

Low-Latency Trading over RoCE V2 on

Oracle Cloud Infrastructure

Andrew Addison, Daniel Bardsley, Ryan Prins, Larry Ryan

BJSS Inc.

New York, USA

lowlatencytrading@bjss.com,

Abstract: To attract order flow and effectively match

orders, matching engines have been designed to handle

extremely high message rates at low-latencies. Historically,

these environments were built with proprietary technology

deployed on dedicated on-premise infrastructure to

minimize latency and control jitter. However, as outlined in

this paper, we believe that innovations in cloud

infrastructure allow configuration and implementation of

an equally low-latency trading platform in a cloud

environment. We have demonstrated this by implementing

a simple foreign exchange (FX) trading system and

deployed it on RoCE V2 (RDMA over Converged Ethernet)

Fabric on Oracle Cloud Infrastructure..

Keywords: trading, low-latency, high performance

computing, cloud, Oracle Cloud Infrastructure (OCI)

I. INTRODUCTION

In a prior paper[1], we developed a simple trading system,

deployed it to three public cloud environments and tuned it for

low latency, to establish the feasibility and performance of a

low-latency trading system hosted on cloud-based servers.

That paper established that trading in the cloud is feasible

where sub-millisecond latencies are acceptable.

In this paper, we extend that work by testing the same simple

trading system on a RoCE V2 network[2] hosted in Oracle’s

public cloud, called Oracle Cloud Infrastructure (OCI).

This research aims to prove that you can achieve much lower

latencies on a high-speed low-latency fabric.

This section summarizes the paper. Section II describes the

cloud test environment. In section III, the paper describes the

architecture of the system under test. Section IV describes the

metrics captured and Section V presents results measured.

Section VI summarizes our findings.

II. TEST ENVIRONMENT

Oracle Cloud Infrastructure is an enterprise Infrastructure as

a Service (IaaS) platform that hosts enterprise and cloud

native applications in a core-to-edge secure environment.

OCI delivers a number of services, including compute,

storage, networking, database, and containers.

OCI provides infrastructure services targeting high

performant compute (HPC) workload [3] that include:

• Bare Metal and virtual compute instances with the

latest NVIDIA GPUs and Intel Skylake processors,

including high core count and high frequency

options

• Up to 51.2 TB local NVMe storage per compute

instance

• 2 x 25 Gbps network interfaces - or 1 x 25 Gbps

and 1 x 100 Gbps for RDMA

• Block storage volumes up to 1 PB

RDMA [2] over Converged Ethernet (RoCE) is a network

protocol that supports the remote direct memory access

(RDMA) protocol over an ethernet network. It directly

copies data between memory spaces on two different hosts,

bypassing the Operating System and CPU, and in effect,

reduces CPU usage and latency when compared to a standard

TCP protocol over an ethernet network. For comparison, we

have measured sub-μs latencies when pinging a host over

RoCE while a TCP Ping requires >50 μs.

III. TRADING SCENARIO

This section describes the test environment and the

components of the FX matching engine.

Our test system implements an order book and FX matching

engine in an “immediate-or-cancel” trading scenario (see

Figure 1). This includes an Order Generator sending orders to

an Order Book, which saves the order and forwards to a

Matching Engine, which returns results to the Order Book.

The Order Generator constantly creates new open Order

objects for its configured currency pair, at a prescribed rated.

These messages are sent to an Order Book via a socket over

RoCE.

mailto:lowlatencytrading@bjss.com

- 2-

The Order Book receives new Order Messages from the

Order Generator, decodes the message and stores it in

memory. The Order Book then enriches the Order Message

with receive and send timestamps and forwards it to the

Matching Engine via a Socket. Upon completion of order

processing, the Matching Engine returns a cancel Order

Message response through a different Socket over RoCE.

Upon receiving this response, the Order Book removes the

Order with the matching order ID from the Order Book.

A standard Matching Engine traditionally matches buy and

sell orders within a given market. The implemented test

engine simply receives an order and immediately responds

with a cancel message. This simulates the most common

action on an FX exchange. The Matching Engine receives a

new order message over a TCP Socket, creates a copy of the

order message but sets its status to cancelled, sets a new

timestamp, then sends this cancel order message to the Order

Book through a Socket over RoCE.

