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Abstract: To attract order flow and effectively match 

orders, matching engines have been designed to handle 

extremely high message rates at low-latencies.  Historically, 

these environments were built with proprietary technology 

deployed on dedicated on-premise infrastructure to 

minimize latency and control jitter.  However, as outlined in 

this paper, we believe that innovations in cloud 

infrastructure allow configuration and implementation of 

an equally low-latency trading platform in a cloud 

environment. We have demonstrated this by implementing 

a simple foreign exchange (FX) trading system and 

deployed it on RoCE V2 (RDMA over Converged Ethernet) 

Fabric on Oracle Cloud Infrastructure.. 
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I.  INTRODUCTION 

In a prior paper[1], we developed a simple trading system, 

deployed it to three public cloud environments and tuned it for 

low latency, to establish the feasibility and performance of a 

low-latency trading system hosted on cloud-based servers. 

That paper established that trading in the cloud is feasible 

where sub-millisecond latencies are acceptable. 

In this paper, we extend that work by testing the same simple 

trading system on a RoCE V2 network[2] hosted in Oracle’s 

public cloud, called Oracle Cloud Infrastructure (OCI). 

This research aims to prove that you can achieve much lower 

latencies on a high-speed low-latency fabric. 

This section summarizes the paper.  Section II describes the 

cloud test environment.  In section III, the paper describes the 

architecture of the system under test.  Section IV describes the 

metrics captured and Section V presents results measured.  

Section VI summarizes our findings. 

II. TEST ENVIRONMENT 

Oracle Cloud Infrastructure is an enterprise Infrastructure as 

a Service (IaaS) platform that hosts enterprise and cloud 

native applications in a core-to-edge secure environment.  

OCI delivers a number of services, including compute, 

storage, networking, database, and containers. 

OCI provides infrastructure services targeting high 

performant compute (HPC) workload [3] that include: 

• Bare Metal and virtual compute instances with the 

latest NVIDIA GPUs and Intel Skylake processors, 

including high core count and high frequency 

options 

• Up to 51.2 TB local NVMe storage per compute 

instance 

• 2 x 25 Gbps network interfaces - or 1 x 25 Gbps 

and 1 x 100 Gbps for RDMA 

• Block storage volumes up to 1 PB 

RDMA [2] over Converged Ethernet (RoCE) is a network 

protocol that supports the remote direct memory access 

(RDMA) protocol over an ethernet network.  It directly 

copies data between memory spaces on two different hosts, 

bypassing the Operating System and CPU, and in effect, 

reduces CPU usage and latency when compared to a standard 

TCP protocol over an ethernet network.  For comparison, we 

have measured sub-μs latencies when pinging a host over 

RoCE while a TCP Ping requires >50 μs. 

III. TRADING SCENARIO 

This section describes the test environment and the 

components of the FX matching engine. 

Our test system implements an order book and FX matching 

engine in an “immediate-or-cancel” trading scenario (see 

Figure 1). This includes an Order Generator sending orders to 

an Order Book, which saves the order and forwards to a 

Matching Engine, which returns results to the Order Book. 

The Order Generator constantly creates new open Order 

objects for its configured currency pair, at a prescribed rated.  

These messages are sent to an Order Book via a socket over 

RoCE.  
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The Order Book receives new Order Messages from the 

Order Generator, decodes the message and stores it in 

memory. The Order Book then enriches the Order Message 

with receive and send timestamps and forwards it to the 

Matching Engine via a Socket.  Upon completion of order 

processing, the Matching Engine returns a cancel Order 

Message response through a different Socket over RoCE.  

Upon receiving this response, the Order Book removes the 

Order with the matching order ID from the Order Book. 

A standard Matching Engine traditionally matches buy and 

sell orders within a given market. The implemented test 

engine simply receives an order and immediately responds 

with a cancel message. This simulates the most common 

action on an FX exchange. The Matching Engine receives a 

new order message over a TCP Socket, creates a copy of the 

order message but sets its status to cancelled, sets a new 

timestamp, then sends this cancel order message to the Order 

Book through a Socket over RoCE. 

The test trading application is written in Java 11 and executed 

on Oracle’s Version 12 JVM.  The trading application 

statically allocated all variables to avoid garbage collection 

events; this is the standard approach for managing variables in 

a trading system.  In addition, JVM parameters were tuned to 

mitigate garbage collection activity on latency. 

The test application uses the LMAX implementation of the 

Disruptor pattern [6] to provide high-performance message 

queueing and inter-thread messaging in a thread-safe 

environment. Messages are sent between processes using the 

Java NIO  Socket class, which was bound to the RoCE 

protocol via Mellanox’s VMA (Mellanox Message 

Accelerator)[5].  

