during the course of this study, cloud 
providers were actively working to improve their platforms, 
which resulted in progressively improving test results, 
demonstrating the import of this subject area. This was 
particularly notable in the improvement of virtualization 
technology and support of bare-metal servers. 

Our base configuration was a virtual instance running 16 
physical processor cores with hyperthreading disabled at the 
OS level (that is, a hypervisor was still running but was not 
scheduling threads to run on sibling cores). Our application 
runs on a JVM configured with 10GB of memory with a ring 
buffer size of 1,024 message objects. Baseline tests were 
executed for 30 minutes with a message payload of 100 bytes 
sent at a rate of 1,000 messages a second. 

We excluded Physical CPU Core Count, Logical CPU Core 
Count, Memory Size and Network Bandwidth from this 
report in order to protect cloud provider anonymity. With this 
information, a savvy reader could determine the cloud 
provider from the instance shape. The authors believe that 
comparing cloud providers distracts the reader from the 
report’s purpose and is not required to justify our finding. 

All test environments satisfied the following configuration: 

• 24 to 72 Physical CPU Cores 
• 2 Logical CPU Cores / Physical CPU Core 
• At least 128GB of Physical Memory 
• At least 14Gbps of Network Bandwidth 

A typical minimum round-trip latency measured was 231μs, 
with a median latency of 318μs. We identified network jitter 
typically characterized by a 50-75% increase in latency from 
minimum to 50th percentile latency (best case: 12% increase) 
and a 150-300% increase from minimum to 99th percentile 
latency (best case: 91% increase). Maximum latency 
recorded was typically on the order of 50-100ms. 
 

Table 2. 30-minute test performance statistics 
Date 2018-07-10 
Instance Type Virtual 
Message Rate 1,000 msg/s 
Average Latency 377μs 
Minimum Latency 231μs 
50th percentile 318μs 
75th percentile 413μs 
95th percentile 577μs 
99th percentile 669μs 
99.9th percentile 5.017ms 

 
We identified that the Solace VMR is currently the primary 
source of jitter in the environment, by comparing its latency 
against messages directly sent between the Order Book and 
Matching Engine, bypassing the VMR.  We reported our 
results to Solace.  Solace replicated the problem and verified 
that the VMR version of their product produced this jitter. 

Various bare-metal server configurations, containing 32+ 
physical cores, were tested. We conducted this comparison 
test on a cloud provider that offered virtualized and bare-
metal instances. Again, like virtual instances, we disabled 
hyperthreading at the OS level. The use of bare-metal servers 
typically resulted in improved stability and lower minimum 
latency. Compared to the virtualized instance, the latency was 
reduced by ~26% for the 95th percentile, however sometimes 
the 95th % were greater (example shown in Table 3).  We 
hypothesize that these outliers are caused by network jitter 
and not the bare-metal server.  Further testing would need to 
verify this hypothesis. 

Table 3. 25-minute test - Comparison of virtual and 
bare-metal instance 

Date 2018-07-17 2018-07-17 

Instance Type Virtual Bare-Metal 

Message Rate 1,000 msg/s 1,000 msg/s 

Avg Latency 497μs 399μs 

Min Latency 282μs 232μs 

50th % 486μs 347μs 

95th % 590μs 434μs 

99th % 657μs 1,012μs 

Max Latency 133ms 191ms 

 
In our tests, very little of the system roundtrip latency is 
attributed to application processing, with the majority of the 
latency attributable to network latency. We experienced 
latency spikes of up to 1.5μs across various system 
components, for a total average latency of under 5μs due to 
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application processing. It is evident that jitter experienced in 
overall system latency primarily originates from the Solace 
VMR. 

Cloud Provider Comparison @ 10,000 msgs/s 

We tested our configuration on instances offered by three 
prominent cloud vendors for 30 minutes. For these tests we 
increased the message rate to 10,000 msgs/s. The overview 
below demonstrates that multiple cloud offerings support our 
configuration with varying best-case performance results. 