The test trading application is written in Java 11 and executed

on Oracle’s Version 12 JVM. The trading application

statically allocated all variables to avoid garbage collection

events; this is the standard approach for managing variables in

a trading system. In addition, JVM parameters were tuned to

mitigate garbage collection activity on latency.

The test application uses the LMAX implementation of the

Disruptor pattern [6] to provide high-performance message

queueing and inter-thread messaging in a thread-safe

environment. Messages are sent between processes using the

Java NIO Socket class, which was bound to the RoCE

protocol via Mellanox’s VMA (Mellanox Message

Accelerator)[5].

The trading system was deployed across three Bare Metal

instances in OCI’s HPC Cluster environment. The three

instances had identical configurations:

• BM.HPC2.36 Instance (3.0 GHz Gold 6154 Intel

Xeon processor, 36 cores, 384 GB Memory

• Red Hat Server 7.6.

• Mellanox ConnectX-5 Ex Ethernet Controller

• Mellanox OFED Linux 4.6-1.0.1.1 Driver

• Mellanox Message Accelerator (VMA)

• Java Version 12 (Oracle Version)

IV. PERFORMANCE METRICS

This section describes the process for capturing metrics during

our tests.

The test system collects latency measurements in memory for

the duration of the performance test and flushes them to disk

about once/minute during the test via an independent thread.

Although the writing to disk was performed in a separate

thread, the thread shared the same memory space as the core

trading software and therefore did impact performance of the

system. We performed a separate test to measure performance

of the trading system while NOT flushing to disk during the

test and found minimal impact on response times. However,

we did see a noticeable increase in garbage collection events.

We did not capture this difference as this would require

enabling GC logic, which would further impact test results.

Instead, for the purpose of this test, we do not believe that

logging to disk was a significant factor in test results.

Removing this would decrease GC events, further reducing

variance measurements.

Latency was recorded by invoking Java’s system.nanoTime()

timestamp method. For each order, latency is recorded at 5

points along the flow of data through the test system. Timing

calculation starts when an order is read from the input ring

buffer after reception from the Order Generator. The time

delta is then calculated at each of the following five points:

1. The Order Book sends an order to the Matching

Engine.

2. The Matching Engine receives the Order from the

Order Book.

3. The Matching Engine sends the Cancelled Order to

the Order Book.

4. The Order Book receives the Cancelled Order.

5. The Order Book marks the Order as completed.

Figure 1: Test Environment.

Test Driver System Under Test (SUT)

Order Book Instance

Ring Ring
Order
Book

Generator Instance

Generator Ring

Matching Instance

Ring Matching

- 3-

Total latency is the sum of the latencies measured at these five

points along the flow of data.

VI.TEST RESULTS

This section presents the measured results of running the FX

Trading System as described in Section III.

We performed the following tests:

• Raw performance of RoCE network.

• Socket over VMA/RoCE.

• Single product generating orders at 10,000

orders/second for 1-hour.

• Single product generating orders at 10,000

orders/second for 1-day (day test).

• Single product generating orders at 50,000

orders/second for 20-minutes.

• Two products each generating orders at a rate of

50,000 orders/second for a total rate of 100,000

orders/second for 1-hour.

• Five products each generating orders at a rate of

50,000 orders/second for a total rate of 250,000

orders/second for 1-hour.

• Ten products each generating orders at a rate of

50,000 orders/second for a total rate of 500,000

orders/second for 1-hour.

We tested the latency of the raw RoCE network by running

the ib_write_lat command tool across two nodes in the

network[4]. We ran this test for 30 minutes at peak rate, which

averaged 343,912 100-byte messages/second with an average

latency of 1.45μs. This test only returns average latency and

does not calculate the 99th percentile.

We also ran a sockperf test [5], which measures the latency of

a socket connection over VMA/RoCE, for 1-hour by sending

100-byte messages at a message rate of 10,000

messages/second. We measured an average round-trip latency

of 2.01μs and 99 percentile latency of 2.16μs. Therefore,

VMA appears to increase latency for a round-trip message on

average by 0.56 μs (i.e. 560 ns).

