
© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works,
for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Low-Latency Trading in a Cloud Environment
Andrew Addison, Charles Andrews, Newas Azad, Daniel Bardsley, John Bauman, Jeffrey Diaz,

Tatiana Didik, Komoliddin Fazliddin, Maria Gromova, Ari Krish, Ryan Prins, Larry Ryan, Nicole Villette

BJSS Inc.

New York, USA

andrew.addison@bjss.com, charles.andrews@bjss.com, newas.azad@bjss.com, daniel.bardsley@bjss.com,
john.bauman@bjss.com, jeffrey.diaz@bjss.com, tatiana.didik@bjss.com, komoliddin.fazliddin@bjss.com,

maria.gromova@bjss.com, ari.krish@bjss.com, ryan.prins@bjss.com, larry.ryan@bjss.com, nicole.villette@bjss.com

Abstract- Investors seek competitive advantage through

order creation, based on timely market information, and
submission into an ultra-low latency matching engine.
Historically, these environments were built with proprietary
technology deployed on dedicated infrastructure to
minimize latency and control jitter. However, as outlined in
this paper, we believe that innovations in cloud
infrastructure allow configuration and implementation of
an acceptably low-latency trading platform in a cloud
environment. We have demonstrated this by implementing
a simple foreign exchange (FX) trading system and
deployed it to a cloud environment, recording network
latency and overall system latency. Additionally, we provide
analysis of clock skew between systems in a cloud
environment to assess whether the deployment can satisfy
stringent clock precision required by MiFID2 regulations.

Keywords- trading, low latency, high performance
computing, cloud, Amazon Web Services(AWS), Microsoft
Azure, Oracle Cloud Infrastructure (OCI)

I. INTRODUCTION
High frequency/low latency trading systems [1, 2] symbolize
today’s intensive focus on eliminating technical barriers to
ever faster communication, processing and decision
making. To stay ahead in the high-speed race, trading systems
need to be designed to maximize throughput, minimize
latency, and accommodate rapid development of additional
functionality. It is unlikely that modern electronic markets’
relentless drive towards faster decision making will abate in
the near future [3, 4]. Traditionally, to achieve low latency,
high-frequency trading has required powerful server hardware
in a data center, scaled to accommodate worst-case network
traffic scenarios on the busiest trading days. These trading
systems must be resilient in the face of network or power
failures, requiring expensive redundant hardware as well as
offsite data retention. Cloud-based software solutions are
architected to be distributed, resilient, and easily scalable,
meeting many of the needs of a high-frequency trading
system. However, industry trends toward deploying
applications into cloud environments, while effective and

beneficial for meeting capacity, availability, and resiliency
requirements, introduce additional challenges to achieving
low latency. The greatest barrier to building a high-frequency
trading system in a cloud environment has been the limited
ability to provision hardware which is co-located within a data
center, essential for meeting the low latency requirements of
such systems. Other challenges include decreased
performance due to virtualization of cloud instances and the
difficulty of synchronizing clocks across instances to meet
regulatory requirements. That said, a system running in the
cloud with reduced latency is an ideal objective for a financial
institution to keep up with competition and ensure that its
users have the best possible chance to make informed
decisions while having real-time data available.

Recent developments by cloud providers such as Azure and
Oracle Cloud Instructure (OCI), including the introduction of
availability sets, access to bare-metal instances, and high
performance networking are enabling support for a high-
frequency trading use case. Such developments increase the
authors belief that it is now possible to implement a high-
frequency trading system fully hosted in a public cloud
environment. Such a system would provide traders with all the
advantages of a fast, efficient trading platform, as well as the
robust, easily maintainable infrastructure provided by a
distributed cloud architecture.

The authors note that traditional low-latency trading systems
built on dedicated servers with co-located trading platforms
provides the lowest latency. However, they don’t offer the
advantages of public clouds, including cost-effective dynamic
scaling.

In this paper, we examine a simple trading system deployed to
a cloud environment and tuned for low latency, to establish
the feasibility and performance of a low-latency trading
system hosted on cloud-based servers. We executed
performance tests on an automated deployment hosted on
Amazon Web Services (AWS), Microsoft Azure and Oracle
Cloud Infrastructure (OCI). This paper will demonstrate the
effectiveness of our system to deliver round trip trades on
cloud-based servers at production message rates with

- 2-

competitive latency. Additionally, we perform a measurement
and analysis of clock skew between two servers when running
performance tests, in order to determine whether it is currently
possible to implement a MiFID II [5] compliant trading
system in a cloud environment.

Our research aims to prove that we can provide a low-latency
trading platform hosted on cloud-based servers which can
achieve performance goals with an average latency of 500μs
(microsecond) and 99% less than a ms (millisecond) at a
transaction rate of 10,000 orders/second/single currency pair.
We achieved an average latency of 240μs with 99% of
latencies less than 345μs. These metrics were selected for
analysis because markets are measured by speed and fairness
of order handling. Speed in terms of quick order request
response time, i.e. low latency, and fairness in terms of
deterministic response time, i.e. minimal jitter.