Table 4. Comparison of instances offered by 
different cloud vendors – best performance 

achieved 
 Cloud 1 Cloud 2 Cloud 3 

Date 2018-07-17 2018-07-17 2018-07-17 

Instance Type Virtual Bare-Metal Virtual 

Msg Rate 10,000 
msg/s 

10,000 
msg/s 

10,000 
msg/s 

Avg Latency 251μs 399μs 633μs 

Std Deviation 185μs 1,198μs 426μs 

Min Latency 173μs 232μs 298μs 

50th % 242μs 347μs 568μs 

95th % 314μs 434μs 966μs 

99th % 357μs 1,012μs 1,519μs 

Max Latency 45ms 118ms 52ms 

 
Although we started our testing with similar instance shapes, 

ultimately, we had to use different shapes in each cloud 
provider.  Because we are only sending orders through for a 
single product and we pin cores, most cores are unused.  
Therefore, a high core count does not guarantee better 
performance.  In addition, system memory size was not 
significant to test because application was configured to 
allocate only 10GB of memory. 

Cloud Provider 1 reported the best results responding to 99% 
of all orders within 357μs at a rate of 10,000 msgs/s. Table 5 
proves that Cloud Provider 1 can sustain this latency up to 7-
hours.  Cloud Provider 2 high variance of 1ms is due to 
outliers above the 95%.  Cloud Provider 3 does not have an 
outlier problem.  In fact, its max latency is only 16% higher 
than Cloud Provider 1’s max latency, but their average latency 
is 2.5 times higher than Cloud Provider 1.  Variance is only 
2.3 times higher. 

Although there is a high variance in results between these 
three cloud providers, the testing shows that you can achieve 
deterministic low-latency on a public cloud. 

Single-Day Test Results 

We ran performance tests for the same three cloud providers 
over a 24-hour period to determine whether time of day 
impacts total latency (see Table 5). For Cloud Provider 1 the 
driver sent messages at a rate of 10,000 msgs/s.  This test 
stopped after 7-hours due to insufficient disk space, but we 
included it in this report because it validated latencies 
reported in Table 3. Figure 3 shows the total latency for Cloud 
Provider 1.  Note that the y-axis is a log function for all 
graphs. 

Figure 3: Cloud Provider 1: shows total latency to process an order over a 7-Hour test interval. 
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The 50th, 95th and 99th percentiles were not captured for 
Cloud Provider 2 because latency measurements were 
conflated.  Figure 4 shows the total latency. 

The tests on Cloud Provider 2 ran for 24-hours at 1,000 
msgs/s.  Graph 4 shows the max latency, not the 99%. 

The tests on Cloud Provider 3 ran for 24-hours at 1,000 
msgs/s.  Although the latencies are higher, the 99% is still 
less then 1 ms.  

The 7-hour test for Cloud Provider 1 reported results 
consistent with the shorter test reported in Table 4.  Cloud 
Providers 2 and 3 reported higher latencies then Cloud 
Provider 1, but results are consistent with Table 4, except the 

99th % for Cloud Provider 3 is ½ the shorter test while the 
max is double. 

It is important to note these tests were run only for a single 
day using a single data center and therefore should not be 
used to draw definitive conclusions. While we did not note a 

significant slowdown or problems over the single day, we did 
not collect enough evidence to make a statistically significant 
conclusion. 

Figure 4: Cloud Provider 2: shows total latency to process an order over a  24-Hour test interval. 
 

Figure 5: Cloud Provider 3; shows total latency to process an order over a 24-Hour test interval. 
 