We replicated the 10,000 order/second test for 1-hour that was

reported in the Low-Latency Trading in a Cloud Environment

paper[1]. The following table compares these results:

1 The Low-Latency Trading in a Cloud Environment [1] included testing of

bare-metal servers, but the best results were measured on virtual instances.

 TCP/Ethernet[1] VMA/RoCE

Date 2018-07-17 2019-06-11

Instance Type Virtual1 Bare-Metal

Network TCP/Ethernet RoCE

Queue Solace VMR VMA

Msg Rate 10,000 msg/s 10,000 msg/s

Avg Latency 251μs 9.02μs

Std Deviation 185μs 0.70μs (700ns)

Min Latency 173μs 6.66μs

50th % 242μs 8.99μs

95th % 314μs 10.74μs

99th % 357μs 12.48μs

Max Latency 45ms 402μs

Table 1. Comparison of best performance achieved as

reported in [1] vs VMA/RoCE

The 99th percentile total latency of RoCE is 3.5% (1/28th) of

the 99th percentile total latency for the best result as reported

in [1]. There are two reasons for this reduction in latency:

replacement of Solace VMR Message Queue with VMA,

which (1) eliminates a server, two message hops and queueing

from the system under test and (2) replaces the TCP/Ethernet

stack with RoCE. Note that VMA provides a socket interface

over RDMA and is not a queueing system. Instead, we relied

on the LMAX Disruptor ring[6] to provide queue support.

Single-Day Test Results

We ran a latency performance test on June 17th over a 24-hour

period to determine the impact of time of day on total latency.

The minimum latency measured over 24 hours was 6.36μs, the

mean 8.27μs, the 99th% 9.94μs and the Standard Deviation

1.02μs. There are very few high latencies (481 out of 8.6

billion orders latency exceeded 100μs) during this test period.

We believe these high latencies are due to Java garbage

collection events. Further investigation would be required to

validate this assumption. The test shows that the latency is

stable across one-day. See figure 2.

Higher Volume Test Results

Because the RoCE fabric can support higher throughput rates

at lower latencies, we increased the message rate beyond

10,000 orders/second and to 50,000 orders/second with no

latency increase. In fact, latency decreased at this higher rate

(see Table 1).

At 75,000 orders/seconds the average latency increased to

153.99μs due to queuing. At this rate, the arrival volume is

75% of the service rate and therefore queueing is expected.

- 4-

Because the maximum processing rate we could achieve for a

single product, without increasing latency, was 50,000

orders/second, to increase volume we added products

(Currency Pairs), which can be proceeded in parallel. We

tested the latency of the system with 1, 2, 5 and 10 concurrent

products reaching ½ million orders/second. Table 2

summarizes the results of these tests:

Table 2 shows that the minimum and quantiles up to the 99th

percentile are stable and don’t increase, as message rate

increases from 10,000 orders/second to ½ million

orders/second. Although jitter is low for volumes up to

100,000 orders/second, as shown by low standard deviation,

at 100,000 orders/second the order rate doubled but maximum

latency increased by five-fold. The 100,000 order/second test

is configured as two concurrent 50,000 orders/second tests on

different products. The increased maximum latency indicates

resource contention across the two concurrent threads. The

two threads may be contending for CPU, memory, network

fabric and/or disk. Identifying the contention source requires

further analysis. Because the threads execute in different

process space, we don’t attribute this to an increase in garbage

collection activity. When the number of concurrent threads is

increased from two to five, the maximum latency is increased

by a factor of about ten while the standard deviation is

increased by a factor of about thirty; indicating an increase in

high spikes. Analysis of the data showed that the spikes

appeared uniformly distributed over the test interval.