This provides a quick summary of paper. Section II defines
latency and the goal of this study. Section III will explore the
challenges posed in building an optimal low-latency, high-
throughput trading system. It will also present past opinions
and identify potential research areas. In section IV, the paper
describes the architecture of the system under test. Section V
describes the metrics captured and Section VI presents results
measured on three different cloud platforms. Section VII
recommends extentions to this studay and Section VIII
summarizes our findgs.

II. BACKGROUND
This section defines latency and outlines the goal of our
study.

Latency is defined as being any delay or lapse of time between
a request and a response. Jitter is defined as variation in the
latency. As it pertains to trading, latency directly influences
the amount of time it takes for a trader to interact with the
market. The timely and deterministic reception of pertinent
market information and the ability to act upon its receipt are
often greatly impacted by latency issues [6]. Obtaining low
latency and jitter is critical as data must travel round trip to
make a single transaction. Investors are constantly looking for
ways to improve their chances of success. Hence, it is
important for traders to have access to the lowest latency and
jitter possible on trading platforms. Every microsecond counts
when making trading decisions and each microsecond lost to
latency can result in lost opportunities for the trader.

This research is important to demonstrate the effectiveness of
our system to deliver round trip trades with reduced latency.
We are committed to building a trading platform in the cloud

1. Limit order is a trade request entered at a trader specified
price. Market order is a trade that enters the market at the

to meet the needs of traders seeking ultra-low deterministic
latencies. The goal is to provide a true and real-time trading
experience as we demonstrate in studies that we can reduce
latency in the cloud to a minimum.

III. LITERATURE REVIEW
This section explores the research areas and past work to
reduce latency while improving message throughput in
trading systems.

Many companies have published their opinions on the
importance of low latency systems especially when it comes
to High Frequency Trading (HFT) which has gained a strong
foothold in financial markets. This has been driven by several
factors, including advances in information technology that
have been conducive to its growth. Unlike traditional traders
who hold their positions long term, high-frequency traders
hold their positions for shorter durations, which can be as little
as a few seconds. IBM and Mellanox [4] outline hardware
requirements to achieve desired latency and throughput.

Tackling latency and reducing costs has always been a
challenge when developing applications. Moallemi et al [4],
explain why trading with low latency is valuable to investors
as they need to be able to update orders in a timely fashion in
response to new information. The cost of latency in trade
execution is illustrated in an example showing how the median
latency cost more than tripled while the median implied
latency decreased when examining NYSE common stocks
from 1995 to 2005. The study that was performed
mathematically quantifies the cost of latency when traders are
deciding between limit and market orders1. As latency impacts
all market participants, their analysis suggests that the ability
to trade with low latency results in quantifiably lower
transaction costs. The method outlined in this study provides
clear qualitative insight into the importance of latency. To
quantitatively assess the cost of latency, the study contrasts the
results in both the presence and absence of latency. Overall
their results suggest that the difference in payoff between
trading with a human time scale (500 milliseconds) and an
automated trading platform with ultra-low latency (1
millisecond) is approximately of the same order of magnitude
as other trading costs faced by institutional investors. This
observation certainly underlines the significance of latency for
such investors.

Achieving lowest latency without moderating jitter does not
address all trader needs. As stated in [7], algorithmic trade
flow requires deterministic response time in order to work
consistently and profitably.

best price (lowest offer price to sell and highest bid price to
buy).

- 3-

The Tabb Group [8] is an international research and consulting
firm exclusively focused on capital markets. Research areas
include evaluating industry adoption of new technologies,
such as cloud, as well as, evaluating industry solutions, such
as low-latency trading systems. On cloud adoption, The Tabb
Group states that 48% of industry participants are using public
cloud for Infrastructure-as-a-Service (IaaS), Platform-as-a-
Service (PaaS), Software-as-a-Service (SaaS) and/or “multi-
cloud” [9]. Their report on cloud adoption [10] states that
“adoption within capital markets shows an industry that has
moved beyond pondering cloud’s suitability, to one that is
actively architecting the enterprise deployment of hybrid
and/or multi-cloud environments.”. Adopters include
BlackRock, Credit Suisse, Goldman Sachs, HSBC,
JPMorgan, MUFG, UBS, DTCC and FINRA.

Securities Technology Analyst Center (STAC) [11]
coordinates a community called the STAC Benchmark
Council chartered to create specifications for performance
testing capital market solutions [12]. They have created a
number of testing specification across multiple domains. Their
STAC-A2 (derivatives risk), STAC-A3 (strategy backtesting),
and STAC-M3 (enterprise tick analytics) specifications have
been tested in public cloud environments. But the trade
execution specification, STAC-E, remains in draft form with
no published benchmark results. We are not aware of any
benchmark specifications, such as TPC-C [13], for comparing
and evaluating trade execution systems. Due to the lack of an
industrywide sponsored testing specification, trade execution
system test specifications are unique/test, which is what we’ve
done here. However, we’ve endeavored to clearly explain our
system.