Time 
 

La
te

nc
y 

(μ
s)

 

10
00

0 
20

00
 

50
0 

10
0 

14:00                           19:00                          00:00                          05:00                           10:00 

 

Cloud Provider 2: 24-Hour Test 

 

Time 
 

Cloud Provider 3: 24-Hour Test 

 



- 9- 
 
 

 Cloud 1 Cloud 2 Cloud 3 

Date 2018-07-20 2018-06-21 2018-07-11 

Instance Type Virtual Bare-Metal Virtual 

Msg Rate 10,000 
msg/s 

1,000 msg/s 1,000 msg/s 

Avg Latency 240μs 328μs 350μs 

Min Latency 168μs 233μs 230μs 

50th % 230μs - 306μs 

95th % 298μs - 519μs 

99th % 345μs - 727μs 

Max Latency 33ms 117ms 110ms 

 

7-Day Test Results 

We ran two performance tests over a 7-day period (1-week) 
on Cloud Provider 3 to determine whether day of week 
impacts latency. These tests ran concurrently; one test on 
Virtual Instances and one test on Bare-Metal Instances.  We 
were unable to perform the 7-Day Test on Cloud Provider 1 
and 2 due to cost constraints. 

Table 6 reports minimal, average and maximum latency for 
these tests.  We did not capture percentiles because results 
were conflated at source in order to report test progress in 
real-time through an Elasticsearch Cluster. 

We observed that the test running on bare-metal instances 
reported stable mean response times throughout the 7-day 
test.  However, after running for 2-days 4-hours, the Max 
Latency on the bare-metal instances and Mean and Max 
latency on virtual instances reported increased jitter. Our 
analysis of the virtual instance test attributes this increased 
jitter to the Order Book Server, which may be caused by 
“Noisy neighbors”.  The increased jitter in the bare-metal test 
is due to the Matching Engine Server.  Because these are 
bare-metal servers, it cannot be due to a “Noisy neighbor”.  
Understanding the jitter source for test tests requires further 
investigation into this cloud provider. 

Table 6. 7-Day Test Results 
 

Date 2018-06-25 -> 
2018-07-02 

2018-06-25 -> 
2018-07-02 

Instance Type Virtual Bare-Metal 

Message Rate 1,000 msg/s 1,000 msg/s 

Avg Latency 517μs 324μs 

Min Latency 333μs 234μs 

Max Latency 96ms 129ms 

 
It is important to note that this test was only run once on 
virtual servers and once on bare-metal servers in the same 
cloud provider and therefore should not be used to draw 
definitive conclusions. Although we measured increased 
jitter on virtual instances, the bare metal instances reported 
consistent latencies throughout the test supporting the 
hypothesis that public cloud can support stable low response 
times. 

Clock Skew Results 

Our analysis of clock skew demonstrated that while network 
latency between the Order Book and Matching Engine 
instances is acceptably stable, the clocks are not sufficiently 
synchronized to meet MiFID II regulations, which states that 
clocks must achieve microsecond precision and a divergence 
of not greater than 100 microseconds. We ran a test of clock 
skew between two servers for 24-hour, which measured that 
84% of the clock skews were within 100 microseconds while 
99% where within 225 microseconds with a max of 285 
microseconds. 

However, Stanford University and Google Inc have proposed 
a new clock synchronization protocol [23] which they claim 
achieves clock synchronization to within 10’s of nanoseconds 
across servers in the same Data Center on standard Network 
Interface Cards (NIC) without specialized Precision Time 
Protocol (PTP) Hardware [24]. 

VII.FUTURE WORK 
Based on these test results, several opportunities for 
enhancement of this study are presented in this section. 

Future work can be segmented into seven broad areas: 

• Complete Trading System 
• Non-persistent Solace optimization 
• Persistent Queueing 
• Brokerless Queueing System 
• Low-latency Stacks 
• Stress Testing 
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• Public Cloud Support 

Complete Trading System: 

This paper reported the latency of sending orders through a 
performance tuned environment that consisted of a simple 
Order Book and Matching Engine. We did not implement 
some elements of a complete trade environment such as FIX 
translation and matching, because we felt these elements are 
not necessary to test performance characteristics on a Public 
Cloud. Future work should include the missing features. 

Further study should also test concurrent trading of multiple 
products, segregated by product pair, in order to better 
simulate the load diversity in a production foreign exchange 
trading system. As the number of product pairs increases, 
multiple trading system instances (Order Book, Solace VMR 
and Matching Engine) must be deployed to sustain latency 
profile. Further tuning will be required to minimize 
interference between product pairs. 