The trading system was deployed across three Bare Metal 

instances in OCI’s HPC Cluster environment.  The three 

instances had identical configurations: 

• BM.HPC2.36 Instance (3.0 GHz Gold 6154 Intel 

Xeon processor, 36 cores, 384 GB Memory 

• Red Hat Server 7.6. 

• Mellanox ConnectX-5 Ex Ethernet Controller 

• Mellanox OFED Linux 4.6-1.0.1.1 Driver 

• Mellanox Message Accelerator (VMA) 

• Java Version 12 (Oracle Version) 

IV. PERFORMANCE METRICS 

This section describes the process for capturing metrics during 

our tests. 

The test system collects latency measurements in memory for 

the duration of the performance test and flushes them to disk 

about once/minute during the test via an independent thread.  

Although the writing to disk was performed in a separate 

thread, the thread shared the same memory space as the core 

trading software and therefore did impact performance of the 

system.  We performed a separate test to measure performance 

of the trading system while NOT flushing to disk during the 

test and found minimal impact on response times.  However, 

we did see a noticeable increase in garbage collection events.  

We did not capture this difference as this would require 

enabling GC logic, which would further impact test results.  

Instead, for the purpose of this test, we do not believe that 

logging to disk was a significant factor in test results.  

Removing this would decrease GC events, further reducing 

variance measurements. 

Latency was recorded by invoking Java’s system.nanoTime() 

timestamp method. For each order, latency is recorded at 5 

points along the flow of data through the test system. Timing 

calculation starts when an order is read from the input ring 

buffer after reception from the Order Generator.  The time 

delta is then calculated at each of the following five points: 

1. The Order Book sends an order to the Matching 

Engine. 

2. The Matching Engine receives the Order from the 

Order Book. 

3. The Matching Engine sends the Cancelled Order to 

the Order Book. 

4. The Order Book receives the Cancelled Order. 

5. The Order Book marks the Order as completed. 

Figure 1: Test Environment. 
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Total latency is the sum of the latencies measured at these five 

points along the flow of data. 

VI.TEST RESULTS 

This section presents the measured results of running the FX 

Trading System as described in Section III. 

We performed the following tests: 

• Raw performance of RoCE network. 

• Socket over VMA/RoCE. 

• Single product generating orders at 10,000 

orders/second for 1-hour. 

• Single product generating orders at 10,000 

orders/second for 1-day (day test). 

• Single product generating orders at 50,000 

orders/second for 20-minutes. 

• Two products each generating orders at a rate of 

50,000 orders/second for a total rate of 100,000 

orders/second for 1-hour. 

• Five products each generating orders at a rate of 

50,000 orders/second for a total rate of 250,000 

orders/second for 1-hour. 

• Ten products each generating orders at a rate of 

50,000 orders/second for a total rate of 500,000 

orders/second for 1-hour. 

 

We tested the latency of the raw RoCE network by running 

the ib_write_lat command tool across two nodes in the 

network[4].  We ran this test for 30 minutes at peak rate, which 

averaged 343,912 100-byte messages/second with an average 

latency of 1.45μs.  This test only returns average latency and 

does not calculate the 99th percentile. 

We also ran a sockperf test [5], which measures the latency of 

a socket connection over VMA/RoCE, for 1-hour by sending 

100-byte messages at a message rate of 10,000 

messages/second.  We measured an average round-trip latency 

of 2.01μs and 99 percentile latency of 2.16μs.  Therefore, 

VMA appears to increase latency for a round-trip message on 

average by 0.56 μs (i.e. 560 ns). 

We replicated the 10,000 order/second test for 1-hour that was 

reported in the Low-Latency Trading in a Cloud Environment 

paper[1].  The following table compares these results: 

 

1 The Low-Latency Trading in a Cloud Environment [1] included testing of 

bare-metal servers, but the best results were measured on virtual instances. 

 

 TCP/Ethernet[1] VMA/RoCE 

Date 2018-07-17 2019-06-11 

Instance Type Virtual1 Bare-Metal 

Network TCP/Ethernet RoCE 

Queue Solace VMR VMA 

Msg Rate 10,000 msg/s 10,000 msg/s 

Avg Latency 251μs 9.02μs 

Std Deviation 185μs 0.70μs (700ns) 

Min Latency 173μs 6.66μs 

50th % 242μs 8.99μs 

95th % 314μs 10.74μs 

99th % 357μs 12.48μs 

Max Latency 45ms 402μs 

Table 1. Comparison of best performance achieved as 

reported in [1] vs VMA/RoCE 

The 99th percentile total latency of RoCE is 3.5% (1/28th) of 

the 99th percentile total latency for the best result as reported 

in [1].  There are two reasons for this reduction in latency: 

replacement of Solace VMR Message Queue with VMA, 

which (1) eliminates a server, two message hops and queueing 

from the system under test and (2) replaces the TCP/Ethernet 

stack with RoCE.  Note that VMA provides a socket interface 

over RDMA and is not a queueing system.  Instead, we relied 

on the LMAX Disruptor ring[6] to provide queue support. 