There is a plethora of approaches to reduce latency while
increasing message rate in trade flows which includes
integration of hardware-based solutions. Zoican and Vochin
[14] propose a solution that embeds Graphic Processing Units
(GPUs) to reduce latency. A. Boutros et al. [15] embed
FPGA’s into their solution and focus on building a
development tool chain to effectively manage the code pushed
to the FPGA. Haohuan FU et al. [16] deployed an FPGA-

based trading solution for the China Financial Futures
Exchange (CFFEX). They claim that their FPGA-based
solution reduced latency from 100+ microseconds to 2
microseconds. H. Subramoni et al. [17] built a feed handler on
an industry standard server by using best-in-class commodity
hardware and an innovative software design and
implementation that optimizes performance. The authors’
view and approach are to build low-latency trading systems
with industry standard technology. We believe that the
advantages are manifold: availability of industry standard
development tools and languages, fast/confident deployment,
portability, vendor choice, seamless upgrade, cost and
availability. Our experience corroborates H. Subrmoni, et al.
[17] team’s finding.

One industry standard technology used for reducing latency is
the Disruptor pattern. The Disruptor ring buffer was
developed by LMAX as an alternative messaging pattern to
the use of bounded queues. According to studies performed by
LMAX, after profiling various implementations, it became
evident that the queuing of events between stages in the
pipeline was dominating the costs. It was found that queues
also introduced latency and high levels of jitter. The LMAX
disruptor was designed to attempt to maximize the efficiency
of memory allocation, and operate in a cache-friendly manner
so that it will perform optimally on modern hardware. At the
heart of the disruptor mechanism sits a pre-allocated bounded
data structure in the form of a ring-buffer. Data is added to the
ring buffer through one or more producers and processed by
one or more consumers. By making these performance
improvements, they suggest that the mean latency is much
lower than an equivalent queue-based approach and have seen
over 25 million messages per second and latencies lower than
50 nanoseconds [18].

IV. TEST ENVIRONMENT
This section details the test environment and describes the
components of the FX matching engine.

Our test system implements an order book and FX matching
engine in an “immediate-or-cancel” trading scenario (see

Test Monitoring

Test Driver System Under Test (SUT)
Order Book Instance

Ring RingOrder
Book

Generator Instance

Generator Ring

Matching Instance

Ring Matching

ELK Amazon
S3

Driver

VMR

Router

VMR

Figure 1: The Archictecture of the FX Matching Engine that we tested in the cloud.

- 4-

Figure 1). The order book is supplied with orders by an
upstream generator, which publishes order messages to a
message router, to which the order book is subscribed. The
order book forwards these messages to the matching engine
via a second message router.

The Order Generator constantly creates new open Order
objects (status = "O") for its configured currency pair, then
creates a new Order Message and publishes it via its Producer
disruptor to the order topic on the Solace Order VMR.

The Order Book subscribes to the order topic on the Solace
Order VMR via a Consumer disruptor. Upon receiving a new
Order Message, the Order Book decodes the message and
stores it in the Order Book. The Order Book then sends
another Order Message with a new timestamp via its Producer
disruptor to the order topic on the Solace Matching VMR. The
Order Book also subscribes to the cancel topic on the Solace
Matching VMR via a Consumer disruptor. Upon receiving a
cancel Order Message, the Order Book removes the Order
with the matching order ID from the Order Book.

A standard Matching Engine traditionally matches buy and
sell orders within a given market. The implemented test
engine simply receives an order and immediately responds
with a cancel message. This simulates the most common
action on an FX exchange. The Matching Engine subscribes
to the order topic on the Solace Matching VMR via a
Consumer disruptor. Upon receiving a new order message, the
Matching Engine creates a copy of the order message but sets
its status to "C" (for "Cancel"), sets a new timestamp, then
sends this cancel order message to the cancel topic on the
Solace Matching VMR via a Producer disruptor.

The test system is deployed to provisioned instances on a
cloud platform within an affinity group to guarantee that
allocated resources are in the same data center and physically
collocated. All instances are provisioned with identical
specifications, as made available by the cloud vendors.
Enhanced networking is configured as available by the cloud
vendors. Each instance is provisioned running Red Hat
Enterprise Linux 7.5. Clocks in the data centers used by the
cloud providers were confirmed to be synchronized to a GPS
clock. We install Chrony locally on the instances, which
typically synchronizes system clocks at an accuracy within
tens of microseconds on a LAN.