Date 2019-06-11 2019-06-18 2019-06-14 2019-06-14 2019-06-25

Instance Type Bare-Metal Bare-Metal Bare-Metal Bare-Metal Bare-Metal

Network RoCE RoCE RoCE RoCE RoCE

Products 1 1 2 5 10

Msg Rate/Product 10,000 msg/s 50,000 msg/s 50,000 msg/s 50,000 msg/s 50,000 msg/s

Total Msg Rate 10,000 msg/s 50,000 msg/s 100,000 msg/s 250,000 msg/s 500,000 msg/s

Avg Latency 9.02μs 7.55μs 7.92μs 9.89μs 10.05μs

Std Deviation 0.70μs (700ns) 0.68μs 3.34μs 102.13μs 114.95μs

Min Latency 6.66μs 6.11μs 5.85μs 6.02μs 5.90μs

50th % 8.99μs 7.46μs 7.86μs 8.41μs 8.80μs

95th % 10.74μs 8.24μs 9.47μs 10.06μs 10.30μs

99th % 12.48μs 9.35μs 10.22μs 11.20μs 11.20μs

Max Latency 402μs 705.43μs 3,.516ms 37.33ms 37,33ms

Table 2. Comparison of higher volume test results

Figure 2: 1-Day Test

- 5-

V. CONCLUSION

Low-latency trading in financial markets focuses on

processing trades and retrieving market data at the fastest

speed possible[1]. In this paper, we deployed a simple

trading system on a RoCE V2 network fabric in the OCI

cloud platform and tested latency under various

configurations and order rates. While achieving very low

minimum latency, we identified undesirable jitter when

running concurrent threads at message rates exceeding

100,000 orders/second. This jitter was uniformly distributed

and less than 0.1% of the traffic, but proportionally high when

compared to the mean and 99th percentile latency.

Determining the source of this jitter requires further

investigation, but based on our analysis, we don’t believe that

this jitter is due to any cloud technologies. Rather,

eliminating this jitter requires typical tuning and adjustment

for any low-latency application.

The main contribution of this work is extending the work in

[1] and demonstrating that public cloud platforms can support

workloads that require deterministic latency in the 10μs range

at order rates of 50,000 orders/second. Moreover, we believe

that higher rates are possible with further tuning. This is

significant because services requiring this service level avoid

expensive on-site deployments.

VI. ACKNOWLEDGEMENTS

We would like to thank Oracle Corporation for their support

and collaboration, and the use of their resources in concert

with this effort. We understand that this research is of great

importance to industry leaders in cloud computing and we

appreciate their partnership.

VII. REFERENCES

1. Addison, A., Andrews, C., Asad, N., Bardsley, D.,

Bauman, J., Diaz, J., Didik, T., Fazliddin, K., Gromova, M.,

Krish, A., Prins, R., Ryan L., Villette, N., Low-Latency

Trading in a Cloud Environment, 22nd IEEE International

Conference on Computational Science and Engineering

(IEEE CSE 2019), 2019, available at

https://www.bjss.com/wp-content/uploads/Low-Latency-

Trading-in-a-Cloud-Environment.pdf .

2. Remote Direct Memory Access (RDMA) Consortium.

2018; Available from: http://www.rdmaconsortium.org.

3. HPC on Oracle Cloud Infrastructure; 2019, Available at

https://www.oracle.com/cloud/solutions/hpc.html

4. Perftest Package. Mellanox Knowledge Article, February,

2019. Available at

https://mymellanox.force.com/mellanoxcommunity/s/article/

perftest-package

5. Mellanox Messaging Accerator documentation, available

at

https://www.mellanox.com/page/software_vma?mtag=vma .

6. Thompson, M., et al., Disruptor: High performance

alternative to bounded queues for exchanging data between

concurrent threads. Technical paper. LMAX, May, 2011: p.

206.

https://www.bjss.com/wp-content/uploads/Low-Latency-Trading-in-a-Cloud-Environment.pdf
https://www.bjss.com/wp-content/uploads/Low-Latency-Trading-in-a-Cloud-Environment.pdf
https://www.oracle.com/cloud/solutions/hpc.html
https://mymellanox.force.com/mellanoxcommunity/s/article/perftest-package%205
https://mymellanox.force.com/mellanoxcommunity/s/article/perftest-package%205
https://mymellanox.force.com/mellanoxcommunity/s/article/perftest-package%205
https://www.mellanox.com/page/software_vma?mtag=vma