Single-Day Test Results 

We ran a latency performance test on June 17th over a 24-hour 

period to determine the impact of time of day on total latency.  

The minimum latency measured over 24 hours was 6.36μs, the 

mean 8.27μs, the 99th% 9.94μs and the Standard Deviation 

1.02μs.  There are very few high latencies (481 out of 8.6 

billion orders latency exceeded 100μs) during this test period.  

We believe these high latencies are due to Java garbage 

collection events.  Further investigation would be required to 

validate this assumption.  The test shows that the latency is 

stable across one-day.  See figure 2. 

Higher Volume Test Results 

Because the RoCE fabric can support higher throughput rates 

at lower latencies, we increased the message rate beyond 

10,000 orders/second and to 50,000 orders/second with no 

latency increase.  In fact, latency decreased at this higher rate 

(see Table 1). 

At 75,000 orders/seconds the average latency increased to 

153.99μs due to queuing.  At this rate, the arrival volume is 

75% of the service rate and therefore queueing is expected. 
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Because the maximum processing rate we could achieve for a 

single product, without increasing latency, was 50,000 

orders/second, to increase volume we added products 

(Currency Pairs), which can be proceeded in parallel.  We 

tested the latency of the system with 1, 2, 5 and 10 concurrent 

products reaching ½ million orders/second.  Table 2 

summarizes the results of these tests: 

Table 2 shows that the minimum and quantiles up to the 99th 

percentile are stable and don’t increase, as message rate 

increases from 10,000 orders/second to ½ million 

orders/second.  Although jitter is low for volumes up to 

100,000 orders/second, as shown by low standard deviation, 

at 100,000 orders/second the order rate doubled but maximum 

latency increased by five-fold.  The 100,000 order/second test 

is configured as two concurrent  50,000 orders/second tests on 

different products.  The increased maximum latency indicates 

resource contention across the two concurrent threads.  The 

two threads may be contending for CPU, memory, network 

fabric and/or disk.  Identifying the contention source requires 

further analysis.  Because the threads execute in different 

process space, we don’t attribute this to an increase in garbage 

collection activity.  When the number of concurrent threads is 

increased from two to five, the maximum latency is increased 

by a factor of about ten while the standard deviation is 

increased by a factor of about thirty; indicating an increase in 

high spikes.  Analysis of the data showed that the spikes 

appeared uniformly distributed over the test interval. 

 

Date 2019-06-11 2019-06-18 2019-06-14 2019-06-14 2019-06-25 

Instance Type Bare-Metal Bare-Metal Bare-Metal Bare-Metal Bare-Metal 

Network RoCE RoCE RoCE RoCE RoCE 

# Products 1 1 2 5 10 

Msg Rate/Product 10,000 msg/s 50,000 msg/s 50,000 msg/s 50,000 msg/s 50,000 msg/s 

Total Msg Rate 10,000 msg/s 50,000 msg/s 100,000 msg/s 250,000 msg/s 500,000 msg/s 

Avg Latency 9.02μs 7.55μs 7.92μs 9.89μs 10.05μs 

Std Deviation 0.70μs (700ns) 0.68μs 3.34μs 102.13μs 114.95μs 

Min Latency 6.66μs 6.11μs 5.85μs 6.02μs 5.90μs 

50th % 8.99μs 7.46μs 7.86μs 8.41μs 8.80μs 

95th % 10.74μs 8.24μs 9.47μs 10.06μs 10.30μs 

99th % 12.48μs 9.35μs 10.22μs 11.20μs 11.20μs 

Max Latency 402μs 705.43μs 3,.516ms 37.33ms 37,33ms 

Table 2. Comparison of higher volume test results

Figure 2: 1-Day Test 
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V. CONCLUSION 

Low-latency trading in financial markets focuses on 

processing trades and retrieving market data at the fastest 

speed possible[1].  In this paper, we deployed a simple 

trading system on a RoCE V2 network fabric in the OCI 

cloud platform and tested latency under various 

configurations and order rates. While achieving very low 

minimum latency, we identified undesirable jitter when 

running concurrent threads at message rates exceeding 

100,000 orders/second.  This jitter was uniformly distributed 

and less than 0.1% of the traffic, but proportionally high when 

compared to the mean and 99th percentile latency.  

Determining the source of this jitter requires further 

investigation, but based on our analysis, we don’t believe that 

this jitter is due to any cloud technologies.  Rather, 

eliminating this jitter requires typical tuning and adjustment 

for any low-latency application. 

The main contribution of this work is extending the work in 

[1] and demonstrating that public cloud platforms can support 

workloads that require deterministic latency in the 10μs range 

at order rates of 50,000 orders/second. Moreover, we believe 

that higher rates are possible with further tuning.  This is 

significant because services requiring this service level avoid 

expensive on-site deployments. 
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