Each message routers hosts a Docker container running the
Solace Virtual Message Router [19]. The Solace VMR is a
version of the SolOS messaging middleware platform which
runs on commodity hardware, rather than the company’s
purpose-built appliances. The Solace VMR allows message
routing capabilities to be deployed to a cloud environment,
where they can be scaled horizontally to provide improved
throughput and redundancy. The test application sends
messages to the router in direct message mode, that is,

subscribers to a message topic, does not send an
acknowledgment after receipt of a message, and the Solace
VMR does not persist the messages. This was a design
decision to prioritize achieving and measuring the lowest
possible latency rather than guaranteed delivery. The
application uses the Solace Java API (also known as JCSMP)
to send and consume messages from the Solace VMR. Solace
also provides a Java Real-Time Optimized (RTO) API, which
is a Java Native Interface (JNI) wrapper for Solace’s C API.
As the message objects are statically allocated in our
application, by reusing the objects in a ring buffer, the
invocation of the garbage collector is eliminated in our
application. This reduces the benefit of using Solaces’ Java
RTO API. Instead, to achieve lowest latency, the application
establishes the session by setting Solace’s
MESSAGE_CALLBACK_ON_REACTOR property, which
configures Solace to directly deliver messages to the
application’s listening thread from an I/O thread, bypassing a
consumer notification thread.

The test system is deployed to cloud instances using
Terraform [20] to automate configuration and provisioning of
instances, including executing an Ansible playbook locally on
each host. The Ansible playbook retrieves the test application
from a remote repository and applies various modifications to
the host OS and kernel to tune the system to optimize latency.

The test application is written in Java and runs on the JVM
with the configuration shown in Table 1. JVM Configuration.

The test application uses the LMAX implementation of the
Disruptor pattern [18] to provide high-performance inter-
thread messaging in a thread-safe environment. Solace
message objects are read into the statically allocated Disruptor
ring buffer, reusing the message object to read, modify, and
send a response message.

Table 1. JVM Configuration
JVM Parameters

-XX:UseG1GC
-Xms10G
-Xmx10G

-XX:+ExplicitGCInvokesConcurrent
-XX:+ParallelRefProcEnabled

-XX:MaxGCPauseMillis=5
-XX:InitiatingHeapOccupancyPercent=0
-XX:+UnlockExperimentalVMOptions

-XX:G1NewSizePercent=5
-XX:G1MaxNewSizePercent=30

The test application allocates all objects statically to avoid GC
(garbage collection) events. We’ve observed that GC events
introduce increased latency and therefore spent considerable
effort to avoid them. Many specific OS-level and kernel-level
tunings are applied in an effort to lower system latency and

- 5-

reduce activity interfering with the test application. For
example, control groups are used to isolate a cpuset of cores
for the test application process to use, and pin many OS and
kernel services which cannot be disabled onto a different
cpuset of cores, including IRQ interrupts. All tunings in the
RHEL network_latency tuning profile are applied using the
tuned-adm tool included with RHEL.

V.PERFORMANCE METRICS
This section describes the process for capturing metrics during
our tests.

The test system collects latency statistics in memory for the
duration of the performance test and writes them to disk upon
conclusion of the test. Metricbeat [21] is installed on the
application instances and is used to send system metrics to an
Elasticsearch cluster, including CPU, memory, and network
I/O usage. Filebeat [22] is used to collect the latency statistics
files written to disk storage and published to Elasticsearch.

Latency is recorded by invoking Java’s system.nanoTime()
timestamp method. For each order, latency is recorded at 5
points along the flow of data through the test system as shown
in Figure 2. Timing calculation starts when an order is read
from the input ring buffer after injection by the Test Driver.
The time delta is then calculated at each of the following five
points:

1. The order book publishes an order to the Router
VMR.

2. The Matching Engine receives the Order from the
Router VMR.

3. The Matching Engine publishes the Cancelled Order
to Router VMR.

4. The Order Book receives the Cancelled Order from
the Router VMR.

5. The Order Book marks the Order as completed.

Total latency is the sum of the latencies measured at these 5
points along the flow of data.

For short-tests, less than one hour, latency statistics are kept
in memory and flushed to Elasticsearch at end of test. For
long-tests, latencies are conflated at one second intervals and
sent to Elasticsearch in real-time. Metrics are visualized using
a Kibana dashboard.

In parallel with the Trading Test, a client process on the
Matching Engine Instance bounces a message off a server
process in the Order Book Instance to directly measure the
roundtrip latency (bypassing the Router VMR) and estimates
the clock skew between the two systems. Clock skew is
calculated from the roundtrip latency, presuming that each leg
of the roundtrip should have roughly equal latency. The client
sends a message to the server including a timestamp T1client
and receives a response including a timestamp on receipt by
the server (Tserver). The client then records its own timestamp
of the receipt of response (T2client) and computes the roundtrip
latency LRT, then compares the expected server timestamp
(half of the roundtrip latency plus the initial timestamp) to the
actual server timestamp. The difference is equal to the

difference between the clocks on the two systems.

Equation 1: Roundtrip latency
LRT = T2client – T1client

Equation 2: Clock Skew
Clock Skew = Tserver – (T1client + LRT/2)

This data was collected across a number of tests and analyzed
to estimate the Cloud Skew, the difference between two clocks
at a point in time, and Clock Drift, change in Clock Skew over
time.

VI. RESULTS
This section presents the measured results of running an FX
Trading System on three different cloud vendors

We performed a number of tests to assess system behaviour
over varying conditions, including:

• Message rate
• Message size

Figure 2: Each number represents a point to capture the current time in order to calculate latencies.