Finally, migrate and test a live trading system to a public 
cloud, which includes deployment across multiple 
availability zones (geographical data center locations) to 
provide resiliency in the case of failure. This deployment 
should test 2 cases: (1) replication of the Matching Engine 
instance to a second availability zone, and (2) replication of 
both the Matching VMR and Matching Engine instances to a 
second availability zone. 

Optimize non-persistent Solace:  

For completeness, the test system should implement Solace’s 
Java RTO API, using an IPC version of the C library which 
enables inter-process communication, further reducing 
notification time. It is presumed that designing the test system 
to take advantage of IPC will not appreciably reduce latency 
when considered against the variance of the latency observed 
across the Solace VMR in our performance tests, so this 
enhancement has been reserved for future work. 

Persistent Queueing:  

This study exclusively used the direct messaging mode of the 
Solace VMR. In a production trading system, delivery of 
messages is paramount, and future work should implement 
persistence of messages on a topic and acknowledgment of 
receipt by subscribers. 

Brokerless Queuing:  

A brokerless message system, such as ZeroMQ [25], 
nanomsg or nng [26], will eliminate two of the four network 
hops which would cut network latency in half. This approach 

                                                             

2. Azure supports InfiniBand today. 

would queue messages in the Order Book and Matching 
Engine Instances, as opposed to the separate instance. 

Low-latency Stacks: 

Remote Direct Memory Access (RDMA) [27] in combination 
with Converged Ethernet [28] or InfiniBand [29] reduces 
inter-system transfer time by enabling cut through routing 
and network controller direct access to application memory. 
This can reduce single message transfer time to several 
microseconds.  

Stress testing: 

In order to simulate network performance under real-world 
trading scenarios such as peak activity, we recommend 
testing the configuration under higher message volume. We 
suggest increasing message volume to a million msg/s across 
multiple products and measuring the impact on latency. 

Public Cloud Support: 

We also believe that Public Cloud Vendors can improve 
support for Low-Latency Trading Systems: 

• Optimize server health agents to reduce introduction 
of jitter. 

• Investigate network architecture in order to isolate 
network traffic. 

• Implement low-latency network protocols, such as 
InfiniBand2 or Converged Ethernet3. 

VIII.CONCLUSION 
Low-latency trading in financial markets focuses on 
processing trades and retrieving market data at the fastest 
speed possible. Low latency is desirable as financial firms use 
speed as a competitive advantage. Trading in the cloud 
presents a new challenge of achieving low latency without 
direct access to the hardware. In this paper, we focused on 
test strategies performed in the cloud across multiple cloud 
providers to demonstrate the feasibility of implementing a 
low latency trading platform in a cloud environment. We 
deployed a simple trading system to a cloud platform and 
tested latency under various configurations and conditions. 
While achieving acceptable minimum latency, we identified 
undesirable network jitter, which we attributed to the use of 
the Solace Virtual Message Router; nevertheless, the stability 
of network latency was acceptable for some production 
trading platform. Additionally, an analysis of clock skew 
demonstrated that available clock synchronization methods 
are not yet capable of meeting MiFID II [5, 30] compliance 
in the cloud environment. Overall, we have demonstrated the 
ability to achieve our goal of sub-500 microsecond roundtrip 

3 OCI supports Converged Ethernet today. 
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latency and therefore conclude that it is currently feasible to 
build a production low-latency, high-frequency trading 
system in the cloud. Our ongoing focus will be to continue to 
reduce latency as it occurs and provide reliable access to the 
application. 

The main contribution of this work is demonstrating that 
public cloud platforms can support workloads that require 
deterministic latency in the sub-500 microsecond level.  This 
is significant because services requiring this servie level 
avoid expensive on-site deployments.  We believe that public 
cloud adoption of high speed networking technology, such as 
InfiniBand and Converged Ethernet, will further reduce this 
latency. 
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