- 6-

• Test duration from 5 minutes to 1-week
• Instance types, including virtual and bare-metal
• Public cloud vendors (AWS, Azure and OCI)

We also tested various cloud, network and system
configurations to determine the optimal configuration in
order to minimize latency and jitter. We conducted our tests
by changing one parameter at a time and measuring the
impact. This required executing a number of tests, which we
managed by building a fully integrated dev/test/deploy/run
performance test/measure pipeline.

Results included are from tests conducted in June and July of
2018. We noted that during the course of this study, cloud
providers were actively working to improve their platforms,
which resulted in progressively improving test results,
demonstrating the import of this subject area. This was
particularly notable in the improvement of virtualization
technology and support of bare-metal servers.

Our base configuration was a virtual instance running 16
physical processor cores with hyperthreading disabled at the
OS level (that is, a hypervisor was still running but was not
scheduling threads to run on sibling cores). Our application
runs on a JVM configured with 10GB of memory with a ring
buffer size of 1,024 message objects. Baseline tests were
executed for 30 minutes with a message payload of 100 bytes
sent at a rate of 1,000 messages a second.

We excluded Physical CPU Core Count, Logical CPU Core
Count, Memory Size and Network Bandwidth from this
report in order to protect cloud provider anonymity. With this
information, a savvy reader could determine the cloud
provider from the instance shape. The authors believe that
comparing cloud providers distracts the reader from the
report’s purpose and is not required to justify our finding.

All test environments satisfied the following configuration:

• 24 to 72 Physical CPU Cores
• 2 Logical CPU Cores / Physical CPU Core
• At least 128GB of Physical Memory
• At least 14Gbps of Network Bandwidth

A typical minimum round-trip latency measured was 231μs,
with a median latency of 318μs. We identified network jitter
typically characterized by a 50-75% increase in latency from
minimum to 50th percentile latency (best case: 12% increase)
and a 150-300% increase from minimum to 99th percentile
latency (best case: 91% increase). Maximum latency
recorded was typically on the order of 50-100ms.

Table 2. 30-minute test performance statistics
Date 2018-07-10
Instance Type Virtual
Message Rate 1,000 msg/s
Average Latency 377μs
Minimum Latency 231μs
50th percentile 318μs
75th percentile 413μs
95th percentile 577μs
99th percentile 669μs
99.9th percentile 5.017ms

We identified that the Solace VMR is currently the primary
source of jitter in the environment, by comparing its latency
against messages directly sent between the Order Book and
Matching Engine, bypassing the VMR. We reported our
results to Solace. Solace replicated the problem and verified
that the VMR version of their product produced this jitter.

Various bare-metal server configurations, containing 32+
physical cores, were tested. We conducted this comparison
test on a cloud provider that offered virtualized and bare-
metal instances. Again, like virtual instances, we disabled
hyperthreading at the OS level. The use of bare-metal servers
typically resulted in improved stability and lower minimum
latency. Compared to the virtualized instance, the latency was
reduced by ~26% for the 95th percentile, however sometimes
the 95th % were greater (example shown in Table 3). We
hypothesize that these outliers are caused by network jitter
and not the bare-metal server. Further testing would need to
verify this hypothesis.

Table 3. 25-minute test - Comparison of virtual and
bare-metal instance

Date 2018-07-17 2018-07-17

Instance Type Virtual Bare-Metal

Message Rate 1,000 msg/s 1,000 msg/s

Avg Latency 497μs 399μs

Min Latency 282μs 232μs

50th % 486μs 347μs

95th % 590μs 434μs

99th % 657μs 1,012μs

Max Latency 133ms 191ms

In our tests, very little of the system roundtrip latency is
attributed to application processing, with the majority of the
latency attributable to network latency. We experienced
latency spikes of up to 1.5μs across various system
components, for a total average latency of under 5μs due to

- 7-

application processing. It is evident that jitter experienced in
overall system latency primarily originates from the Solace
VMR.

Cloud Provider Comparison @ 10,000 msgs/s

We tested our configuration on instances offered by three
prominent cloud vendors for 30 minutes. For these tests we
increased the message rate to 10,000 msgs/s. The overview
below demonstrates that multiple cloud offerings support our
configuration with varying best-case performance results.

Table 4. Comparison of instances offered by
different cloud vendors – best performance

achieved
 Cloud 1 Cloud 2 Cloud 3

Date 2018-07-17 2018-07-17 2018-07-17

Instance Type Virtual Bare-Metal Virtual

Msg Rate 10,000
msg/s

10,000
msg/s

10,000
msg/s

Avg Latency 251μs 399μs 633μs

Std Deviation 185μs 1,198μs 426μs

Min Latency 173μs 232μs 298μs

50th % 242μs 347μs 568μs

95th % 314μs 434μs 966μs

99th % 357μs 1,012μs 1,519μs

Max Latency 45ms 118ms 52ms

Although we started our testing with similar instance shapes,

ultimately, we had to use different shapes in each cloud
provider. Because we are only sending orders through for a
single product and we pin cores, most cores are unused.
Therefore, a high core count does not guarantee better
performance. In addition, system memory size was not
significant to test because application was configured to
allocate only 10GB of memory.

Cloud Provider 1 reported the best results responding to 99%
of all orders within 357μs at a rate of 10,000 msgs/s. Table 5
proves that Cloud Provider 1 can sustain this latency up to 7-
hours. Cloud Provider 2 high variance of 1ms is due to
outliers above the 95%. Cloud Provider 3 does not have an
outlier problem. In fact, its max latency is only 16% higher
than Cloud Provider 1’s max latency, but their average latency
is 2.5 times higher than Cloud Provider 1. Variance is only
2.3 times higher.

Although there is a high variance in results between these
three cloud providers, the testing shows that you can achieve
deterministic low-latency on a public cloud.

Single-Day Test Results

We ran performance tests for the same three cloud providers
over a 24-hour period to determine whether time of day
impacts total latency (see Table 5). For Cloud Provider 1 the
driver sent messages at a rate of 10,000 msgs/s. This test
stopped after 7-hours due to insufficient disk space, but we
included it in this report because it validated latencies
reported in Table 3. Figure 3 shows the total latency for Cloud
Provider 1. Note that the y-axis is a log function for all
graphs.

Figure 3: Cloud Provider 1: shows total latency to process an order over a 7-Hour test interval.

dddddddddddd

La
te

nc
y

(μ
s)

11:30 12:00 12:30 13:00 13:30 14:00 14:30 15:00 15:30 16:00 16:30 17:00 17:30 18:00

 Time

Cloud Provider 1: 7-Hour Test

- 8-

The 50th, 95th and 99th percentiles were not captured for
Cloud Provider 2 because latency measurements were
conflated. Figure 4 shows the total latency.

The tests on Cloud Provider 2 ran for 24-hours at 1,000
msgs/s. Graph 4 shows the max latency, not the 99%.

The tests on Cloud Provider 3 ran for 24-hours at 1,000
msgs/s. Although the latencies are higher, the 99% is still
less then 1 ms.

The 7-hour test for Cloud Provider 1 reported results
consistent with the shorter test reported in Table 4. Cloud
Providers 2 and 3 reported higher latencies then Cloud
Provider 1, but results are consistent with Table 4, except the

99th % for Cloud Provider 3 is ½ the shorter test while the
max is double.

It is important to note these tests were run only for a single
day using a single data center and therefore should not be
used to draw definitive conclusions. While we did not note a

significant slowdown or problems over the single day, we did
not collect enough evidence to make a statistically significant
conclusion.

Figure 4: Cloud Provider 2: shows total latency to process an order over a 24-Hour test interval.

Figure 5: Cloud Provider 3; shows total latency to process an order over a 24-Hour test interval.

Time

La
te

nc
y

(μ
s)

10
00

0
20

00

50
0

10
0

14:00 19:00 00:00 05:00 10:00

Cloud Provider 2: 24-Hour Test

Time

Cloud Provider 3: 24-Hour Test

- 9-

 Cloud 1 Cloud 2 Cloud 3

Date 2018-07-20 2018-06-21 2018-07-11

Instance Type Virtual Bare-Metal Virtual

Msg Rate 10,000
msg/s

1,000 msg/s 1,000 msg/s

Avg Latency 240μs 328μs 350μs

Min Latency 168μs 233μs 230μs

50th % 230μs - 306μs

95th % 298μs - 519μs

99th % 345μs - 727μs

Max Latency 33ms 117ms 110ms

7-Day Test Results

We ran two performance tests over a 7-day period (1-week)
on Cloud Provider 3 to determine whether day of week
impacts latency. These tests ran concurrently; one test on
Virtual Instances and one test on Bare-Metal Instances. We
were unable to perform the 7-Day Test on Cloud Provider 1
and 2 due to cost constraints.

Table 6 reports minimal, average and maximum latency for
these tests. We did not capture percentiles because results
were conflated at source in order to report test progress in
real-time through an Elasticsearch Cluster.

We observed that the test running on bare-metal instances
reported stable mean response times throughout the 7-day
test. However, after running for 2-days 4-hours, the Max
Latency on the bare-metal instances and Mean and Max
latency on virtual instances reported increased jitter. Our
analysis of the virtual instance test attributes this increased
jitter to the Order Book Server, which may be caused by
“Noisy neighbors”. The increased jitter in the bare-metal test
is due to the Matching Engine Server. Because these are
bare-metal servers, it cannot be due to a “Noisy neighbor”.
Understanding the jitter source for test tests requires further
investigation into this cloud provider.

Table 6. 7-Day Test Results

Date 2018-06-25 ->
2018-07-02

2018-06-25 ->
2018-07-02

Instance Type Virtual Bare-Metal

Message Rate 1,000 msg/s 1,000 msg/s

Avg Latency 517μs 324μs

Min Latency 333μs 234μs

Max Latency 96ms 129ms

It is important to note that this test was only run once on
virtual servers and once on bare-metal servers in the same
cloud provider and therefore should not be used to draw
definitive conclusions. Although we measured increased
jitter on virtual instances, the bare metal instances reported
consistent latencies throughout the test supporting the
hypothesis that public cloud can support stable low response
times.

Clock Skew Results

Our analysis of clock skew demonstrated that while network
latency between the Order Book and Matching Engine
instances is acceptably stable, the clocks are not sufficiently
synchronized to meet MiFID II regulations, which states that
clocks must achieve microsecond precision and a divergence
of not greater than 100 microseconds. We ran a test of clock
skew between two servers for 24-hour, which measured that
84% of the clock skews were within 100 microseconds while
99% where within 225 microseconds with a max of 285
microseconds.

However, Stanford University and Google Inc have proposed
a new clock synchronization protocol [23] which they claim
achieves clock synchronization to within 10’s of nanoseconds
across servers in the same Data Center on standard Network
Interface Cards (NIC) without specialized Precision Time
Protocol (PTP) Hardware [24].

VII.FUTURE WORK
Based on these test results, several opportunities for
enhancement of this study are presented in this section.

Future work can be segmented into seven broad areas:

• Complete Trading System
• Non-persistent Solace optimization
• Persistent Queueing
• Brokerless Queueing System
• Low-latency Stacks
• Stress Testing

- 10-

• Public Cloud Support

Complete Trading System:

This paper reported the latency of sending orders through a
performance tuned environment that consisted of a simple
Order Book and Matching Engine. We did not implement
some elements of a complete trade environment such as FIX
translation and matching, because we felt these elements are
not necessary to test performance characteristics on a Public
Cloud. Future work should include the missing features.

Further study should also test concurrent trading of multiple
products, segregated by product pair, in order to better
simulate the load diversity in a production foreign exchange
trading system. As the number of product pairs increases,
multiple trading system instances (Order Book, Solace VMR
and Matching Engine) must be deployed to sustain latency
profile. Further tuning will be required to minimize
interference between product pairs.

Finally, migrate and test a live trading system to a public
cloud, which includes deployment across multiple
availability zones (geographical data center locations) to
provide resiliency in the case of failure. This deployment
should test 2 cases: (1) replication of the Matching Engine
instance to a second availability zone, and (2) replication of
both the Matching VMR and Matching Engine instances to a
second availability zone.

Optimize non-persistent Solace:

For completeness, the test system should implement Solace’s
Java RTO API, using an IPC version of the C library which
enables inter-process communication, further reducing
notification time. It is presumed that designing the test system
to take advantage of IPC will not appreciably reduce latency
when considered against the variance of the latency observed
across the Solace VMR in our performance tests, so this
enhancement has been reserved for future work.

Persistent Queueing:

This study exclusively used the direct messaging mode of the
Solace VMR. In a production trading system, delivery of
messages is paramount, and future work should implement
persistence of messages on a topic and acknowledgment of
receipt by subscribers.

Brokerless Queuing:

A brokerless message system, such as ZeroMQ [25],
nanomsg or nng [26], will eliminate two of the four network
hops which would cut network latency in half. This approach

2. Azure supports InfiniBand today.

would queue messages in the Order Book and Matching
Engine Instances, as opposed to the separate instance.

Low-latency Stacks:

Remote Direct Memory Access (RDMA) [27] in combination
with Converged Ethernet [28] or InfiniBand [29] reduces
inter-system transfer time by enabling cut through routing
and network controller direct access to application memory.
This can reduce single message transfer time to several
microseconds.

Stress testing:

In order to simulate network performance under real-world
trading scenarios such as peak activity, we recommend
testing the configuration under higher message volume. We
suggest increasing message volume to a million msg/s across
multiple products and measuring the impact on latency.

Public Cloud Support:

We also believe that Public Cloud Vendors can improve
support for Low-Latency Trading Systems:

• Optimize server health agents to reduce introduction
of jitter.

• Investigate network architecture in order to isolate
network traffic.

• Implement low-latency network protocols, such as
InfiniBand2 or Converged Ethernet3.

VIII.CONCLUSION
Low-latency trading in financial markets focuses on
processing trades and retrieving market data at the fastest
speed possible. Low latency is desirable as financial firms use
speed as a competitive advantage. Trading in the cloud
presents a new challenge of achieving low latency without
direct access to the hardware. In this paper, we focused on
test strategies performed in the cloud across multiple cloud
providers to demonstrate the feasibility of implementing a
low latency trading platform in a cloud environment. We
deployed a simple trading system to a cloud platform and
tested latency under various configurations and conditions.
While achieving acceptable minimum latency, we identified
undesirable network jitter, which we attributed to the use of
the Solace Virtual Message Router; nevertheless, the stability
of network latency was acceptable for some production
trading platform. Additionally, an analysis of clock skew
demonstrated that available clock synchronization methods
are not yet capable of meeting MiFID II [5, 30] compliance
in the cloud environment. Overall, we have demonstrated the
ability to achieve our goal of sub-500 microsecond roundtrip

3 OCI supports Converged Ethernet today.

- 11-

latency and therefore conclude that it is currently feasible to
build a production low-latency, high-frequency trading
system in the cloud. Our ongoing focus will be to continue to
reduce latency as it occurs and provide reliable access to the
application.

The main contribution of this work is demonstrating that
public cloud platforms can support workloads that require
deterministic latency in the sub-500 microsecond level. This
is significant because services requiring this servie level
avoid expensive on-site deployments. We believe that public
cloud adoption of high speed networking technology, such as
InfiniBand and Converged Ethernet, will further reduce this
latency.

VI. ACKNOWLEDGMENTS
We would like to thank Solace, Microsoft, and Oracle
Corporation for their support and collaboration, and the use
of their resources in concert with this effort. We understand
that this research is of great importance to industry leaders in
cloud computing and we appreciate their partnership.

VII. REFERENCES
1. Loveless, J., Barbarians at the Gateways.
Communications of the ACM, 2013. 56(10): p. 42-49.
2. Aldridge, I., High-Frequency Trading: A Practical
Guide to Algorithmic Strategies and Trading Systems. 2nd
Edition ed. 2013: Wiley.
3. Pagnotta, E.S. and T. Philippon, Competing on
speed. Econometrica, 2011. 86(3): p. 1067-1115.
4. Moallemi, C.C. and M. Saglam, The Cost of
Latency. SSRN eLibrary, 2010.
5. Prorokowski, L.J., MiFID II compliance – are we
ready? Journal of Financial Regulation

Compliance, 2015. 23(2): p. 196-206.
6. FXCM. How Does Latency Impact Trading? 2018
[cited 2018; Available from:
https://www.fxcm.com/insights/how-does-latency-impact-
trading/.
7. Misra, H. The Next Frontier in Exchange Trading
System, Part 2. 2018; Available from:
https://tabbforum.com/opinions/the-next-frontier-in-
exchange-trading-systems-part-2-of-4.
8. Group, T. Tabb Group Home Page. 2018;
Available from: https://www.tabbgroup.com/about2.
9. 2018 FinTech Festival Cloud Survey Results,
presented at 2018 Fintech Festival, November 1, 2018.
10. Summerville, M. Capital Markets: Heads in the
Cloud. 2018; Available from:
https://research.tabbgroup.com/report/v15-053-capital-
markets-heads-cloud.
11. STAC Research Website. 2018; Available from:
https://stacresearch.com.
12. Council, S.B., Capital Markets Workload
Categorization. 2018.

13. Transaction Processing Performance Council
2018; Available from: http://www.tpc.org.
14. Zoican, S. and M. Vochin. Computing system and
network architectures in high frequency trading financial
applications. in Communications (COMM), 2016
International Conference on. 2016. IEEE.
15. Boutros, A., et al. Build fast, trade fast: FPGA-
based high-frequency trading using high-level synthesis. in
ReConFigurable Computing and FPGAs (ReConFig), 2017
International Conference on. 2017. IEEE.
16. Fu, H., et al. Accelerating Financial Market Server
through Hybrid List Design. in Proceedings of the 2017
ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays. 2017. ACM.
17. Subramoni, H., et al. Streaming, low-latency
communication in on-line trading systems. in Parallel &
Distributed Processing, Workshops and Phd Forum
(IPDPSW), 2010 IEEE International Symposium on. 2010.
IEEE.
18. Thompson, M., et al., Disruptor: High
performance alternative to bounded queues for exchanging
data between concurrent threads. Technical paper. LMAX,
May, 2011: p. 206.
19. Solace. Solace Virtual Message Router Product
Datasheet. 2017; Available from: https://solace.com/wp-
content/uploads/2017/02/Solace-VMR-Datasheet.pdf.
20. HashiCorp. Terraform. [cited 2018; Available
from: https://www.terraform.io/.
21. Elastic. Metricbeat. [cited 2018; Available from:
https://www.elastic.co/products/beats/metricbeat.
22. Elastic. Filebeat. [cited 2018; Available from:
https://www.elastic.co/products/beats/filebeat.
23. Geng, Y., et al. Exploiting a natural network effect
for scalable, fine-grained clock synchronization. in 15th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 18). 2018.
24. Eidson, J. and K. Lee. IEEE 1588 standard for a
precision clock synchronization protocol for networked
measurement and control systems. in Sensors for Industry
Conference, 2002. 2nd ISA/IEEE. 2002. Ieee.
25. ZeroMQ. 2018; Available from: http://zeromq.org/.
26. Nanomsg. 2018; Available from:
https://nanomsg.org/index.html
27. Remote Direct Memory Access (RDMA)
Consortium. 2018; Available from:
http://www.rdmaconsortium.org.
28. Guide, D.R.D., 2018 Edition. 2018.
29. Association, I.T. Infiniband Trade Association
Home Page. 2018; Available from:
https://www.infinibandta.org
30. Riche, T., Time Synchronization: Time is at the
Heart of MIFID Regulation. 2018: Tabb Group Market
Note.

